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The NRAS gene is a well-known oncogene that acts as a major player in carcinogenesis.
Mutations in the NRAS gene have been linked to multiple types of human tumors.
Therefore, the identification of the most deleterious single nucleotide polymorphisms
(SNPs) in the NRAS gene is necessary to understand the key factors of tumor
pathogenesis and therapy. We aimed to retrieve NRAS missense SNPs and analyze
them comprehensively using sequence and structure approaches to determine the most
deleterious SNPs that could increase the risk of carcinogenesis. We also adopted
structural biology methods and docking tools to investigate the behavior of the filtered
SNPs. After retrieving missense SNPs and analyzing them using six in silico tools,
17 mutations were found to be the most deleterious mutations in NRAS. All SNPs
except S145L were found to decrease NRAS stability, and all SNPs were found on
highly conserved residues and important functional domains, except R164C. In addition,
all mutations except G60E and S145L showed a higher binding affinity to GTP, implicating
an increase in malignancy tendency. As a consequence, all other 14 mutations were
expected to increase the risk of carcinogenesis, with 5 mutations (G13R, G13C, G13V,
P34R, and V152F) expected to have the highest risk. Thermodynamic stability was
ensured for these SNP models through molecular dynamics simulation based on
trajectory analysis. Free binding affinity toward the natural substrate, GTP, was higher
for these models as compared to the native NRAS protein. The Gly13 SNP proteins depict
a differential conformational state that could favor nucleotide exchange and catalytic
potentiality. A further application of experimental methods with all these 14 mutations
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could reveal new insights into the pathogenesis and management of different types of
tumors.

Keywords: NRAS gene, single nucleotide polymorphism, computational analysis, carcinogenesis, precision
medicine

INTRODUCTION

Single nucleotide polymorphism (SNP) is defined as a variation in
one base in a DNA nucleotide that happens at a specific site of the
studied genome (Vignal et al., 2002). In the human genome, SNPs
represent the most stable and abundant form of genetic variation
(Liao and Lee, 2010). In addition, a high rate of SNP occurrence in
a gene represented a biological marker that this specific gene can
be correlated with important traits (Yeam, 2016). There are
different forms of SNPs, and missense SNP, which is a type of
non-synonymous SNP (nsSNP) substitution characterized by
amino acid substitution with the possibility of forming a
mutated protein with new structural and functional features, is
the most important form of SNPs, which may lead to a significant
alteration in the progression of different diseases (Emadi et al.,
2020). This form of SNP can produce deleterious actions by
minimizing protein solubility, destabilizing protein tertiary
structure, and manipulating gene regulation through
modifying transcription regulatory proteins (Chasman and
Adams, 2001). Moreover, this form of SNP can modify the
cell fitness with an increased growth preference and finally
result in tumorigenesis (Tan, 2017). For this purpose, several
studies are currently highly concerned with the pathogenic
consequences of these SNPs, and many trials have tried to
correlate them with changeable effects on humans (Dakal
et al., 2017). While a large number of missense SNPs for
several genes has been reported and deposited in databases,
the whole number of missense SNPs for each gene showed a
variation in the attribution to disease modification; therefore, it
became essential to filter the SNPs with possible pathogenicity
from the pool of neutral variants (Zhang et al., 2020). Although
clinical investigation with wet-lab experiments would provide the
most accurate approach for the estimation of the consequences of
each SNP, this process is costly and very time-consuming (Jia
et al., 2014). As an alternative, computational methods offer an
excellent choice for researchers with the advantages of being an
affordable and time-saving approach (Soltan et al., 2021). The
application of this computational approach would result in a
shortlist of possible deleterious SNPs, which could be investigated
clinically (Patnala et al., 2013). Furthermore, the continuous
improvement in the field of structural biology and its related
computational tools made it possible to analyze the structural
consequences of filtered SNPs and predict the functional
alteration of the analyzed protein as a result of the structural
modification (Rajput and Gahlay, 2021).

The Ras genes,HRAS, KRAS, andNRAS, are members of the Ras
family with GTPase activity. These genes function as molecular
switches in the cell, where Ras GTP represents the active state, while
Ras GDP represents the inactive state (Damani Shah et al., 2019).
The function of Ras proteins in the regulation of cellular signal

pathways has attracted the attention of numerous researchers in the
last few decades (Muñoz-Maldonado et al., 2019). Studies have
shown that these proteins have significant roles in regulating cell
motility (Voice et al., 1999), controlling cell apoptosis (Bivona et al.,
2006), and organizing cell proliferation (Matallanas et al., 2006). The
distinct role of each Rasmember can be correlatedwith various post-
translational modifications (PTMs) at the C-termini, where each
protein localizes a different subcellular membrane based on its
modification and subsequently stimulates a specific signaling
pathway (Rocks et al., 2006). While the plasma membrane is
considered the basic site for all the Ras proteins, further
investigations proved that they can also localize in the
endoplasmic reticulum, Golgi apparatus, and mitochondria (Chiu
et al., 2002; Fehrenbacher et al., 2009).

The NRAS gene is one of the most studied oncogenes as it acts
as a major player in carcinogenesis (Eisfeld et al., 2014). Several
studies have attributed mutations in the NRAS gene to numerous
forms of human tumors, and it was reported that variants of
NRAS differ greatly in their downstream effects and consequently
participate in cell transformation to a malignant state (Yin et al.,
2019). For example, deleterious SNPs in NRAS were analyzed for
their role in the progression of retinoblastoma (Sun et al., 2019),
promotion of lung metastasis (Giannou et al., 2017), and
induction of melanoma (Kwong et al., 2012). In the current
time of personalized medicine development, it is highly
recommended that deep analysis of the cancer genomic
landscape is an essential step to fight against cancer, the first
cause of human death (Gharib et al., 2021).

Hence, the aim of the current study is to retrieve NRAS
missense SNPs and filter them to determine the most
deleterious SNPs using computational tools. Moreover,
structural biology and docking tools are employed to
investigate the behavior of the filtered SNPs and their
modified roles in the cellular environment. Altogether, these
data would contribute significantly to the field of personalized
medicine against several forms of tumors.

MATERIALS AND METHODS

We depended on the National Center for Biotechnology
Information (NCBI) databases besides Ensembl databases for
retrieving general information regarding the NRAS gene. In
addition, we used the Genecards database (Genecards.org) to
retrieve gene ontology data and (compartments.jensenlab.org) as
the source of data regarding the subcellular localization.

Retrieving NRAS Gene Variants
NCBI was used to retrieve NRAS gene variants using variation
viewer and by selecting dbSNP as the source database (https://
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www.ncbi.nlm.nih.gov/variation/view/). “NRAS” or
4,893 [geneid] was used as an entry. We filtered those
retrieved SNPs and selected only the missense variants for
further analysis and screening.

