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Geographic atrophy (GA) is a vision-threatening manifestation of age-related macular degeneration
(AMD), one of the leading causes of blindness globally. Objective, rapid, reliable, and scalable
quantification of GA from optical coherence tomography (OCT) retinal scans is necessary for disease
monitoring, prognostic research, and clinical endpoints for therapy development. Such automatically
quantified biomarkers on OCT are likely to further elucidate structure—function correlation in GA and
thus the pathophysiological mechanisms of disease development and progression. In this work, we
aimed to predict visual function with machine-learning applied to automatically acquired quantitative
imaging biomarkers in GA. A post-hoc analysis of data from a clinical trial and routine clinical care was
conducted. A deep-learning automated segmentation model was applied on OCT scans from 476
eyes (325 patients) with GA. A separate machine learning prediction model (Random Forest) used

the resultant quantitative OCT (qOCT) biomarkers to predict cross-sectional visual acuity under
standard (VA) and low luminance (LLVA). The primary outcome was regression coefficient (r?) and
mean absolute error (MAE) for cross-sectional VA and LLVA in Early Treatment Diabetic Retinopathy
Study (ETDRS) letters. OCT parameters were predictive of VA (r2 0.40 MAE 11.7 ETDRS letters) and
LLVA (r? 0.25 MAE 12.1). Normalised random forest feature importance, as a measure of the predictive
value of the three constituent features of GA; retinal pigment epithelium (RPE)-loss, photoreceptor
degeneration (PDR), hypertransmission and their locations, was reported both on voxel-level
heatmaps and ETDRS-grid subfields. The foveal region (46.5%) and RPE-loss (31.1%) had greatest
predictive importance for VA. For LLVA, however, non-foveal regions (74.5%) and PDR (38.9%) were
most important. In conclusion, automated qOCT biomarkers demonstrate predictive significance

for VA and LLVA in GA. LLVA is itself predictive of GA progression, implying that the predictive qOCT
biomarkers provided by our model are also prognostic.

Geographic atrophy (GA) is a chronic progressive degeneration of the macula, the central 24 mm? (20°) region of
the retina required for central vision. It is the defining lesion of late age-related macular degeneration (AMD)'2.
GA is associated with significant, irreversible vision loss. To assess visual function in AMD, visual acuity (VA)
measured using an eye chart under standardised lighting is an established key outcome measure as defined by
the International Consortium for Health Outcomes Measurement®. Interestingly, in early stages of AMD, VA
measured under low luminance conditions (low luminance visual acuity [LLVA]) can be reduced whilst standard
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VA remains unaffected*®. Most patients initially present with non-central GA (affecting the parafoveal region
of the macula) and gradually proceed to foveal involvement (central GA)®. In this context, LLVA correlates
with future deterioration of VA and its reduction indicates that the patient will head towards the beginning of
end-stage disease, and loss of foveal function may be impending. Yet the physiological mechanism underlying
this outcome measure is unknown®'°.

With no current treatments for GA and promising therapies on the horizon''"', it is increasingly important
to establish structure—function relationships within GA, as they: (i) provide further understanding of the patho-
physiological mechanisms underlying GA; (ii) refine monitoring of disease activity and thereby diagnostic and
prognostic counselling at the individual patient level; (iii) serve to define clinical endpoints in clinical trials and
enable identification of earlier stages, i.e. opportunities for interventions that can prevent vision loss.

The current reference standard for diagnosing, characterising, and monitoring progression in GA is spec-
tral domain optical coherence tomography (SD-OCT), as it captures the cross-sectional morphology of retinal
structures'®. Indeed, an international consortium of experts in AMD and retinal imaging—the Consensus of
Atrophy Meetings (CAM) group—chose to define disease progression in GA based on SD-OCT structural
markers™!®). Their proposed terms for macular atrophy in the context of AMD each describe the affected ana-
tomical layers and represent distinct disease stages. Herein, complete RPE (retinal pigment epithelium) and outer
retinal atrophy (cCRORA) represents the endpoint of atrophy—encompassing GA—and is defined by regions of:
choroidal hypertransmission with diameter >250 um; RPE attenuation or disruption with diameter >250 pm;
overlying photoreceptor degeneration; and absence of RPE tear'”. Regions in which these features overlap but are
less than 250 pum are termed incomplete RPE and outer retinal atrophy (IRORA)—a precursor stage to cRORA'S.
Recently, we developed a deep learning model to automatically segment RPE-loss, photoreceptor degeneration,
and hypertransmission from OCT scans and was shown through external validation to be comparable with
human specialist efforts'”. Regions in which these features overlap represent RORA (RPE and outer retinal
atrophy) and can be considered as a continuous variable that encompasses both cRORA (GA) and iRORA.

