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REVIEW

Effects of mesenchymal stem cells on solid 
tumor metastasis in experimental cancer 
models: a systematic review and meta-analysis
Jing‑Huan Li1,2,3†, Wen‑Shuai Fan4†, Mi‑Mi Wang1,2, Yan‑Hong Wang1,2 and Zheng‑Gang Ren1,2*

Abstract 

Background: It has been reported mesenchymal stem cells (MSCs) are recruited to and become integral parts of 
the tumor microenvironment. MSCs might have an active role in solid tumor progression, especially cancer metas‑
tasis. However, the contribution of MSCs in the process of cancer metastasis is still controversial. In this review, we 
performed a meta‑analysis on the effects of MSCs administration on cancer metastasis based on published preclinical 
studies.

Methods: The PRISMA guidelines were used. A total of 42 publications met the inclusion criteria. Outcome data on 
the incidence and the number of cancer metastasis as well as study characteristics were extracted. Quality of the 
studies was assessed according to SYRCLE Risk of Bias tool. Random‑effects meta‑analysis was used to pool estimates.

Results: Of the 42 studies included, 32 reported that MSCs administration promoted outcome events (numbers or 
incidences of cancer metastasis), and 39 reported data suitable for meta‑analysis. The median effect size (RR) was 2.04 
for the incidence of cancer metastasis (95% CI 1.57–2.65,  I2 = 21%), and the median effect size (SMD) was 1.23 for the 
number of cancer metastasis (95% CI 0.43–2.03,  I2 = 89%). Heterogeneity was observed, with the greater impact based 
on study length and different ways of metastasis measurement and MSCs administration.

Conclusion: Our results suggested MSCs administration increased the number and the incidence of cancer metas‑
tasis in experimental cancer models. High heterogeneity and poor reported risk of bias limit the quality of these find‑
ings. Further preclinical studies with better design and adequate reporting are still needed.
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Background
Distant metastasis is a major feature of cancer cells, 
which is responsible for most cancer-associated mortal-
ity [1]. The biology of the cancer cells plays an important 
role in cancer metastasis. However, more and more evi-
dence supports the role of cancer-associated stroma in 
cancer metastasis and poor clinical outcomes [2–4]. And 
therapeutic candidates that targeted stromal members 
are widely explored to improve outcomes of cancer treat-
ment [3].

Mesenchymal stem cells (MSCs) have been success-
fully isolated from several primary solid tumors, such as 
ovarian cancer, breast cancer, gastric cancer, and osteo-
sarcoma [5, 6], suggesting MSCs a critical part of cancer 
stroma. MSCs, also known as mesenchymal stromal cells, 
are a heterogeneous group of multi-potent progenitor 
cells that could contribute to maintenance and regen-
eration of a variety of tissues [6, 7]. In the case of tissue 
injury or inflammatory, MSCs could be mobilized and 
recruited to the damage site upon sensing wound-asso-
ciated signals [6]. Since cancer development is generally 
accompanied by multiple desmoplastic reactions, which 
confer the tumor site a ‘wound that never heals’ [8], 
MSCs has been reported to recruit to several cancer tis-
sues, such as breast cancer [9], prostate cancer [10], and 
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osteosarcoma [11]. And identified endocrine and par-
acrine signals, such as Sdf-1/CXCR4 and PGF/VEGFR1 
axes [9], are found to be involved in this process. There-
fore, previously studies mostly focused on the potential 
use of MSCs as vehicles for delivering anti-cancer agents. 
Till now, there are at least four clinical studies elucidat-
ing modulated-MSC-based therapy in patients with 
cancer but no solid results have yet been reported (Clini-
calTrials.gov Identifier: NCT02008539, NCT02530047, 
NCT02068794, and NCT01983709).

However, MSCs could participate in tumor progres-
sion directly by influencing cancer cell biology or indi-
rectly by modulating the immune status and angiogenic 
process, resulting the role MSCs played in tumor pro-
gression is complicated, especially in tumor metastasis 
[8]. Until recently, there are several studies focused on 
the effects of MSCs in tumor metastasis in animal mod-
els, but the results are conflicting. For example, Kaenoub 
et al. reported that MSCs within tumor stroma promote 
breast cancer metastasis [2], whereas Meleshina et  al. 
found MSCs reduced metastasis of breast cancer [12]. 
Yan and his colleagues suggested opposite conclusion to 
Li and his colleagues’ conclusion that MSCs inhibit hepa-
tocarcinoma metastasis [5, 13]. Moreover, to our knowl-
edge, these relevant preclinical studies have never been 
systematically analyzed and strong evidence with animal 
model study is still lacking.