Predicting Deleterious Variants Using
Various In Silico Tools
We used six different in silico tools for predicting the most
deleterious variants on the function of NRAS protein: SIFT
(Sorting Intolerant from Tolerant), PolyPhen (Polymorphism
Phenotyping), PROVEAN (Protein Variation Effect Analyzer),
SNAP, SNP&GO, and PHD-SNP. The SNPs that were predicted
to be deleterious by all tools were considered the most deleterious
ones. Using six different tools with varying algorithms, an
approach that was applied previously (Hossain et al., 2020;
Dhar et al., 2022; Rajput and Gahlay, 2021), could increase the
confidence and accuracy of our analysis.

The SIFT server relies on a sequence homology approach in
addition to the properties of residues to analyze the probability
of developing harmful impacts with the missense variants
(https://sift.bii.a-star.edu.sg/) (Sim et al., 2012). PolyPhen-2
analyzes the impacts of amino acid substitutions based on
physical considerations in addition to comparative methods
(http://genetics.bwh.harvard.edu/pph2) (Adzhubei et al.,
2010). The PROVEAN tool uses fast methods to compute
the scores of pairwise alignment and calculates the required
prediction of the impact of the amino acid substitutions
(http://provean.jcvi.org/seq_submit.php) (Choi and Chan,
2015). The SNPs&GO tool depends on the functional
annotation of the analyzed proteins to identify the
deleterious gene variants (https://snps.biofold.org/snpsand-
go/snps-and-go.html) (Capriotti et al., 2013). The PHD-
SNP server uses support vector machines for analyzing the
association between the resulting phenotypes due to amino
acid substitution and the development of human diseases
(http://snps.biofold.org/phd-snp/phd-snp.html) (Capriotti
et al., 2006). SNAP2 has a novel neural network that
enables it to identify the effect of SNPs and the neutral
SNPs (https://rostlab.org/services/snap/) (Hecht et al., 2015).

Predicting Single Nucleotide Polymorphism
Impact on NRAS Protein Stability
SNPs’ impact on NRAS protein stability was analyzed using both
the I-Mutant 2.0 server and the Mu-Pro tool. The I-Mutant
2.0 server (https://folding.biofold.org/i-mutant/i-mutant2.0.
html) relies on a support vector machine for the prediction of
the direction and the value of the free energy change (DDG)
(Capriotti et al., 2005). I-Mutant 2.0 was tested on the ProTherm
database, which comprised the largest experimental information
about the change in free energy related to the stability of proteins
with mutations (Bava et al., 2004). The Mu-Pro tool (http://
mupro.proteomics.ics.uci.edu/) provides a support vector
machines method that was tested and cross-validated with an
accuracy of 84% (Cheng et al., 2006).

Identifying Single Nucleotide Polymorphism
Locations on NRAS Domains
We used InterPro to determine the locations of the most
deleterious variants on the domains of NRAS protein (https://
www.ebi.ac.uk/interpro/). InterPro could perform the functional
analysis related to the nominated protein and determine its
functional domains and important motifs (Blum et al., 2021).

Identifying Phylogenetically Conserved
Residues in NRAS Protein
We used the ConSurf bioinformatics tool to analyze the
evolutionary conservation of the residues of NRAS protein
(https://consurf.tau.ac.il). ConSurf can analyze the phylogenetic
relationships that exist between various homologous sequences to
perform the needed analysis with the calculation of the
conservation score that ranges from one to nine. Furthermore,
the structural and functional residues are identified as well
(Berezin et al., 2004; Ashkenazy et al., 2016).

Analyzing Secondary Structures of NRAS
Protein
We used the SOPMA server (https://npsa-prabi.ibcp.fr/cgi-bin/
npsa_automat.pl?page=/NPSA/npsa_sopma.html) for
identifying the predicted secondary structures of NRAS
protein and the alignment of the mutant amino acids in these
secondary structures. The SOPMA server can predict the
secondary structures of a selected protein by analyzing the
multiple alignments of this protein’s sequence (Geourjon and
Deléage, 1995).

Tertiary Structure Prediction and Validation
of Proteins With Filtered Single Nucleotide
Polymorphisms
The filtration step of missense SNPs resulted in 17 SNPs. The 3D
structures of these filtered SNPs were predicted using SWISS-
MODEL, a fully automated protein homology modeling server
(Waterhouse et al., 2018). This server performs a fully automated
prediction assessment, relying on the continuously deposited
protein tertiary structures in the protein data bank. Regarding
the NRAS gene, available data on UniProt demonstrated that the
site 166–185 represents a hypervariable region, and for this
purpose, the sequence 1–165 was uploaded to SWISS-MODEL
to select our template for the tertiary structure prediction of
17 mutated proteins with the filtered SNPs. Following structure
prediction, the generated models were further validated through
Ramachandran plot analysis, which was integrated as an
assessment tool in the SWISS-MODEL server, in addition to
the ProSA webserver (Wiederstein and Sippl, 2007), which was
also utilized for the validation process. Moreover, the TM-Align
web server (https://zhanglab.ccmb.med.umich.edu/TM-align/)
was employed to estimate the TM-score and root-mean-square
deviation (RMSD) values of the parent model selected by SWISS-
MODEL and the mutant ones that were predicted. The TM-score

Frontiers in Genetics | www.frontiersin.org August 2022 | Volume 13 | Article 8728453

Behairy et al. Computational Analysis of NRAS SNPs

https://www.ncbi.nlm.nih.gov/variation/view/
https://sift.bii.a-star.edu.sg/
http://genetics.bwh.harvard.edu/pph2
http://provean.jcvi.org/seq_submit.php
https://snps.biofold.org/snpsand-go/snps-and-go.html
https://snps.biofold.org/snpsand-go/snps-and-go.html
http://snps.biofold.org/phd-snp/phd-snp.html
https://rostlab.org/services/snap/
https://folding.biofold.org/i-mutant/i-mutant2.0.html
https://folding.biofold.org/i-mutant/i-mutant2.0.html
http://mupro.proteomics.ics.uci.edu/
http://mupro.proteomics.ics.uci.edu/
https://www.ebi.ac.uk/interpro/
https://www.ebi.ac.uk/interpro/
https://consurf.tau.ac.il
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html
https://zhanglab.ccmb.med.umich.edu/TM-align/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


gives information about the degree of similarity between
submitted structures, and its value ranges between 0 and 1 (a
value of 1 represents a complete match between analyzed
structures). On the other hand, the RMSD value indicates the
average distance between alpha-carbon backbones of analyzed
models, and the higher this value is, the more deviation is
predicted between analyzed molecules (Zhang and Skolnick,
2005).