To date, the relationship between OCT structural features and visual function in GA has relied on manual
segmentation and does not consider the biomarkers defined in the CAM consensus statement'®'°. This study
makes use of an externally-validated algorithm that automatically segments these quantitative OCT (qOCT)
biomarkers, applying it to non-neovascular AMD datasets with GA (n=476) from both a clinical trial and routine
clinical care. Applying machine learning modelling, both standard and low luminance VA could be predicted
to a level that has yet to be achieved. Furthermore, spatial localisation and severity of anatomical disruption of
qOCT biomarkers were mapped onto the macula providing further insight into structure-function relationship
in GA and the (otherwise unknown) underlying physiological mechanism of early LLVA impairment.

11-13

Methods

Study design. This is a non-interventional, post hoc analysis of patients with GA secondary to non-neo-
vascular AMD. Reporting adhered to guidelines for observational studies put forth by the Strengthening the
Reporting of Observational Studies in Epidemiology (STROBE) statement?.

Study cohort. This study considered data from two sources: participants enrolled in the FILLY trial
(NCT02503332)'*! and real-world data collected as part of routine clinical care for patients with GA at Moor-
fields Eye Hospital NHS Foundation Trust, London, United Kingdom.

The FILLY trial was a phase II, international, multicenter clinical trial assessing safety, tolerability, and evi-
dence of activity of intravitreal pegcetacoplan in eyes with GA secondary to non-neovascular AMD with best-
corrected visual acuity (BCVA) greater than 24 Early Treatment Diabetic Retinopathy Study (ETDRS) letters
(Supplementary Methods 1 and Supplementary Fig. 1). Here, only baseline trial data were considered, i.e. the
timepoint prior to initiation of the intervention. The VA values represent BCVA testing using ETDRS charts by
certified examiners after refraction. BCVA under low luminance conditions (low luminance visual acuity; LLVA)
was measured as for BCVA but with a 2.0 log neutral density filter covering the eye. The study eye was assessed
first, after allowing for adequate time for adaptation to low luminance conditions, empirically determined. LLVA
was measured prior to BCVA to avoid memorisation of letters. Low luminance deficit (LLD) was defined as the
difference between BCVA and LLVA (i.e. BCVA-LLVA).

Patients from Moorfields Eye Hospital were included if all of the following criteria were met (Supplementary
Fig. 1): they attended a medical retina clinic between 01-January-2016 and 31-January-2019; GA was included
as a term in the clinic correspondence letter; Heidelberg OCT scans (greater than 25 b-scans per volume) were
obtained from both eyes within 15 days of the appointment; absence of prior anti-VEGF therapy; and the OCT
scans were confirmed to contain GA secondary to non-neovascular AMD (according to manual validation by
a Reading Centre expert grader at the Moorfields Reading Centre). Here, VA (with habitual correction or pin-
hole) was measured as part of a clinical examination with an ETDRS chart. Pinhole VA was used if better than
VA with habitual correction. For any eyes with multiple timepoints meeting the eligibility criteria, the earliest
timepoint was selected.

For all patients, only a single macular OCT scan and a corresponding VA measurement were considered per
eye. The luminance range of ETDRS charts across the two patient cohorts was 85-120 cd/m?. All OCT volumes
were acquired using Heidelberg Spectralis OCT (Heidelberg Engineering, Heidelberg, Germany) having equal
to or greater than 25 b-scans covering 6 x 6 x 2 mm?.

The study was conducted in compliance with the tenets of the Declaration of Helsinki and has approval from
the Moorfields Eye Hospital Institutional Review Board (research reference: ROAD17/031, clinical audit refer-
ence: CA17/MR/28). The requirement for informed consent was waived by the national health research and
ethics review board of England (Health Research Authority of England, Project ID: 281957, Protocol number:
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KEAP1006, Research Ethics Committee Reference: 20/HRA/2158) as this is the standard for use of retrospective,
de-identified data for research within the UK National Health Service (NHS).

Image analysis workflow. All OCT volumes were processed using validated deep learning models'. The
deep-learning models were developed as a variation of the U-Net architecture. Briefly, for every pixel of an
input image, the model outputs a likelihood estimate for a given feature. Models were trained for each of the
morphological features that define geographic atrophy: RPE loss, overlying photoreceptor degeneration, and
hypertransmission. A fourth model that segments RORA was also trained. RORA was defined as overlapping
regions of RPE-loss, photoreceptor degeneration, and hypertransmission, i.e. any retinal areas with all three fea-
tures present and therefore encompassing both iRORA and cRORA'>?2, The models were applied on every OCT
volume scan and performed automated segmentation of each of the 49 b-scans per volume.