Therefore, in this review, we examine the current state-
of-the-art of preclinical studies of the effect of MSCs 
administration on tumor metastasis, and we discuss their 
advantages, limitations and future potential.

Methods
Search strategy and literature selection
The PRISMA guidelines were used to conduct this review 
and meta-analysis [14]. Studies of MSCs administration 
in animal models of solid tumor metastasis were iden-
tified from PubMed, EMBASE, and Cochrane library 
from January 2000 to March 2017. The following search 
strategy was used for PubMed and EMBASE: (“mesen-
chymal stromal cell” OR “mesenchymal stem cell”) AND 
(cancer OR tumor) AND (preclinical OR animal) AND 
(metastasis OR progression). The search strategy used 
for Cochrane library was (mesenchymal stromal cell OR 
mesenchymal stem cell) AND (cancer OR tumor). Sec-
ondary references were also reviewed. Studies met all 
following criteria were included: (1) the study assessed 
effects of MSCs administration on incidence or number 
of metastasis in animal models with experimental cancer, 
(2) the research was performed in animals in vivo, (3) the 
research was an original full-text literature with unique 
data, (4) the study had appropriate control groups. Stud-
ies were excluded if the MSCs used involved additional 

active components such as gene/drug modification, or 
the cancer model was hematological malignancies rather 
than solid tumor. All the publications were randomly 
allocated to three independent reviewers (Li, Fan, and 
Wang), who screened out candidate papers mainly based 
on title and abstract. Full articles of candidate papers 
were subsequently analyzed in detail. The flow diagram of 
search strategy and literature selection is shown in Fig. 1.

Data extraction
Data on animal model characteristics (animal species/
strain and gender), cancer model (cancer cell type and 
implantation route), MSCs administration characteris-
tics (MSCs origin, source, identification test, as well as 
administration route, dose, and timing related to cancer 
implantation), and primary outcome measures (region of 
metastasis, number or incidence of metastasis, and con-
clusion) were extracted. We also extracted bibliographic 
data, including authors, year of publication, and country 
or region.

Fig. 1 Flow diagram of the current meta‑analysis. Studies of MSCs 
administration in animal models of solid tumor metastasis were 
identified from PubMed, EMBASE, and Cochrane library until March 
2017. A total of 42 publications met the inclusion criteria
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For included 42 literatures, all independent compari-
sons of metastasis in animals with experimental cancer 
having MSCs or blank control treatment were identified. 
Replications were also collected separately. Information 
on primary outcome were extracted from both text and 
graphs, when raw data or mean/median/incidence, SD/
SE were reported or recalculated. ImagePro Plus v6.0 
software was used to obtain values from graphs. When 
the number of animals was reported as a range, the low-
est group size was collected. When no clear data could 
be extracted, the report was excluded from further 
meta-analysis.

Assessment of study quality and risk of bias
Quality and risk of bias was assessed by SYRCLE Risk 
of Bias tool [15]. When the number of animal per group 
reported in the Method section equaled to the number 
mentioned in the Results section or figure legends, we 
assumed there had no exclusion of animals. All the stud-
ies were reviewed independently by two reviewers.

Besides, to overcome the fact that there were too many 
items as “unclear” because of the poor description of 
details on experiment design and methods, we included 
3 items in other Bias: (1) inappropriate influence of 
funders, (2) mention of randomization at any level, and 
(3) mention of blinding at any level. For inappropriate 
influence of funders, “Yes” indicated non-industry source 
of funding, no funding, or no conflict of interest, “No” 
indicated the study was funded by industry or author 
mentioned conflict of interests, “unclear” indicated fund-
ing source or conflict of interest was not mentioned. For 
mention of randomization or blinding, “Yes” indicated 
reported and “No” indicated unreported.

Statistical analyses
Data were analyzed using Review Manager Software 
(RevMan, version 5.2). For the measurement of outcome 
event “number of metastases”, the standardized mean 
difference (SMD) was computed using mean and SD. If 
the data were shown as median and percentiles, the data 
were converted to mean and SD. For the measurement of 
outcome event “incidence of metastases”, the risk ration 
(RR) was computed. When individual comparisons with 
zero events in one group, either control or treatment 
group, a continuity correction of 0.5 was added to each 
cell, as implemented in RevMan software.