Assessment of Mutated Proteins Through
Molecular Docking-Coupled Molecular
Dynamics
To estimate the consequences of filtered SNPs on the cellular
behavior of NRAS protein, a molecular docking study between
NRAS (the wild-type and the predicted mutated models) and
GTPmolecule (the ligand of NRAS active state) was proposed. As
mentioned in the introduction section, NRAS is a GTP-binding
protein that is switched on by incoming signals, leading to a turn-
on for genes related to cell growth and differentiation. Therefore,
SNPs in NRAS may stimulate a permanently activated form
(NRAS-GTP), leading to overactive cellular signaling and
ultimately cancer. The NRAS wild tertiary structure (PDB ID:
5UHV) was downloaded in PDB format to act as a control
receptor for the current docking study; the deposited
molecules in the receptor were first removed and the
generated molecule saved to act as a control for its binding
score with GTP to validate the docking scores of GTP-binding
with other mutated models. The docking was performed through
AutoDock Vina (Oleg and Arthur, 2010), the 3D conformation of
the docked complexes was visualized by the molecular graphics
system PyMOL (Seeliger and De Groot, 2010), and a 2D chart of
the interacting residues for the generated complexes was
investigated by LIGPLOT (Wallace et al., 1995).

Docked GTPase NRAS models were subjected to molecular
dynamics simulations using GROMACS-5.1.4, CHARMM36m,
and CHARMM-General forcefields within the TIP3P water
solvation model and under periodic boundary conditions (Páll
et al., 2015). Protein ionization was set at physiological pH 7.4,
and system neutralization was done via chloride and potassium
ions. Steepest-descent algorithm-minimization steps were
performed at 5 ps, followed by equilibration at the initial NVT
ensemble (Berendsen-temp method; 100 ps at 303.15 K) and final
NPT ensemble (Parrinello-Rahmann barostat; 100 ps at one
atmospheric pressure and 303.15 K) (Elhady et al., 2021).
Molecular dynamics were run for 100 ns under NPT ensemble
and Particle-Mesh-Ewald algorithms for computing long-range
electrostatic interaction. Trajectory analysis was performed using
RMSDs (Å), RMS fluctuations (RMSFs; Å), gyration radii (Rg; Å),
and solvent-accessible surface area (SASA; nm2). Free binding
energies for GTP substrate binding to GTPase NRAS were
estimated using Molecular Mechanics/Poisson-Boltzmann
(MM-PBSA; kJ/mol) single trajectory calculations (Kumari
et al., 2014b). Visual Molecular Dynamics (VMD V.1.9.3)
software (Illinois University, Urbana-Champaign,
United States) was used for hydrogen bond analysis. Hydrogen
bond distance/angle cut-offs were defined at 3.0 Å/20°.

Conformational analysis and visualization of the simulated
complexes at specified timeframes were performed using the
PyMOL software.

Normal Mode Analyses Through Torsional
Network Model
The collective flexibilities/motion functions of the constructed
GTPase NRAS were assessed using the iMODS online server
(http://www.imods.chaconlab.org/) by applying the elastic
torsional network model, whose degrees of freedom are the
protein backbone torsion angles (López-Blanco et al., 2014).
This approach is fast and accurate while being capable of
assessing the collective protein’s motion and inherited
dynamics based on normal-state analyses of respective internal
dihedral angles and torsional coordinates. Furthermore, this
server can predict several parameters reflecting structural
flexibility/deformation reflecting significant deviation from the
normal distribution values obtained from thousands of deposited
reference sets.

Identifying Single Nucleotide Polymorphism
Impact on NRAS Protein Structure
We used the HOPE server (https://www3.cmbi.umcn.nl/hope/)
for analyzing the SNPs’ impact on the NRAS protein 3D
structure. The HOPE server depends on several sources for
collecting the needed information in addition to building
homology models using the YASARA program to perform the
required function (Venselaar et al., 2010).

Predicting the Sites of Post-Translational
Modification
The MusiteDeep server (https://www.musite.net) was used to
predict the sites of different types of PTMs. PTMs have a
major role in regulating the function of proteins; thus, the
identification of PTMs is important in analyzing disease
pathogenesis (Wang et al., 2017; Wang et al., 2019; Wang
et al., 2020).

Gene–Gene Interaction Analysis
We used the GeneMANIA tool (http://www.genemania.org)
for generating the gene–gene interaction network of the NRAS
gene. The GeneMANIA tool could predict the strongly
interacted genes with a selected gene using various sorts of
data and resources: co-expression information, physical
interaction information, co-localization data, functional
relationships, information regarding pathways, genetic
interaction data, and data regarding protein domains
(Warde-Farley et al., 2010).

RESULTS

The workflow of the analysis steps applied in the current study is
illustrated in Supplementary Figure S1.
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General Information
The NRAS gene (NCBI Gene ID: 4893) is a protein-coding gene
that is located at 1p13.2. It comprises seven exons and has a
length of 12,303 nucleotides; it has one transcript (ensemble.org).
The membrane protein encoded by this gene shuttles between the
plasma membrane and the Golgi apparatus and is characterized
by GTPase activity (https://www.ncbi.nlm.nih.gov/gene/4893).
The subcellular localization of the NRAS gene is illustrated in
Supplementary Figure S2A (Compartments.jensenlab.org/), and
its gene ontology is shown in Supplementary Figure S2B
(Genecards.org).

Retrieving NRAS Gene Variants
In the NRAS gene, 4,542 single nucleotide variations were found
(accessed 31 December 2021). Among these SNPs, there were
113 missense SNPs, 62 synonymous SNPs, 73 5′ untranslated
region (UTR) variants, 1,405 3′ UTR variants, and 2,435 intron
SNPs, in addition to the other downstream and upstream SNPs.

Determination of Deleterious Variants
Six different bioinformatics tools (SIFT, PolyPhen-2, PROVEAN,
SNAP, SNP&GO, and PHD-SNP) were used to determine the
deleterious variants in theNRAS gene with a significant impact on
NRAS protein function. Of note, 16 variants were found to be
disease-causing and deleterious by all six tools, and the
percentage of each SNP type is shown in Supplementary
Figure S3. Among these 16 variants, one SNP (rs121434595)
was found to have twomutant alleles, and both alleles could result
in amino acid substitution (G13C, G13R). Table 1 shows the
prediction and scores generated by the six tools for these 16 SNPs.