For each two-dimensional b-scan, the outputs of the models on a pixel level were converted into a one-dimen-
sional binary label, representing the presence or absence of the feature per vertical column (A-scan). (Fig. 1a)".

The automatic segmentation process assigns a probability for each of the features to each voxel within an
OCT volume. Voxel spatial localisation was interpolated in relation to the central fovea, thereby standardising
locations and enabling comparison between patients (Fig. 1b). Central foveal points were manually annotated by
areading centre expert grader at the Moorfields Reading Centre. The spatial localisation of feature probabilities
was also considered by dividing the macula into each of the ETDRS regions, i.e. mean probability within each of
the nine ETDRS regions (foveal, 4 parafoveal, and 4 perifoveal areas for the nasal, temporal, superior, and inferior
regions) (Fig. 1c). The area of each segmented feature in square millimeters (mm?) was considered by applying
optimised probability thresholds identified from the original model development and validation (Fig. 1d)"’.

Predicting visual acuity. A random forest regression model was trained using the segmentation output
(i.e. the raw probabilities at the voxel level for each feature (RPE-loss, photoreceptor degeneration, hyper-
transmission, and RORA) as input variables to predict cross-sectional VA in ETDRS letters. Three individual
instances of the same model were trained: one with OCTs from the clinical trial FILLY cohort, one with OCTs
from the MEH cohort, and one with OCTs from a combined Overall cohort. Regarding prediction of VA from
qOCT biomarkers under standard-luminance conditions, the three models were evaluated for: (i) VA under
RCT conditions i.e., FILLY; (ii) VA from real-world routine care, i.e., MEH; and (iii) VA from the Overall cohort.

In separate analyses, VA under low luminance conditions and Low Luminance Deficit (LLD), only available
in the FILLY study cohort, were each considered as the dependent variable for separate instances of the random
forest regression model.

The goodness of model fit was evaluated by comparing the regression coeflicient (r?) and mean absolute error
(MAE) computed from 100-fold bootstrapped random forest models trained on 80% of the bootstrap sample
and evaluated on the other 20% split at the patient level. Feature importance was calculated by the method
incorporated in the scikit-learn implementation of random forest regression, whereby features’ rankings for their
variance reduction capability are averaged over the ensemble. Output was multiplied by 100 to give percentage
contribution towards model performance. Analyses were carried out with Python (version 3.6.9) and summarised
metrics in the text are expressed as median with * interquartile range (IQR), unless otherwise specified, as the
measurements were not normally distributed.

Meeting presentation. EURETINA 2021 Prize Paper Presentation—Artificial Intelligence session.

Results

Cohort demographics. The study cohort comprised 476 eyes with GA secondary to non-neovascular AMD
from 325 patients that were undergoing a clinical trial of pegcetacoplan in GA secondary to AMD (n=195) or
routine clinical care at a large UK tertiary centre (n=130) (Supplementary Fig. 1). Mean (SD) age was similar
across groups, with 80.1 (7.6) and 79.1 (9.1) years in the FILLY and MEH cohorts, respectively. Overall median
age was 80.5+IQR 11.1 years. In both cohorts, the majority were female (FILLY: 63.1%; MEH: 56.2%) (Table 1).
No patient had a history of treatment with hydroxychloroquine or chloroquine.

Clinical features and GA segmentation. A wide distribution in standard VA was observed in both study
cohorts: median standard BCVA was 57.5+IQR 30.0 in the FILLY cohort and median best recorded VA was
50.9+35.0 ETDRS letters in the MEH cohort, giving an overall median standard VA 60.5+IQR 32.0 ETDRS
letters. Similarly, the other visual function metrics available for the FILLY cohort were widely distributed. LLVA
was 32.0+28.0, and LLD 21.0+21.0 (Table 2 and Supplementary Fig. 2a).