Considering the anticipated heterogeneity, random 
effects models were used to conducted meta-analysis. 
Mean effect size, 95% confidence intervals (95% CI), sig-
nificance, and forest plots were analyzed by the inverse-
variance method and the standard mean differences in 
RevMan software. The possibility of publication bias was 

assessed by visually evaluating the asymmetry in the fun-
nel plots. Heterogeneity was examined by using  I2.

Sensitivity analysis and subgroup analysis were per-
formed to further assess the robustness of our findings 
and explain the observed heterogeneity

Results
Study selection process and study characteristics
As shown in Fig. 1, a total of 42 publications were identi-
fied. The detail characteristics of these studies were listed 
in Additional file 1: Table S1. Out of the 42 publications, 
32 studies came with the conclusions that MSCs admin-
istration promoted outcome events (numbers or inci-
dences of cancer metastasis) in animal studies. Excluded 
3 publications that could not extract clear data, a total 
of 39 studies with 66 independent comparisons were 
included for further meta-analysis.

The characteristics of the included 39 publications with 
66 independent comparisons were shown in Table  1. 
Breast cancer metastases were studies in 48.5% of the 
experiments. Metastases of osteosarcoma, hepatocellular 
carcinoma, colon cancer, and melanoma were studies in 
12.1, 9.1, 6.1, and 4.5% of the experiments, respectively. 
The most popular metastases region was lung (62.1%), 
and the second was liver (10.6%). The remaining of 27.3% 
experiments studied the metastases in bone, lymph node, 
skin, or whole body in general.

Out of the studies, most experiments (83.3%) con-
ducted in nude mice. Female and male animals were 
used in 53.0% and 18.2% of the studies. MSCs derived 
from human bone marrow were used in most experi-
ments (45.5%). Also, MSCs derived from human umbili-
cal cords blood or adipose tissues were used in 24.2% of 
the studies. Besides, one study included MSCs derived 
from primary human pancreatic cancer tissues. The ratio 
of tumor cells to MSCs varied between 0.01 and 50, while 
the number of administrated MSCs was consistent with 
the number of injected tumor cells in most experiments 
(48.5%). MSCs were generally administrated as a single 
does together with tumor cells, and in 22.7% experiments 
animals received multiple MSCs injections via tail vein 
within 5 weeks following tumor cells injections.

Out of the 39 studies, only 14 of them reported the pas-
sages of MSCs they used, and 16 of them identified MSCs 
by verified the potentials of multilineage differentiation, 
with most studies failed to report the passages and dif-
ferentiation potentials of the MSCs used.

Study quality and risk of bias
The quality assessment of the 39 studies was shown 
in Fig.  2. In most cases, poor reporting resulted in an 
unclear risk of bias. Take selection bias as an exam-
ple, almost no author described the randomization 
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procedures or whether the sequence had been concealed. 
However, the majority of studies seemed to be similar at 
animal baseline. Performance bias was reflected by item 
4 and 5. As shown in Fig. 2, none of the authors reported 
the measures to reduce the performance bias. Measures 
to reduce detection bias (item 6 and 7) were mentioned 
in a small part of studies, though the specific methods to 
achieve randomization for outcome assessment were not 
reported. Concerning the risk of attrition bias (item 8), 
most studies were low risk of bias, while 18.4% high risk 
and 21.1% unclear. Date to assess the risk of reporting 
bias (item 9) were incomplete in studies included, leading 
to an unclear risk of bias.

Considering the fact that only limited details on most 
animals’ studies were provided, we scored another three 
items as described in the method section. As shown in 
Fig. 2, most studies were low risk of inappropriate fund 
bias (81.6%). Randomization of the studies at any level 

was reported in 31.6% publications. And blinding at any 
level was reported in 5.3% publications.

According to whether the publication meets the 12 
items listed above, we classify the publications into three 
categories. Among all the 39 publications, no study has 
reached 9–12 criteria, only seven publications have met 
5–8 criteria, and 32 publications have met 0–4 criteria.