Prediction of Single Nucleotide
Polymorphism Impact on NRAS Protein
Stability
The impacts of SNPs on NRAS protein stability were analyzed
using the I-Mutant 2.0 server and the Mu-Pro tool. The I-Mutant
2.0 server found that 12 SNPs had a decreasing effect on NRAS
protein stability, while the Mu-Pro tool showed a decreasing
effect with all SNPs except rs1163400692 SNP. The predicted
impacts and values are shown in Table 2 for the 16 SNPs.

Identification of Single Nucleotide
Polymorphism Location on NRAS Domains
The InterPro tool analyzed NRAS protein functionally and
revealed the presence of an important domain: a small GTP-
binding protein domain (InterPro entry: IPR005225). The
positions of the 16 deleterious variants were analyzed, and all
SNPs were found to be located in this domain, except for
rs1658971260, as shown in Table 3.

Identification of Phylogenetically
Conserved Residues in NRAS Protein
The evolutionary conservation of NRAS protein amino acids was
analyzed as displayed in Supplementary Figure S4. All SNPsT
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were located in highly conserved positions, except
rs1658971260 SNP, which was located in an intermediately
conserved position, as demonstrated in Table 3. In addition,
six SNPs were located on functional and exposed residues
(rs1163400692, rs754428086, rs267606920, rs1557982817,
rs1465850103, rs1308441238), while one SNP was located on a
structural and buried residue (rs757968407).

Analysis of Secondary Structures of NRAS
Protein
The predicted secondary structures of NRAS were analyzed via the
SOPMA tool as displayed in Supplementary Figure S5. SOPMA
revealed that 86 residues were associated with alpha helix (45.5%),
55 with random coil (29.1%), 35 with extended strand (18.52%), and
13 with beta-turn (6.88%). Furthermore, analysis of the SNPs’

alignment in the secondary structures was performed as
displayed in Supplementary Figure S6; nine deleterious SNPs
existed in the alpha helix secondary structure, and five deleterious
SNPs existed in the random coil secondary structure. Meanwhile, no
deleterious SNPs were found in the beta-turn or the extended strand.
The detailed alignment of the SNPs is shown in Table 3.

Structural Analysis of Predicted NRAS
Mutated Models
To predict the tertiary structure of the models with 17 different
mutations, SWISS-MODEL presented the wild-type NRAS 3D
model with PDB ID of 5UHV as the best choice for homology
modeling with 99.39% identity with all the mutated submitted
sequences. Validation of these models was performed by
detecting the ProSA Z score and the percentage of residues in

TABLE 2 | Effect of missense variants on NRAS protein stability.

SNP Id AA change I-mutant
2 prediction

Reliability index
(RI)

DDG value
(kcal/mol)

MUpro

Prediction Delta delta G

rs1658971260 R164C Decrease 5 −1.19 Decrease −0.17
rs757968407 V152F Decrease 9 −2.13 Decrease −0.85
rs1163400692 S145L Increase 3 0.24 Increase 0.09
rs754428086 D119G Decrease 7 −0.53 Decrease −1.43
rs1365635887 R68G Decrease 6 −0.91 Decrease −1.92
rs752508313 Y64D Decrease 4 −0.99 Decrease −0.90
rs267606920 G60E Decrease 1 −0.89 Decrease −0.46
rs1557982817 G60R Decrease 7 −1.36 Decrease −0.63
rs1465850103 D57N Increase 1 0.18 Decrease −0.65
rs1246727247 I55R Decrease 7 −2.31 Decrease −2.01
rs139287106 S39F Increase 3 0.06 Decrease −0.24
rs397514553 P34R Decrease 6 −0.6 Decrease −0.98
rs121913248 A18P Increase 1 −1.53 Decrease −1.32
rs1308441238 V14G Decrease 10 −4.96 Decrease −2.02
rs121434596 G13V Increase 2 −0.02 Decrease −0.25
rs121434595 G13C Decrease 5 −1.18 Decrease −0.32

G13R Decrease 6 −1.27 Decrease −0.15

TABLE 3 | Locations of NRAS variants on protein domains, phylogenetic conservation analysis, and secondary structure prediction.

SNP Id AA change Location on
protein

ConSurf conservation
score

Functional/
structural

Buried/
exposed

Secondary structure

rs1658971260 R164C — 5/intermediately conserved — exposed Alpha helix
rs757968407 V152F Small GTP-binding protein domain 9/highly conserved structural buried Alpha helix
rs1163400692 S145L Small GTP-binding protein domain 9/highly conserved functional exposed Alpha helix
rs754428086 D119G Small GTP-binding protein domain 9/highly conserved functional exposed Random coil
rs1365635887 R68G Small GTP-binding protein domain 7/highly conserved — exposed Alpha helix
rs752508313 Y64D Small GTP-binding protein domain 8/highly conserved — buried Alpha helix
rs267606920 G60E Small GTP-binding protein domain 9/highly conserved functional exposed Random coil
rs1557982817 G60R Small GTP-binding protein domain 9/highly conserved functional exposed Random coil
rs1465850103 D57N Small GTP-binding protein domain 9/highly conserved functional exposed Alpha helix
rs1246727247 I55R Small GTP-binding protein domain 8/highly conserved — buried Alpha helix
rs139287106 S39F Small GTP-binding protein domain 7/highly conserved — exposed Alpha helix
rs397514553 P34R Small GTP-binding protein domain 7/highly conserved — exposed Random coil
rs121913248 A18P Small GTP-binding protein domain 8/highly conserved — buried Alpha helix
rs1308441238 V14G Small GTP-binding protein domain 9/highly conserved functional exposed Random coil
rs121434596 G13V Small GTP-binding protein domain 7/highly conserved — exposed Random coil
rs121434595 G13C Small GTP-binding protein domain 7/highly conserved — exposed Random coil

G13R Small GTP-binding protein domain 7/highly conserved — exposed Random coil
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the favored region for each molecule (Table 4 and
Supplementary Figure S7), where the corresponding scores
for all predicted models confirmed the high quality of the
predicted models. Regarding the structural similarity between
the native and predicted models, the high values of TM (close to
one for all predicted models) and the small scores of RMSD (close
to zero for all predicted models) demonstrated the high similarity
between the native model and the designed ones (Table 4). This
was reasonable as SWISS-MODEL in the first place selected a
native structure with high similarity with the submitted mutated
sequences to build the required models, and this small variation
came from the substitution of one amino acid that represents
the SNP.

Molecular Docking Analysis
The current docking study was performed to demonstrate the
difference in the binding affinity between native and mutated

models with the GTP ligand. The binding score between the
native NRAS and GTP was −11.3 kcal/mol, and for the mutant
predicted structures, the respective binding score is shown in
Table 4. Analysis of the scores showed that all models, except
models #11 and #15, exhibited a higher affinity to GTP than the
native model, where models #1, #2, #3, #6, and #16 were at the top
of the list regarding their binding affinity to GTP.