Automatic segmentation of the Overall cohort’s OCTs revealed that across all parameters analysed, the MEH
cohort featured on average larger areas affected by GA (Table 2 and Supplementary Fig. 2b). Median (IQR)
RORA was 6.03 mm2 (5.59) in the FILLY cohort versus 6.6 (9.32) in the MEH cohort. Similarly, mean areas
affected by RPE loss, photoreceptor degeneration and hypertransmission were nominally larger in the MEH
cohort compared to the FILLY cohort. The total area occupied by each feature was highly variable in the Overall
cohort, resulting in a distribution with median values of: 7.82 +7.58 mm? RPE-loss, 14.4 +9.57 mm? photorecep-
tor degeneration, 9.23 +7.58 mm? hypertransmission, and 6.22 + 6.49 mm? RORA (Table 2 and Supplementary
Fig. 2b). Presence of RORA and its constituent features was also highly variable within each region, ranging
from completely absent (0%) to confluent (>99%). Indeed, RORA was wholly absent from the circular ETDRS
foveal region (diameter 1 mm; 0.79 mm?) in 14.7% of all OCT volumes (70/476; 41/299 FILLY and 29/177 MEH)
(Table 2).
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Region Mean probability  Area (mm?)  Eeature oceupancy (%)
| Foveal 0.31 0.02 2.98%
2 Inner Superior 0.65 0.03 0.41%
3 Inner Nasal 0.75 0.12 1.90%
4 Inner Inferior 0.33 0.17 2.71%
5 Inner Temporal 0.46 0.73 11.64%
6 Outer Superior 0.15 0.31 1.45%
7 Outer Nasal 0.09 0.53 2.48%
8 Outer Inferior 0.09 1.51 7.10%
9 Outer Temporal 0.08 1.97 9.30%
Total 2.90 5.38 19.04%

Figure 1. Image analysis workflow. (a) For each OCT volume, all b-scans were segmented for RPE-loss
(orange), photoreceptor degeneration (blue), hypertransmission (red), and RPE and outer retinal atrophy
(RORA; green). RORA is taken to be overlapping regions of the three former features i.e. co-occurrence as per
a-scan. Exemplar segmentation of a single b-scan and its axis along en face fundus photograph. (b) Resultant
feature probability maps from total volume segmentations collectively presented by projection onto en face
fundus photograph. Colour legends represent target feature probability. Manual central foveal point annotation
permitted interpolation of a given voxel’s localisation in relation to the fovea. (c) ETDRS regions were also
considered wherein the macula is considered as a 6 mm diameter circle divided into 9 areas: central foveal area
(1 mm diameter); 4 parafoveal (collectively span 3 mm diameter); and 4 perifoveal areas. (d) Here, the mean
feature probability within each region is displayed.
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Overall (n=325) FILLY (n=195) MEH (n=130)
Gender
Female 196 (60.3%) 123 (63.1%) 73 (56.2%)
Male 129 (39.7%) 72 (36.9%) 57 (43.8%)
Age (years)
Mean (SD) 79.7 (8.21) 80.1 (7.55) 79.1 (9.12)
Median [Min, Max] 80.5 [45.9, 103] 80.7 [60.4, 97.2] 79.8 [45.9, 103]
Ethnicity
Afro Caribbean - 1(0.5%) 1 (0.8%)
Asian - - 6 (4.6%)
Caucasian - 187 (95.9%) 62 (47.7%)
Other - 2 (1.0%) 0 (0%)
Unknown - 0 (0%) 61 (46.9%)
Hispanic or Latino - 5 (2.6%) -

Table 1. Cohort demographics. Mean, median, minimum value, maximum value, standard deviation (SD),
and proportional distributions are shown for gender, ethnicity, and age of cohorts including patients with
geographic atrophy secondary to non-neovascular AMD. Patients were recruited as part of an international,
multicentre trial (FILLY) or retrospectively through real-world clinical care at Moorfields Eye Hospital (MEH).
Direct comparison of ethnicity was infeasible as each cohort represented ethnicities with distinct categorical
variables that could not be intuitively merged.

Prediction of standard visual acuity using machine learning. For standard VA, the accuracy of
using automatically segmented feature probabilities at the voxel level to predict VA was higher in the FILLY
cohort (r? 0.46 MAE 10.2) than the real-life MEH cohort (r* 0.30 MAE 15.3). The random forest regression
model trained on the two combined cohorts (Overall cohort) had r? 0.40, with mean absolute error (MAE)
of 11.7 ETDRS letters (Table 3a). Normalised random forest feature importance, as a measure of the predic-
tive value of the three constituent features of GA; RPE-loss, PDR, hypertransmission and their locations, was
reported both on voxel-level heatmaps (Fig. 2a) and ETDRS-grid subfields (Table 3b). Predictive importance for
each feature and its position was ranked, wherein RORA contributed the most (30.5% in Overall cohort; 30.9%
in FILLY and 28% in MEH), followed by hypertransmission (25.1% Overall; 25.7% FILLY 26.8% MEH), RPE-
loss (23.7% Overall; 24.8% FILLY 22.4% MEH), and photoreceptor degeneration (20.7% Overall; 18.8% FILLY
22.9% MEH) (Fig. 2a and Table 3b). Feature ranking was further considered by summing feature importance
across ETDRS regions. Critically, features within the foveal region contributed the most (46.5% Overall; 47.1%
FILLY; 46.5% MEH) despite being the smallest ETDRS region—0.78 mm? (Table 3b).