Meta‑analysis of the effect size: incidence of tumor 
metastases
A total of 31 comparisons with 624 animals investigat-
ing the effect of MSCs administration on the incidence 
of tumor metastases in experimental animal models were 
involved in the meta-analysis. Overall, the results found 
the administration of MSCs increased the incidence of 
tumor metastases in animal models (RR 2.04, and 95% 
CI 1.57–2.65, Fig. 3), with a mild heterogeneity between 
studies  (I2 = 21%).

Table 1 Characteristics of reviewed 39 publications with 66 comparisons (number = 66)

Characteristics Subgroups Number (%)

Cancer type Breast cancer [2, 9, 12, 17, 18, 21, 32–40] 32 (48.5)

Osteosarcoma [11, 19, 41–43] 8 (12.1)

Hepatocellular carcinoma [5, 13, 44] 6 (9.1)

Colon cancer [45–47] 4 (6.1)

Melanoma [20, 48, 49] 3 (4.5)

Other [10, 50–58] 13 (19.7)

Animal species/strain Nude mice [2, 5, 9–13, 18, 19, 21, 32–40, 43–47, 50–54, 56–58] 55 (83.3)

Other mice [17, 20, 48, 49, 55] 6 (9.1)

Rat [41, 42] 5 (7.6)

Animal gender Female [2, 12, 17, 18, 20, 33–37, 39, 40, 43, 46, 47, 50, 51, 53, 55, 56] 35 (53.0)

Male [5, 10, 11, 19, 42, 45, 49, 54] 12 (18.2)

Unclear [9, 13, 21, 32, 38, 41, 44, 48, 52, 57, 58] 19 (28.8)

Source of MSCs Human bone marrow [2, 9–13, 18, 21, 32, 34, 35, 43–47, 52, 54, 56] 30 (45.5)

Other human tissue [5, 33, 36–38, 50, 53, 57] 16 (24.2)

Mice bone marrow [20, 35, 39, 40, 48, 49, 55, 58] 11 (16.7)

Rat mone marrow [41, 42, 51] 6 (9.1)

Unclear [17, 19] 3 (4.5)

Cancer cell/MSCs dose ratio < 1 [2, 20, 33, 39, 46, 47, 49, 54, 55] 15 (22.7)

=1 [5, 9, 12, 13, 17, 19, 21, 32, 36, 40–42, 44, 45, 48, 50, 51, 53, 57, 58] 32 (48.5)

> 1 [10, 11, 18, 34, 35, 37, 38, 43, 52, 56] 19 (28.8)

Timing of MSCs administration Co‑administration [2, 5, 9, 10, 17–19, 21, 32–34, 36, 38–43, 45–48, 50, 52–55, 58] 47 (71.2)

Followed administration [11–13, 20, 35–37, 41, 44, 49, 51, 56] 19 (28.8)

MSCs passages Reported (3–20) [2, 12, 13, 19, 20, 32, 35, 37, 42, 44, 49–52] 25 (37.9)

Unclear [5, 9–11, 17, 18, 21, 33, 34, 36, 38–41, 43, 45–48, 53–58] 41 (62.1)

MSCs differentiation With [18, 20, 21, 32, 33, 35, 39, 43, 45, 46, 48, 50, 52, 53, 56, 57] 25 (37.9)

Without [2, 5, 9–13, 17, 19, 34, 36–38, 40–42, 44, 47, 49, 51, 54, 55, 58] 41 (62.1)

Metastasis site Lung [2, 5, 9, 11–13, 17–21, 32, 33, 35–40, 42–45, 49, 51, 54, 56, 58] 41 (62.1)

Liver [18, 33, 35, 46, 47, 52, 57] 7 (10.6)

Other organ or multiple organ [9, 10, 17, 18, 32, 34, 48, 53, 55] 18 (27.3)
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Subgroup analyses were performed based on experi-
ment design, to examine whether particular factors may 
affect the outcome of meta-analysis. The effects of MSCs 
on the incidence of cancer metastasis were robust across 
cancer type, cancer metastasis site, animal models, as 
well as MSCs delivery timing, source, and dose (Table 2). 
Also, no significant impact of quality assessment cat-
egory on effect size was observed (p = 0.63). Besides, 
considering that the quality and risk of bias due to poor 
reporting in most cases was not clear, experiments were 
also grouped according to the impact factors (IFs) of the 
journal. And it found the effects were robust across these 
two groups (p = 0.58).