The 3D complexes of the native model, model #1 (the one with
the highest binding affinity), and model #11 (the one with the
lowest binding affinity) with GTP are visualized by PyMOL,
shown in Figure 1, while a presentation of reacting residues of
the same models is shown as a 2D chart by LIGPLOT
(Supplementary Figure S8). The general topology of the
predicted models illustrated the distinctive two lobes (effector
lobe: 1–86 residues and allosteric lobe: 87–166 residues) of the
GTPase catalytic domain. The active site for GTP-binding is
formed via the P-loop, Switch-I, and switch-II with residue ranges

TABLE 4 | Scores of validation, structural similarity, and binding affinity of the predicted mutant models.

No. SNP Ramachan assessment
(favored)

ProSA Z
score (%)

Tm-score RMSD GTP-binding score
(kcal/mol)

1 G13R 96.93 −7.38 0.99384 0.06 −12.3
2 G13C 96.93 −7.36 0.99383 0.06 −12
3 G13V 96.32 −7.38 0.99383 0.06 −12.2
4 V14G 96.93 −7.30 0.99384 0.06 −11.7
5 A18P 96.32 −7.51 0.99365 0.09 −11.6
6 P34R 96.32 −7.10 0.99383 0.06 −12
7 S39F 96.93 −7.29 0.99384 0.06 −11.8
8 I55R 96.32 −7.12 0.99365 0.09 −11.7
9 D57N 97.55 −7.52 0.99384 0.06 −11.6
10 G60R 96.32 −7.32 0.99302 0.15 −11.5
11 G60E 96.32 −7.19 0.99344 0.11 −10.6
12 Y64D 96.93 −7.38 0.99383 0.06 −11.6
13 R68G 96.93 −7.42 0.99383 0.06 −11.9
14 D119G 96.93 −7.35 0.99383 0.06 −11.8
15 S145L 97.55 −7.40 0.99374 0.07 −11.1
16 V152F 96.32 −7.63 0.99348 0.11 −12
17 R164C 96.93 −7.32 0.99383 0.06 −11.8

FIGURE 1 | 3D structure of GTP (red color sticks) docked in NRAS target receptor (cartoon and surface) with Mg2+ ion (green sphere). (A)Native model, (B)mutant
model with the highest binding affinity (G13R SNP), and (C) mutant model with the lowest binding affinity (G60E SNP). NRAS cartoon/surface is colored differently
according to its constitutive halves: effector lobe (blue) and allosteric lobe (magenta). P-loop (residue range: 10–17), switch-I (residue range: 30–40), and switch-II
(residue range: 60–76) for the GTP-binding site. Conserved GTPase motifs reported essential for ligand recognition/binding and Mg2+ coordination are colored
differently; GxxxxGK (yellow), DxxG and Thr35 (brown), NKxD (green), as well as ExSAK and Phe28 (cyan). Letters N and C denote the amine- and carboxy-protein
terminals, respectively.
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of 10–17, 30–40, and 60–76 amino acids, respectively (Johnson
et al., 2017). The GTPase-conserved motifs at the effector lobe,
P-loop GxxxxGK (residues 10–16), and DxxG/Thr35 (residues
57–60) were shown to support the GTP-α-β-phosphate groups
andMg2+ coordination (Araki et al., 2011). On the other half, the
allosteric lobe showed the other GTPase-conserved motifs
including NKxD (residues 116–119) responsible for guanine
nucleotide specificity, whereas, ExSAK (residues 143–147)
together with Phe28 being responsible for stabilized nucleotide
binding, respectively (Parker and Mattos, 2015).

Molecular Dynamics Investigation
Simulated proteins of the GTPase NRAS models showed steady
equilibrated RMSD trajectories, respective to initial proteins’
alpha-carbons, across the 100-ns runs (Figure 2A). The
steadiest alpha-carbon RMSDs were depicted for simulated
model numbers 2, 6, and 16 as compared to other models,

with average tone values of 1.98 ± 0.39 Å, 1.95 ± 0.23 Å, and
2.06 ± 0.17 Å, respectively. Notably, all simulated NRAS models
were of much-equilibrated RMSD tones as compared to the
native NRAS both at its respective holo (GTP bounded: 2.13 ±
0.45 Å) and apo (unliganded: 2.41 ± 0.65 Å) states. The end
molecular dynamics timeframe (60–100 ns) showed high RMSD
fluctuations for the apo/unliganded NRAS model, reaching up to
~5.70 Å. On the other hand, the holo native NRAS showed a
slight increase in the protein RMSD following the 75-ns
timeframe and till the end of the simulation run.

Monitoring the RMSD trajectories of the GTP ligand, in
relation to its initial/reference position, showed steady tones
for the simulated models (Figure 2B). The RMSDs of the
ligand were much lower than those of their respective bounded
proteins, the thing that conferred stable GTP-pocket
accommodation across the whole 100-ns simulation runs.
The simulated models were further investigated by

FIGURE 2 | Trajectory analysis for the simulated GTPase NRAS models. Monitored alpha-carbon trajectories of (A) protein’s RMSD, (B) ligand’s RMSD, (C)
protein’s Rg, and (D) protein’s SASA were plotted against the entire molecular dynamics simulation timelines (100 ns).
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monitoring the protein’s Rg and SASA trajectories (Figures
2C, D). Low average Rg—SASA values, 15.30 ± 0.08 Å//91.64 ±
1.96 nm2, 15.24 ± 0.07 Å//89.64 ± 2.25 nm2, and 15.19 ±
0.05 Å//86.69 ± 1.74 nm2, were assigned for the simulated
model numbers 2, 6, and 16, respectively. Again, the native
holo NRAS protein showed a slight increase in its Rg and SASA
tones, which then proceeded constantly till the end of the
simulation runs. Similar to the protein’s RMSDs, the
monitored SASA trajectories were of the highest values for
the simulated apo native NRAS protein as compared to other
simulated congerants.

Dissecting the stability profile of the simulated GTPase
NRAS proteins into their respective residue-oriented level
was performed by monitoring the alpha-carbon RMSF
trajectories. Difference RMSF values for a particular GTP-
NRAS model in relation to the native apoprotein (ΔRMSF =
RMSFApo—RMSFHolo) was of better representation for the
residue-wise protein stability and fluctuation. Residues
depicting ΔRMSF values ≥ 0.3 cut-offs were considered
significantly rigid, showing negligible mobility
(Albuquerque et al., 2020). Notably, the simulated proteins
showed typical thermodynamic behavior, where terminal
residues were of high negative ΔRMSF values as compared
to most of the core amino acids (Figure 3). On the other
hand, certain effector lobe residue ranges depicted high
immobility profiles being confined with the GTPase-

binding site. These top-immobile residue ranges were the
P-loop GxxxGK motif (residues 10–16), switch-I, and vicinal
amino acids (residues 26–39), as well as the switch-II range
(residues 60–70) with the reported Mg+2-coordinating DXXG
motif (Table 5).