Prediction of low luminance visual acuity using machine learning. Additional visual parameters
were available in the FILLY cohort. Here, random forest cross-sectional predictions of LLVA and LLD from
Deep-Learning segmentation model output feature probabilities. Regression coeflicients (r?) of 0.25 (MAE 12.1)
and 0.25 (MAE 10.1) were observed for LLVA and LLD, respectively (Table 3a). Ranking of feature importance
for LLVA as visualised in corresponding heatmaps was led by photoreceptor degeneration (38.9%), followed by
hypertransmission (26.0%), RORA (21.4%), and RPE-loss (13.8%) (Fig. 2b and Table 3c). In contrast to stand-
ard VA, where feature importance was greatest for the foveal region, features at non-foveal regions were most
important in predicting LLVA. When the VA and LLVA random forest regression models were repeated with one
eye per patient, a similar pattern of feature importance was observed (Supplementary Table 1). The correlation
between actual and predicted values for VA and LLVA and the corresponding Bland-Altman plots are presented
in Supplementary Figure 3.

Discussion

Main findings. Our data demonstrate that both standard and low luminance VA in patients with GA sec-
ondary to non-neovascular AMD can be predicted using qOCT features that have been automatically segmented
and quantified. This is the first time a structure-function relationship has been described for LLVA, creating
a tool to assess its underlying physiological mechanisms. The cross-sectional predictive performance demon-
strated for standard VA in the Overall cohort (r*=0.40; Table 3a) is superior to that from similar efforts in neo-
vascular AMD also using machine-learning based segmentation algorithms—r?>=0.11-0.21***, An MAE of 11.7
ETDRS letters is a step towards the limit of predicting VA, as the test-retest repeatability for standard VA is 5-6
ETDRS letters in eyes without disease and thought to be even greater in eyes with GA?>*.

Mapping structure and location using probability heatmaps. The algorithm described here can
produce a “GA feature probability heatmap’, wherein the algorithm output of segmentation probabilities is
interpolated in relation to the fovea and projected onto an en face fundus image. Probability maps allow us to
instantly consider quantitative segmentation data across an entire image volume simultaneously through an
intuitive graphic. Consideration of segmentation features as continuous variables (i.e. probability of feature pres-
ence) rather than binary variables (feature present or not present) obviates difficulties of assigning fixed thresh-
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(a) Overall (N=476) | FILLY (N=299) | MEH (N=177)
Patients 325 195 130

Standard visual acuity (ETDRS letters)

Mean (SD) 55.1(21.1) 57.5(18.5) 51.2 (24.4)
Median [Min, Max] 60.5 [0, 90.0] 60.0 [0, 90.0] 61.0 [0, 89.0]
Low-luminance visual acuity

Mean (SD) 33.3(17.5) 33.3(17.5) -

Median [Min, Max] 32.0 [0, 80.0] 32.0 [0, 80.0] -

Missing 179 (37.6%) 2 (0.7%) 177 (100%)
Low-luminance deficit

Mean (SD) 24.0 (16.2) 24.0 (16.2) -

Median [Min, Max] 21.0 [0.00, 73.0] 21.0 [0.00, 73.0] -

Missing 179 (37.6%) 2(0.7%) 177 (100%)

(b) Overall (N=476) | FILLY (N=299) | MEH (N=177)
Patients 325 195 130

RPE-loss (mm?)

Mean (SD) 8.53 (5.18) 8.21 (4.29) 9.06 (6.37)

Median [Min, Max] | 7.82 [0.0309, 25.0] | 7.49 [0.603,20.8] | 8.17 [0.0309, 25.0]

Photoreceptor degeneration (mm?)
Mean (SD) 14.2 (6.38) 13.8 (5.60) 14.7 (7.49)
Median [Min, Max] | 14.4 [0.493,28.1] | 13.4[3.12,28.1] | 16.0 [0.493, 28.0]

Hypertransmission (mm?)

Mean (SD) 9.70 (5.36) 9.44 (4.50) 10.2 (6.56)
Median [Min, Max] | 9.23 [0.227,24.8] | 8.79 [1.23,22.0] | 9.59 [0.227, 24.8]
RORA (mm?)