Heterogeneity within the subgroup was remarkably 
reduced when cancer type, metastasis estimation meth-
ods, MSCs administration way, and IFs were limited. 
For example, subgroup analysis for breast cancer, which 
weighted 45.8%, found an effect size RR 1.94 (95% CI 
1.43–2.62,  I2 = 0%). Subgroup analysis for biolumines-
cence measurement of metastasis, which weighted 48.2%, 
found an effect size RR 2.13 (95% CI 1.59–2.84,  I2 = 0%). 
Subgroup of co-administration of cancer cells and MSC, 
weighted 73.6%, found an effect size RR 2.19 (95% CI 
1.72–2.79,  I2 = 0%), and subgroup of higher IFs, weighted 
50.7%, found an effect size RR 2.21 (95% CI 1.66–2.95, 
 I2 = 0%). What’s more, it shown cancer cells/MSCs 
injection ratio may be the main source of heterogeneity 
(p = 0.03, heterogeneity between subgroups  I2 = 71.6%). 

However, because the number of studies in the subgroup 
of cancer cells/MSCs ratio <1 was small, the results 
should be interpreted with cautions.

Meta‑analysis of the effect size: number of tumor 
metastases
A total of 35 comparisons with 489 animals were involved 
in the meta-analysis, which investigating the effect of 
MSCs administration on the number of tumor metas-
tases. The results found the administration of MSCs 
increased the number of tumor metastases in experi-
mental cancer models (SMD 1.23, and 95% CI 0.43–2.03, 
Fig. 4). The heterogeneity between studies was significant 
 (I2 = 89%), demonstrating notable heterogeneity across 
studies.

Subgroup analyses were shown in Table  3. It revealed 
the effects varied across the way MSCs administrated 
(both dose and timing), the study length, and impact fac-
tors of published journal. But no significant impact of 
quality assessment category on effect size was observed 
(p = 0.07). Subgroups of co-administration of cancer 
cells and MSCs, study length longer than 42  days, and 
journals had higher impact factors (IF>5) had reduced 
heterogeneity.

To rule out the influence of cancer type on hetero-
geneity, experiments of breast cancer were selected 
and further subgroup analyses were performed. It also 
revealed study length and different ways of metastasis 

Fig. 2 Proportion of studies meeting each quality score criterion. Results of the risk of bias of the 39 studies involved in the systematic review were 
shown by bar charts. For the items 1 to 10, “Yes” means that the description of measurements meets the item requirements, indicating low risk of 
bias, “No” means that the description does not meet the item requirements, indicating high risk of bias, and “Unclear” means there is no relevant 
reports, indicating unclear risk of bias. With the item 11 and 12, “Yes” indicated reported and “No” indicated unreported
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measurement or MSCs administration could be the main 
sources of heterogeneity (Table  4). For example, sub-
group analysis for histological measurement of metas-
tasis found an effect size SMD 2.92 (95% CI 1.82–4.02, 
 I2 = 55%). Whereas subgroup for fluorescence measure-
ment found an effect size SMD 1.22 (95% CI − 0.2~2.65, 
 I2 = 90%).

Sensitivity analysis
To assess the robustness of the estimated pooled effect 
size for metastases number and incidence, we performed 
a leave-one-out sensitivity analysis by removing one study 
at a time and reevaluating the effect size of the remaining 

studies. For both the number and the incidence of metas-
tases, the pooled effect was stable, indicating the results 
were not driven by any single study.

Publication bias
Publication bias was assessed by funnel plot for the out-
comes of metastases number and incidence. Figure  5a 
suggested a symmetrical distribution for the number of 
metastases. But funnel plot demonstrated some degree 
of asymmetry for the incidence of metastases, indicating 
the possibility of either publication bias or a systematic 
difference between the studies (Fig. 5b).

Fig. 3 Forest plots of meta‑analysis for the association between MSC administration and the incidence of tumor metastasis in animal models. A 
total of 31 comparisons with 624 animals were involved. It found the administration of MSCs increased the incidence of tumor metastases in animal 
models (RR 2.04, 95% CI 1.57–2.65,  I2 = 21%)
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Discussion
It has been reported that there might be a relation 
between MSCs and the outgrowth of cancer metastasis 
[5, 16–18]. Solid preclinical analysis, however, has been 
lacking so far. The current meta-analysis examined the 
effect of MSCs on cancer metastasis in current state-
of-the-art preclinical studies. We provide evidence that 
MSCs usage increase the number and the incidence of 
cancer metastasis in experimental cancer models.