Moving toward the allosteric lobe residues, the two motifs
responsible for guanine nucleotide specificity and stabilized
nucleotide binding (NKxD and ExSAK GTPase motifs)
depicted a significant immobility profile with ΔRMSF above
the 0.30 Å cut-off value. Notably, stability residue-wise ranges
were more prominent for the effector lobe rather than those at
the allosteric half of the GTPase catalytic domain. Concerning
the comparative NRAS flexibility profiles, model #3, along
with the native holo protein, showed the highest mobility
tones with more negative and less positive ΔRMSF values. It is
interesting that SNP NRAS models #1, #2, and #3 depicted
consistent mobility and flexibility profiles for the
37–50 residue range, showing almost all its respective
residues with negative ΔRMSF values. Moreover, selected
switch-II residues (Tyr64, Ser65, Ala66) exhibited high
ΔRMSF values for the same three Gly13 SNP models. It is
worth noting that the native holo protein depicted negative
ΔRMSF values for the same previous switch-I and -II residue
ranges yet at less prominent negative numbers. On different
bases, the three Gly13 SNP residues, G13R, G13C, and G13V,
in models #1, #2, and #3, respectively, showed a slightly higher

FIGURE 3 | Relative ΔRMSF analysis for the simulated GTP-bounded NRAS proteins along the whole molecular dynamics simulations. The ΔRMSF values, in
reference to protein backbone Cα-atoms, are represented in terms of constituting residue sequence numbers.
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immobility profile (ΔRMSF ~0.60 Å) than their native
Gly13 in holo NRAS protein. The P34R SNP residue in
model #6 showed a more preferential stability profile than

its native Pro34 congerant. Likewise, the V152F SNP in model
#16 was more rigid, reaching a positive ΔRMSF value (0.24 Å),
as compared to its negative-valued native residue (Val152).

TABLE 5 | Monitored ΔRMSFa [Å] for GTPase NRAS complexes along entire molecular dynamics runs.

Canonical domains composing
GTPase-binding/catalytic site

Residues Model #1 Model #2 Model #3 Model #6 Model #16 Native holo

N-terminal P-loop GxxxGK motif Gly10 0.38 0.35 0.32 0.42 0.42 0.32
Ala11 0.52 0.45 0.45 0.56 0.56 0.45
Gly12 1.67 1.58 1.59 1.68 1.72 1.64
Gly/x13 0.60 0.55 0.56 0.62 0.66 0.60
Val14 0.43 0.41 0.40 0.45 0.46 0.40
Gly15 0.34 0.34 0.30 0.37 0.38 0.29
Lys16 0.35 0.36 0.30 0.40 0.37 0.33
Ser17 0.41 0.44 0.38 0.51 0.48 0.43

Switch-I vicinal residues Gln25 0.35 0.27 0.34 0.42 0.27 0.38
Asn26 0.81 0.66 0.73 0.76 0.69 0.80
His27 1.04 0.93 1.06 0.98 0.94 1.09
Phe28 1.57 1.23 1.11 1.52 1.43 1.52
Val29 1.61 1.60 1.31 1.77 1.22 1.73

Switch-I Asp30 2.88 2.53 2.23 2.73 2.83 2.90
Glu31 2.71 2.33 1.95 2.58 2.61 2.76
Tyr32 2.00 2.38 1.65 2.87 3.07 2.94
Asp33 1.01 1.51 0.91 2.08 2.64 1.83
Pro/Arg34 0.64 1.44 0.59 1.74 3.02 0.33
Thr35 −0.35 1.21 −0.58 0.64 2.52 −0.35
Ile36 0.38 1.14 0.06 1.47 2.90 −0.28
Glu37 −1.24 −1.79 −0.28 0.76 2.71 −0.88
Asp38 −0.76 −0.78 −0.80 0.55 1.41 −0.46
Ser39 −0.65 −0.72 −0.46 0.38 1.18 −0.41
Tyr40 −0.29 −0.34 −0.10 0.28 0.27 −0.40

DxxG motif Asp57 0.29 0.75 0.34 0.40 0.78 0.21
Thr58 0.40 0.80 0.55 0.41 0.81 0.26
Ala59 −0.07 0.57 0.42 0.02 0.74 0.12
Gly60 1.09 1.69 1.49 1.20 1.84 1.15

Switch-II Gln61 1.71 1.79 1.95 1.95 2.17 1.45
Glu62 2.08 1.74 2.18 1.87 2.30 1.53
Glu63 1.97 1.72 2.00 1.34 1.74 1.56
Tyr-64 −1.05 −0.54 −0.88 0.40 1.18 −0.27
Ser65 −0.59 −0.76 −2.03 0.54 0.15 −0.43
Ala66 −0.54 −0.33 −0.50 0.14 0.23 −0.04
Met67 0.94 0.52 0.28 0.30 0.55 0.48
Arg68 0.45 0.29 0.43 0.34 0.31 0.40
Asp69 0.46 0.36 0.58 0.43 0.35 0.33
Gln70 0.46 0.56 0.50 0.57 0.33 0.47
Tyr71 0.28 0.53 0.34 0.48 0.35 0.43
Met72 0.23 0.33 0.25 0.31 0.34 0.32
Arg73 0.29 0.31 0.27 0.26 0.33 0.30
Thr74 0.19 0.24 0.12 0.17 0.28 0.23
Gly75 0.17 0.17 0.09 0.15 0.18 0.18
Glu76 0.02 0.02 −0.01 0.02 0.03 0.05

NKxD motif Asn116 0.22 0.22 0.18 0.26 0.23 0.22
Lys17 0.32 0.32 0.26 0.36 0.34 0.31
Cys118 0.27 0.28 0.22 0.28 0.29 0.27
Asp119 0.82 0.84 0.78 0.86 0.86 0.80

C-terminal ExSAK motif Glu143 0.12 0.12 0.05 0.16 0.09 0.12
Thr144 0.18 0.19 0.12 0.25 0.15 0.15
Ser145 0.28 0.27 0.19 0.32 0.26 0.26
Ala146 0.34 0.32 0.25 0.38 0.26 0.33
Lys147 0.51 0.44 0.43 0.55 0.44 0.52