Mean (SD) 7.24 (4.77) 6.91 (3.87) 7.79 (5.97)
Median [Min, Max] | 6.22 [0.0806, 24.0] | 6.03 [0.584, 17.5] | 6.56 [0.0806, 24.0]
(c) Overall (N=476) | FILLY (N=299) | MEH (N=177)
Patients 325 195 130

RPE-loss (%)

Mean (SD) 61.1(38.2) 62.4 (38.2) 58.9 (38.2)
Median [Min, Max] | 77.0 [0, 99.0] 0.0 [0, 99.0] 73.0 [0, 99.0]
Photoreceptor degeneration (%)

Mean (SD) 85.5(26.5) 86.7 (25.8) 83.5(27.6)
Median [Min, Max] | 99.0 [0, 99.0] 99.0 [0, 99.0] 99.0 [0, 99.0]
Hypertransmission (%)

Mean (SD) 67.5 (34.8) 69.0 (34.0) 65.0 (36.0)
Median [Min, Max] | 83.0 [0, 99.0] 84.0 [0, 99.0] 80.0 [0, 99.0]
RORA (%)

Mean (SD) 53.6 (38.4) 54.3 (38.8) 52.5(37.7)
Median [Min, Max] 62.0 [0, 99.0] 62.0 [0, 99.0] 60.0 [0, 99.0]

Table 2. Visual function and corresponding GA feature segmentation. Mean, standard deviation (SD),

and distribution are shown for (a) visual function metrics (standard visual acuity [VA] in ETDRS [early
treatment diabetic retinopathy study] letters], low-luminance visual acuity [LLVA], low-luminance deficit
[LLD, difference between VA and LLVA]); (b) feature segmentations (total areas in square millimeters [mm?]
of RPE-loss, photoreceptor degeneration, hypertransmission, and geographic atrophy; (c) proportion of each
feature overlapping with central foveal region (0.79 mm?). Cohort data was collectively summarised (Overall)
and sub-stratified by recruitment (FILLY trial or MEH [Moorfields Eye Hospital]). LLVA and LLD were not
measured as part of routine clinical care at MEH and these metrics were not available for 2 persons of the
FILLY sub-cohort—these were collectively referred to as missing.

olds. Landmarking each voxel to a reference point enables comparison of features over time and even between
samples and patients (an obligate step for modelling).

Structure-function correlation of standard visual acuity. A stratified feature-region analysis based
on the Overall cohort suggested that foveal RORA, followed by foveal RPE-loss, is the strongest predictor of
standard VA in GA. The strong foveal contribution to predicting standard VA is largely unsurprising, reflecting
the clinical observation that central GA is accompanied by poor VA”. Indeed, topographical analyses of fundus
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MAE (25% quartile—75%

(a) R? quartile)
Standard visual acuity
Overall 040 |11.7 (11.2-12.4)
FILLY 0.46 |10.2(9.5-10.7)
MEH 0.30 |15.3(13.8-16.6)
Low-luminance visual acuity
FILLY ‘0.25 ‘ 12.1 (11.4-12.9)
Low-luminance deficit
FILLY ‘ 0.25 |10.1(9.5-10.8)

Photoreceptor
Region RPE-loss degeneration Hypertransmission | RORA | Sum
(b) Standard visual acuity
1. Foveal 13.4 6.4 8.5 14.8 43.1
2. Inner superior 2.3 1.6 2.5 3.1 9.5
3. Inner nasal 1.7 1.7 2.0 2.6 8.9
4. Inner inferior 1.7 1.6 1.9 2.1 7.3
5. Inner temporal 1.5 1.8 1.7 2 7.0
6. Outer superior 0.8 1.8 2.1 1.4 6.1
7. Outer nasal 0.9 2.1 23 1.7 7.0
8. Outer inferior 0.7 2.3 24 1.6 7.0
9. Outer tempora 0.6 1.4 1.8 1.2 5.0
Sum 23.7 20.7 25.1 30.5

Photoreceptor
Region RPE-loss degeneration Hypertransmission | RORA | Sum
(c) Low luminance visual acuity
1. Foveal 3.0 12.2 5.6 4.8 25.5
2. Inner superior 2.8 4.0 2.9 3.0 12.7
3. Inner nasal 1.7 3.1 2.2 2.2 9.2
4. Inner inferior 1.9 4.1 2.7 29 11.6
5. Inner temporal 1.6 33 23 24 9.5
6. Outer superior 0.9 3.7 2.7 1.7 8.9
7. Outer nasal 0.9 3.0 2.5 1.7 8.1
8. Outer inferior 0.5 3.0 2.5 1.3 7.3
9. Outer temporal 0.7 25 2.5 1.5 7.1
Sum 13.8 389 26.0 214