To our knowledge, no studies have examined the 
effects of MSCs on solid tumor metastasis in animal 
models using a meta-analysis. Our meta-analysis sug-
gested MSCs increased the number and the incidence 
of tumor metastases in animal models (SMD 1.23, 95% 
CI 0.43–2.03; RR 2.04, 95% CI 1.57–2.65, respectively). 
These studies advanced our understanding of the pro-
metastasis properties of MSCs during tumor metastasis. 
More specifically, as shown in Additional file  2: Figure 

Table 2 Effect size and  subgroup analyses for  MSC administration in  preclinical studies of  solid tumor metastasis 
incidence

RR risk ratio; CI confidence interval; I2a, I2 for heterogeneity within each subgroup; P P value for heterogeneity between subgroups; I2b, I2 for heterogeneity between 
subgroups

Group Weight Effect size I2a P I2b

(%) RR 95% CI (%) (%)

All experiments 100.0 2.04 1.57, 2.65 21

Cancer type

 Breast cancer 45.8 1.94 1.43, 2.62 0 0.630 0

 Other cancer 54.2 2.22 1.41, 3.50 21

Animal species/strain

 Nude mice 86.2 2.03 1.53, 2.68 19 0.810 0

 Other mice/rat 13.8 2.30 0.85, 6.22 54

Source of MSC

 Human bone marrow 65.1 1.81 1.24, 2.64 42 0.450 0

 Other human tissue 16.1 2.77 1.61, 4.77 0

 Mice/rat bone marrow 18.8 2.09 1.24, 3.51 0

Metastasis estimation

 Fluorescence microscopy 17.2 2.95 1.32, 6.60 27 0.610 0

 Histological evaluation 34.6 1.79 1.03, 3.14 38

 Bioluminescence 48.2 2.13 1.59, 2.84 0

Cancer cell/MSC dose ratio

 = 1 47.2 1.39 0.9, 2.16 38 0.030 71.6

 > 1 45.3 2.62 1.89, 3.65 0

 < 1 7.5 3.83 1.68, 8.73 0

Timing of MSC administration

 Co‑administration 73.6 2.19 1.72, 2.79 0 0.240 28.5

 Follow‑administration 26.4 1.39 0.68, 2.84 48

Study length (days)

 ≤ 42 100 2.04 1.57,2.65 21 – –

 > 42 0 – – –

Metastasis site

 Lung 55.4 1.61 1.08, 2.40 34 0.060 72

 Other tissue 44.6 2.64 1.92, 3.63 0

Study quality category

 Meet 9–12 criteria 0 – – – 0.630 0

 Meet 5–8 criteria 9.2 2.90 0.74, 11.40 37

 Meet 0–4 criteria 90.8 2.06 1.56, 2.71 21

Impact factor of journal

≤ 5 49.3 1.90 1.19, 3.01 36% 0.580 0

> 5 50.7 2.21 1.66, 2.95 0
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S1, MSCs could produce large amounts of factors and 
exosomes to promote cancer cell invasion, angiogenic 
process, or prepare tissue niches in distant organs [6, 19]. 
MSCs could also affect cancer cells by cell–cell contact. 
Moreover, MSCs could recruit several immunosuppres-
sive stroma cells such as myeloid-derived suppressor cells 
(MDSCs) by creating chemokines [20]. Notably, these 
pro-metastasis properties of MSCs might transiently 
expressed in response to context signals, such as hypoxia 
in tumor niches, rather than constitutively expressed 
[9, 21, 22]. However, as cell lines study has its intrinsic 
limitation, the conclusions and underlying mechanisms 

should be explained with cautions. And it is important to 
implement studies on primary biopsy material to demon-
strate the effect of MSCs.

In general, an effect size of 0.8 equates to a large effect, 
0.5 to a medium effect, and 0.2 to a small effect [23]. In 
this context, the effects of MSCs on cancer metastasis can 
be classified as large, for example, for number of metasta-
sis averaging 1.23 and incidence of metastasis averaging 
2.04 across all comparisons. In this study, effects of MSCs 
on the incidence of cancer metastasis were robust across 
cancer type, cancer metastasis site, animal models, as 
well as MSCs delivery timing, source, and dose (Table 2).