SNP in model #16 Val/Phe152 −0.16 −0.20 −0.03 −0.24 0.24 −0.17

aΔRMSF ≤ 0.30 Å cut-off are in bold red numbers inferring residues showing significant mobility/flexibility.
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Conformational analysis for the simulated NRAS was
performed to grasp the main secondary structure changes and
SNP residue conformational shift throughout the molecular
dynamics simulations. Trajectories at the start and end of the
simulation runs were extracted, minimized at 0.0001, and finally
overlayed. As expected, the docked GTP molecule was attained
within the NRAS-binding site at the end of molecular dynamics
simulation runs (Figure 4). Most SNP residues showed limited
orientation/conformational changes at the end of the simulation
runs. The latter was obvious for G13C, G13V, and V152F in
models #2, #3, and #16, respectively. Nevertheless, the G13R SNP
residue in model #1 exhibited the highest conformational drift
(alpha-carbon RMSD = 1.034 Å) as compared to its G13 SNP
congerants (alpha-carbon RMSD ~ 0.800 Å). The G13R residue
showed closer proximity to the GTP phosphate groups as
compared to its start frame, favoring phosphate group stability
and extended hydrogen bonding. Concerning the P34R SNP
residue in model #6, a moderate conformational shift was
depicted for this residue with a depicted alpha-carbon RMSD
of 0.941 Å.

It is worth mentioning that significant secondary structure
conformational alterations were also depicted and such
observations were differential across each simulated model.
Regarding the G13x SNP model, a significant shift of the
switch-I loop of the simulated NRAS proteins at the end of
the molecular simulation runs. A switch from the closed state-1 to
an open state-2 was depicted with models #1–3, being more

obvious for model #1. This switch-I drift was accompanied by an
outward movement for the α-helix 3 and loop 7 away from the
switch-II domain. The latter drift permitted the switch-II to attain
the catalytically active R-state conformation rather than the
catalytically incompetent T-state at the start of simulation
runs. The above-described switch-I and switch-II movements
were less prominent with SNPmodels #6 and #16, where minimal
or insignificant conformational changes were depicted. The
native holo NRAS complex exhibited moderate switch-I drift
toward the open state-1, yet without significant outward
movement of its α-helix 3/loop 7 nor its switch-II domain.

Estimating the free binding affinity of GTP toward the
constructed NRAS models as well as the native holo state was
performed using the trajectory-oriented MM-PBSA calculations.
Using the single trajectory approach and SASA-only model (ΔG
Total = ΔG Apolar + ΔG Polar + ΔG Molecular Mechanics), the
total binding energies for GTP in all SNP NRAS models were
superior to that of the native holo protein (Table 6). This SNP-
favored binding affinity is consistent with the results of the
preliminary molecular docking investigation. The obtained free
binding energies were dissected into their contributing energy
terms, showing a general trend in several GTPase NRSA
complexes. Dominant energy contributions of the van der
Waals interactions (ΔG Van der Waals) over that of the
Coulomb’s electrostatic potentials (ΔG Electrostatics) were
depicted for SNP models #2, #3, and #16 as well as the native
holo complex. The latter van der Waal energy preferentiality was

FIGURE 4 | Conformational analysis of simulated GTPase NRAS-GTP complexes at the start and final molecular dynamics timeframes. Superimposed 0 and 100-
ns shots of the simulated NRAS complexes; (A) model #1, (B) model #2, (C) model #3, (D) model #6, (E) model #16, (F) native holo protein. Complexes are shown in
green and red cartoons respective to the initial and last extracted frames. Ligands (sticks) and SNP residues (lines) are presented in colors corresponding to extracted
frames.
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most obvious for SNP model #6. On the other hand, both SNP
models #1 and #6 depicted almost two-fold higher ΔG
Electrostatics contribution over the hydrophobic potentials, the
thing that was also remarkably associated with high polar
solvation energies (ΔG Solvation; Polar). Moreover, the non-
polar solvation energy terms were almost consistent for all
simulated NRAS complexes, being around 19.0 kJ/mol.

The obtained total binding-free energies were further
decomposed down to the residue-wise binding energy
contributions (Figure 5) to identify the key binding residues.
The highest negative energy contribution values were assigned to

residues of the above-described motifs being confined with GTP-
binding and recognition. The P-loop Lys16 of the GxxxxGKmotif
and Asp119 of the NKxD motif depicted the highest residue-wise
energy contributions across all simulated NRAS complexes, with
values of −131.2 up to −157.4 kJ/mol and −130.9 up to −187.5 kJ/
mol, respectively. Other GTP active site residues showed
significant energy term contributions, including Val14, Ala18,
Phe28, Asp30, Tyr32, Asp57, Tyr64, Lys117, and/or Ala146.

Most of the latter top-energy-contributing polar residues
showed high hydrogen bond % frequencies with GTP
throughout the entire simulation runs using the VMD

TABLE 6 | The MM-PBSA-calculated total binding-free energy and its constituting energy terms.

Energy (kJ/mol ±
SD)

GTP-NRAS complexes

Model #1 Model #2 Model #3 Model #6 Model #16 Native holo

ΔGvan der Waals −180.4 ± 18.9 −189.9 ± 13.8 −178.1 ± 19.4 −176.6 ± 25.1 −228.2 ± 25.2 −198.0 ± 28.0
ΔGElectrostatics −238.1 ± 35.1 −89.0 ± 51.3 −44.6 ± 41.9 −291.5 ± 41.3 −64.2 ± 69.1 −39.3 ± 69.8
ΔGSolvation; Polar 316.7 ± 14.2 131.5 ± 29.0 113.9 ± 28.4 336.5 ± 39.1 174.5 ± 29.2 163.2 ± 12.3
ΔGSolvation; non-polar; SASA −20.2 ± 0.6 −19.5 ± 0.4 −18.7 ± 1.6 −19.1 ± 0.4 −18.6 ± 0.2 −19.4 ± 0.2
ΔGTotal binding −122.0 ± 38.0 −166.9 ± 48.4 −127.5 ± 49.5 −150.7 ± 58.8 −136.5 ± 22.8 −93.5 ± 39.9

FIGURE 5 | Residue-oriented free binding energies for the simulated GTP-NRAS systems.
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hydrogen–bond tools. SNP model #1: Arg13-side (30.64%),
Lys16-side (93.41%), Ala18-main (44.31%), Asp30-main
(30.34%), Asp119-side (123.05%); SNP model #2: Cys13-side/
main (22.45%), Lys16-side (69.06%), Ala18-main (14.22%),
Asp30-side (50.82%), Asp119-side (118.66%); SNP model #3:
Lys16-side/main (107.29%), Ala18-main (52.10%), Asp119-side
(123.45%); SNP model #6: Gly13-main (30.84%), Lys16-side/
main (131.62%), Ala18-main (34.73%), Asp30-main (32.63%),
Tyr32-side (53.29%), Arg34-side (38.82%), Asp119-side
(123.25%); SNP model #16: Lys16-side/main (132.23%),
Tyr32-side (63.97%), Asp119-side (115.87%); and native holo
NRAS: Lys16-side (105.39%), Ala18-main (41.72%), Asp30-main
(35.53%), Asp119-side (120.86%).