Table 3. Structure—function correlation between qOCT biomarkers of GA area and VA. (a) A random

forest regression model was trained using the deep-learning segmentation output (i.e. the raw probabilities

at the voxel level for each feature (RPE-loss, photoreceptor degeneration, hypertransmission, and RORA) as
input variables to predict cross-sectional VA under standard luminance conditions, low-luminance VA, and
low-luminance deficit in ETDRS letters. For VA under standard-luminance conditions, separate models were
evaluated for: (i) BCVA under RCT conditions i.e., FILLY; (ii) VA from real-world routine care, i.e., MEH; and
(iii) a third that combines the two. Model bootstrapped 100-fold with resultant regression coeflicients (r?) and
mean absolute error (MAE) shown. Importance of qOCT biomarker features in predicting (b) standard visual
acuity and (c) low luminance visual acuity was queried using machine learning. Random forests modelling
was used to evaluate value of the qOCT biomarkers RPE-loss, photoreceptor degeneration, hypertransmission,
and RORA in predicting cross-sectional visual acuity under standard lighting conditions (Overall model). The
resultant adjusted feature importance values were summed according to location within ETDRS region and
multiplied by 100 to give the percentage contribution towards the model’s performance. For example, RORA
within the foveal region accounted for 16.8% of the model’s performance of r* 0.40 MAE 11.7 ETDRS letters
for standard visual acuity.

autofluorescence as well as SD-OCT have demonstrated that foveal sparing is an independent covariate of GA?’
and that VA is likely to be worse in eyes with definitive foveal involvement®. To date, a correlation between total
GA area and VA has not been readily apparent using fundus photography*—*'. Here, we present evidence to show
SD-OCT imaging can also detect correlations between non-foveal features and VA. This may be because fundus
photography only provides two-dimensional, en face representations of the retina, limiting in-depth assessment
of the retinal layers and discrimination between histological subtypes of GA and their respective contribution to
functional deficit*>. Macular segmentation with SD-OCT thus presents a potentially more sensitive modality for
GA and its sequelae on visual function.
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Figure 2. Heatmap of relative feature predictive value. Normalised random forest feature importance as a
measure of the predictive value of the four considered features of GA; RPE-loss, photoreceptor degeneration,
and hypertransmission and RORA and their locations relative to the fovea to the predicted value for (a)
standard visual acuity (Overall cohort) and (b) low luminance visual acuity (FILLY cohort). Feature importance
values were averaged across 100 bootstraps of the dataset.

Currently, GA is usually considered present when the lateral spread of RORA affects an area of atro-
phy>250 pm in diameter'®. Using the algorithm described here allows evaluation of RORA as a continuous
variable, and thresholding based on the extent of the lateral spread may be applied as a secondary step. This
may facilitate the continuous monitoring and evaluation of GA in a research context, with a view to eventually
develop clinical monitoring and preventative strategies.

Predicting standard visual acuity. Separate instances of the ML prediction model for standard VA were
trained on two datasets: one originating from a Randomised Clinical Trial (the FILLY study) and one from real-
life clinical practice at Moorfields Eye Hospital. The resulting regression coeflicients showed a higher predictive
performance in the RCT than the real-life cohort, which wasn’t unexpected. There are differences in the protocol
for VA measurement between the two cohorts and VA data from real-life clinical practice is likely to contain
higher levels of noise. These contributing factors play certainly a role in explaining the observed discrepancy. It is
worth noting, however, that VA measurements at Moorfields Eye Hospital follow a standardised protocol deliv-
ered by trained staff with high levels of adherence and the inter-session repeatability for standard VA from MEH
cohorts previously reported was comparable to that encountered in clinical trial settings*. The smaller sample
size of the MEH cohort may also have contributed to this discrepancy as increased diversity and heterogeneity
within larger training datasets improve predictive performance of Random Forest prediction models.

Despite the difference in strength of correlation, the fact that Feature Importance ranking in the two cohorts
with ML methods led to the identification of very similar anatomical features (RPE loss, RORA) and geographical
location (foveal area) on OCT scans as more predictive of standard visual acuity in both cohorts, is novel and
provides new insight into the pathophysiology of GA, especially in conjunction with the Feature Importance
findings for LLVA reported below.