Fig. 4 Forest plots of meta‑analysis for the association between MSC administration and the number tumor metastasis in animal models. A total of 
35 comparisons with 489 animals were involved. It found the administration of MSCs increased the number of tumor metastases in experimental 
cancer models (SMD 1.23, 95% CI 0.43–2.03,  I2 = 89%)
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The quality of the studies was also reviewed, using 
SYRCLE’s risk of bias tool for animal studies [15]. We 
found that the risk of bias could not be estimated in 
most studies for each item assessed, indicating a poor 
reported risk of bias. Only seven publications have met 
more than four items out of the 12 criteria. Though 
no significant impact of quality assessment category 
on effect size was observed (p = 0.07 for the number 

of cancer metastasis and p = 0.63 for the incidence of 
cancer metastasis), and current reporting quality of 
pre-clinical studies is generally poor, it may be associ-
ated with inflations in the estimates of the effect size 
[24–27]. Moreover, methodological weakness in animal 
studies could result in over-estimated treatment effects 
and decrease confidence in translational potential [25]. 
Thus, further pre-clinical studies with high reporting 
quality of essential experimental details is needed.

Table 3 Effect size and subgroup analyses for MSC administration in preclinical studies of solid tumor metastasis number

SMD standard mean difference; CI confidence interval; I2a, I2 for heterogeneity within each subgroup; P P value for heterogeneity between subgroups; I2b, I2 for 
heterogeneity between subgroups

Group Weight Effect size I2a P I2b

(%) SMD 95% CI (%) (%)

All experiments 100.0 1.23 0.43, 2.03 89

Cancer type

 Breast cancer 48.6 2.04 0.87, 3.21 90 0.060 71.8

 Other cancer 51.4 0.48 − 0.65, 1.61 89

Animal species/strain

 Nude mice 82.3 1.12 0.26, 1.97 89 0.690 0

 Other mice/rat 17.7 1.67 − 0.9, 4.23 92

Source of MSC

 Human bone marrow 40.7 1.96 0.59, 3.33 87 0.330 12.4

 Other human tissue 18.2 0.09 − 1.94, 2.13 94

 Mice/rat bone marrow 31.0 0.73 − 0.72, 2.17 89

 Unclear 10.0 2.15 − 0.14, 4.34 85

Metastasis estimation

 Fluorescence microscopy 42.0 1.11 − 0.3, 2.35 90 0.170 44.2

 Histological evaluation 40.1 2.02 0.76, 3.29 88

 Bioluminescence 17.9 − 0.54 − 2.95, 1.87 89

Cancer cell/MSC dose ratio

 = 1 62.6 1.11 0.1, 2.12 90 0.030 72.7

 > 1 7.2 − 0.20 − 1.08, 0.67 0

 < 1 30.2 1.85 0.45, 3.24 80

Timing of MSC administration

 Co‑administration 68.5 2.18 1.38, 2.99 82 0.001 94

 Follow‑administration 31.5 − 1.13 − 2.50, 0.23 88

Study length (days)

 ≤ 42 59.1 0.32 − 0.70, 1.35 91 0.006 86.7

 > 42 40.9 2.44 1.32, 3.56 78

Metastasis site

 Lung 81.6 1.80 0.28, 2.07 89 0.570 0

 Other tissue 18.4 1.66 0.26, 3.07 73

Study quality category

 Meet 9–12 criteria 0 – – – 0.07 70.5

 Meet 5–8 criteria 20.3 2.92 0.90, 4.94 90

 Meet 0–4 criteria 79.7 0.85 − 0.04, 1.74 89

Impact factor of journal

 ≤ 5 56.8 0.30 − 0.73, 1.32 89 0.004 87.7

 > 5 43.2 2.30 1.38, 3.22 74
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Besides, heterogeneity was observed in current meta-
analyses. On one hand, based on this review, the level 
of heterogeneity between the studies for the incidence 
of cancer metastasis was low  (I2 = 21%), suggesting that 
incidence of metastasis might be an efficient indicator 
of effect of MSCs on cancer metastasis. On the other 
hand, the level of heterogeneity between the studies 
for the number of cancer metastasis was relatively high 
 (I2 = 89%), though the  I2 values were similar to the val-
ues reported by other studies focused on animal studies 
[24, 28, 29]. Further subgroup analysis, to some extent, 
revealed some possibilities of heterogeneity, such as 
study length, methods of metastasis measurement and 
MSCs administration. We observed that short-term 

study length (≤ 42  days), metastasis count by fluores-
cence intensity rather than histological measurement, 
and MSCs intravenously injected more than once after 
primary tumor implanted may induce high heteroge-
neity. To some extent, this might help to inform the 
design of future animal studies.