A third instance of the ML prediction model for standard VA was trained on combined datasets of the two
cohorts and showed overall predictive performance higher than previously reported in relevant literature. It
also confirmed Feature Importance ranking of individual cohorts, as depicted in the corresponding probability
heatmap (Fig. 2a). The Overall prediction model is likely to produce more accurate predictions than the two
separately trained models given the properties of the Random Forest ML methodology used in this study.
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Random Forests are an ensemble learning method for both classification and regression. Ensemble learn-
ing models in ML yield better results when there is diversity among the models they combine. Random Forests
apply bootstrapping to decrease variance of resultant models (thus preventing overfitting), without increasing
bias (thus preventing underfitting)**. This means that increasing data diversity leads to decreased sensitivity to
noise and improved prediction accuracy. The Random Forest model developed on the combined datasets from
an RCT and a real-life clinical practice cohort is thus more likely to generalise to other patient cohorts predicting
VA values that are closer to the ‘true’ VA in each case. A further property of Random Forest modeling, known as
‘feature bagging), involves random subset feature selection at each split, thus achieving the de-correlation of fea-
tures in the training set*. This ensures that Feature Importance ranking is a true representation of each feature’s
independent contribution to the prediction, while preventing the inflation of importance of genuinely strong
predictors, which could be caused by strong correlation among features. In training our models, we performed
100-fold bootstrap resampling.

Predicting low luminance visual acuity. LLVA is a simple, inexpensive, quick assessment with stand-
ard ophthalmic equipment and has a test-retest repeatability (between 1.6 and 1.9 logMAR [5-6.5 ETDRS let-
ters]) comparable to standard luminance VA3, It has been shown to correlate with microperimetry retinal
sensitivities®” and patient-reported night vision symptoms®. LLVA is also an earlier clinical marker of change in
central retinal function than standard VA. LLVA deterioration precedes deterioration in standard VA and thus
predicts impending loss of foveal function. This is consistent with the structure—function correlation analyses
presented here, as the most predictive features differed between the two measures of visual function: photore-
ceptor degeneration for LLVA and RPE-loss and RORA for standard VA. This aligns with previous observations
that photoreceptor degeneration can precede RPE-loss and eventual RORA in GA, as well as with current under-
standing that RPE dysfunction is common to all, or at least most, early AMD**°. That is, photoreceptor cells
are metabolically dependent on RPE and therefore degeneration arises secondarily to RPE dysfunction, which
itself eventually atrophies. Furthermore, features within non-foveal areas were more predictive of LLVA than for
standard VA. This may reflect the very high density of cones within the foveola vs. the para-fovea. Hence redun-
dancy in the foveola may ostensibly mask early standard luminance vision loss, yet low luminance visual acuity
is affected earlier coinciding with photoreceptor degeneration in the para-foveal area due to lack of redundancy.

This might also support the hypothesis that low light sensitivity is mediated by a circuit function of horizontal
and amacrine cells within the plexiform layers and thus a larger area of preserved central macula is required
for LLVA*.,

Limitations. VA is the most commonly used functional measure to evaluate the visual system. It is widely
accepted in clinics and by regulatory authorities as a key measure of visual function and represents the gold
standard by which the efficacy of treatment is judged. It correlates with quality of life and defines key functional
thresholds, such as eligibility for driving and for sight impairment registration. However, VA change over time
is non-linear, can improve from one timepoint to the next, and does not wholly capture the sequelae of GA on
visual function, as it largely represents central acuity of the fovea*?. Other functional manifestations include
parafoveal functions such as dark adaptation, reading speed, face recognition, and perimetry. Foveal-sparing
disease (i.e. not affecting VA) can impact other visual functions (including reading speed, contrast sensitivity,
fixation, and VFQ-25)%. Changes in visual function can even occur prior to VA deterioration. Thus, other mark-
ers of vision-related performance in everyday life should be considered to complement VA in patients with GA.
This study only considers cross-sectional VA values, wherein future enquiry would benefit from consideration
of future VA and whether that can be predicted.

Conclusion. Our results demonstrate the utility of automatically segmented imaging biomarkers in predict-
ing visual function. This is an important step towards standardising care by reliably predicting ‘true’ visual func-
tion from refined imaging biomarkers enabled by AI and may contribute to the development of point-of-care
decision-aid systems for personalised ophthalmology. Here we have used this tool to further our insight into the
(otherwise unknown) underlying physiological mechanism of LLVA and thereby progression from Intermediate
AMD to GA and its subtypes.

Data availability

FILLY Study Data: The FILLY study dataset, which was used under license for the current study, is not publicly
available due to licensing restrictions. Moorfields Data: Mooorfields data analysed during the current study is
not publicly available at present due to information governance policies pertaining to real-life clinical data. The
de-identified Moorfields dataset will become available to the scientific community within the Data Governance
framework of the National HDR UK INSIGHT Hub (https://www.insight.hdrhub.org/). Please address inquiries
for updates and data access requests to the corresponding author (k.balaskas@nhs.net).
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