Since MSCs are a heterogeneous population of 
cells, it is relevant to view the source of MSCs and the 
techniques used to isolate and characterize MSCs in 
original studies [6, 7, 30, 31]. Among all the 39 stud-
ies involved in present meta-analysis, however, only 
16 studies reported on multi-lineage differentiation 
for MSCs and 14 studies reported on cell passages 
of MSCs used. Also, these studies used different sets 

Table 4 Effect size and  subgroup analyses for  MSC administration in  preclinical studies of  breast cancer metastasis 
number

SMD standard mean difference; CI confidence interval; I2a, I2 for heterogeneity within each subgroup; P P value for heterogeneity between subgroups; I2b, I2 for 
heterogeneity between subgroups

Group Weight Effect size I2a P I2b

(%) SMD 95% CI (%) (%)

All experiments 100.0 2.04 0.87, 3.21 90

Animal species/strain

 Nude mice 100 2.04 0.87, 3.21 90 – –

 Other mice/rat 0 – – –

Source of MSC

 Human bone marrow 40.3 4.06 2.43, 5.70 70 0.006 75.8

 Other human tissue 30 − 0.07 − 2.54, 2.41 95

 Mice/rat bone marrow 14.8 1.04 0.24, 1.83 0

 Unclear 14.9 1.20 − 0.73, 3.14 82

Metastasis estimation

 Fluorescence microscopy 64.1 1.22 − 0.2, 2.65 90 0.07 70.5

 Histological evaluation 35.9 2.92 1.82, 4.02 55

 Bioluminescence 0 – – –

Cancer cell/MSC dose ratio

 = 1 58.8 1.48 − 0.14, 3.1 92 0.35 0

 > 1 0 – – –

 < 1 41.2 2.44 1.27, 3.62 65

Timing of MSC administration

 Co‑administration 84.8 2.38 1.54, 3.22 72 0.001 98

 Follow‑administration 15.2 − 2.24 − 2.93, 1.55 0

Study length (days)

 ≤ 42 44.8 0.29 − 1.42, 2.00 93 0.008 85.7

 > 42 55.2 3.24 1.88, 4.6 78

Metastasis site

 Lung 75.6 1.80 0.47, 3.12 90 0.680 0

 Other tissue 24.4 2.20 0.84, 3.56 60

Impact factor of journal

 ≤ 5 30 − 0.64 − 2.52, 1.23 92 0.002 90

 > 5 70 2.8 1.78, 3.82 73
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of molecular or phenotypic pattern to characterize 
MSCs. These differences in cell isolation and iden-
tification might favor certain subpopulations, which 
could result in the heterogeneity. Thus, further studies 
should pay more attention to the methods which clari-
fied the population of stromal cells that used experi-
mentally, to enable adequate analysis across different 
studies.

Finally, this review has several limitations. First, 
we could not rule out that the effect of MSCs could 
be less strong or not effective in certain subgroups of 
unpublished data, since the visualization of the fun-
nel plot suggested some extent of publication bias. 
Second, the level of heterogeneity between the stud-
ies for the number of cancer metastasis was high, 
though random effects models were used to account 
for anticipated heterogeneity. Thus the substantial 
heterogeneity found through this review may restrict 
the generalizability of the findings. Third, there were 
only 39 publications met the inclusion criteria, though 
744 literatures were identified by electronic searching. 
Nevertheless, at the very least our analysis represents 
the complete review for unmodified-MSCs adminis-
tration in experimental cancer metastasis.

Conclusion
The present meta-analysis demonstrated the favorable 
impact of MSCs on cancer metastasis, both the inci-
dence and the number, in experimental cancer models. 
Although poor reported risk of bias and high level of 
heterogeneity were yet limited, at the very least, the 
current meta-analysis underlined that MSCs might 
have an active role in tumor microenvironment and 
might represent a promising target to therapies pre-
venting the establishment of cancer distant metastasis. 
Still further preclinical studies with better design and 
adequate reporting are needed.
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