On the contrary, other hydrophilic pocket-lining residues,
including Glu37, Arg38, Glu62, Glu63, and/or Asp69,
exhibited unfavored positive-valued energies. The latter
binding repellent residues were of the highest values for SNP
models #1 and #6. Concerning the SNP residues, G13R showed a
higher negative energy contribution in model #1 as compared to
its SNP or native congerants. Likewise, model #6 showed
significant binding energy for its SNP P34R, with a value
reaching up to −113.0 kJ/mol. The SNP V152F residue showed
relevant energy contribution in model #16, whereas the native
congerant illustrated either poor energy contributions (~−0.45 kJ/
mol) or even positive-value energies (~0.14 kJ/mol).

Normal Mode Analyses
Collective functional flexibility/mobility of modeled SNP and
native holo NRAS proteins was assessed via the iMODS server
and represented in Supplementary Figure S9. In particular,
the residue range 33–55, corresponding to the switch-I domain
and vicinal residues, depicted the highest deformability across
all NRAS proteins (Supplementary Figure S9A). This
inherited flexibility pattern was also recapitulated through
the estimated highest B-factor scores for these residue
regions (Supplementary Figure S9B). The B-factor
analytical parameter can quantify the atomic displacement
amplitudes around a conformational equilibrium (López-
Blanco et al., 2014). The estimated eigenvalues (1) of SNP
models #1, #2, and #3 complexes were the highest (~8.8e−04) as
compared to those of other SNP models as well as the native
NRAS protein (Supplementary Figure S9C). In addition, the
depicted inverse eigenvalue-variance relationship related to
each normal mode predicted a significantly higher intrinsic
mobility Gly13 SNP models across the collective function
motions (Supplementary Figure S9D).

Regarding the obtained covariance matrices (Supplementary
Figure S9E), correlated residue-pair motions (reds) were more
assigned to the NRAS proteins as compared to either the
uncorrelated (white) or anti-correlated (blue) motions. The
depicted correlated residue-pair motions were highly
correlated to the switch-I residue ranges as compared to other
protein domains. Finally, the elastic network model further
described the differential flexibility pattern in Supplementary
Figure S9F, where this model illustrated atom-wise pairs linked
through springs related to their relative stiffness magnitudes
(darker gray strings confer stiffness). Scattered non-continuous

dark gray bands, around the normal distribution stiffer string,
were assigned for NRAS proteins, particularly the switch-I
residues.

Identification of SNP Impact on NRAS
Protein Structure
The five mutations with the highest binding affinity to GTP were
further analyzed for their impacts on NRAS protein structure
using the HOPE server. Table 7 explains in detail the different
structural impacts in NRAS protein associated with these
variants. Structure substitution of wild-type amino acids by
mutants is illustrated in Figures 6A–D for G13C, G13R,
P34R, and V152F, respectively.

Prediction of the Sites of Post-Translational
Modification
The MusiteDeep server was used to identify the predicted sites of
PTM; Figure 7 displays the predicted PTM sites in the NRAS
protein. In addition, the analysis predicted the mutant residue
C164 to be a palmitoylation site. Moreover, the presence of I55R
SNP was found to lead to the appearance of a phosphorylation
site at the wild residue of Y64. Furthermore, the presence of
D119G SNP was found to lead to the loss of a PTM site at the wild
residue of S106.

Gene–Gene Interaction Analysis
The GeneMANIA tool was used for generating the NRAS
gene–gene interaction network and identifying the genes that
strongly interact with the NRAS gene. Figure 8 displays the
20 most strongly connected genes to the NRAS gene.
Regarding these genes, the SHOC2 gene (leucine-rich repeat
scaffold protein gene) showed the strongest relatedness with a
rank of 1, followed by the STK19 (serine/threonine kinase 19)
gene and the RGS12 (regulator of G protein signaling 12) gene
consecutively.

DISCUSSION

The NRAS gene is a well-known oncogene with a major role in
carcinogenesis (Eisfeld et al., 2014; Ohashi et al., 2013). NRAS
gene mutations were found to be associated with aggressive
tumor features in many types of tumors, such as melanomas
and colorectal cancer (Ellerhorst et al., 2011; Bronte et al., 2015).
Moreover, NRASmutations were proved to be a predictor of poor
prognosis, low survival, and reduced response to therapy with
different types of tumors as well (Jakob et al., 2012; Bronte et al.,
2015). Therefore, it has become necessary to perform a
comprehensive in silico analysis of the NRAS gene to identify
the most deleterious missense SNPs with the highest risk of
affecting protein structure and function.

By filtering 4,542 SNPs found in the NRAS gene, a total of
113 missense SNPs were found, which were further screened
using six in silico tools with diverse algorithms to augment the
efficacy and accuracy of our analysis (SIFT, PolyPhen-2,
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PROVEAN, SNAP, SNP&GO, and PHD-SNP). In total, 16 SNPs
were predicted to be deleterious and disease-causing by all used
tools. Due to the critical role of protein stability in protein
function and structure (Deller et al., 2016), the impacts of
these SNPs on NRAS protein stability were analyzed using the
I-Mutant 2.0 server and theMu-Pro tool. All SNPs were predicted
to decrease stability by one server at least, except
rs1163400692 SNP.

Furthermore, the InterPro server was used to identify the
locations of these SNPs on NRAS protein domains, and the
analysis found that all SNPs, except rs1658971260 SNP, were
located on the important, small GTP-binding protein domain.
This domain is responsible for catalytic activity and contains sites
of nucleotide binding and effector interactions (Omerovic et al.,
2007; Nussinov et al., 2021). Therefore, mutations in this region
are expected to affect the protein function and its binding
properties. In addition, phylogenetic analysis was performed
using the ConSurf tool, which revealed that all mutations were
located on positions with high conservation scores, except the

rs1658971260 variant. As residues with functional importance
show high conservation scores (Berezin et al., 2004), the existence
of variations at these highly conserved positions was predicted to
have effects on protein function. Then, the secondary structure
alignment analysis showed that all deleterious SNPs were located
at the alpha helix and random coil regions, and the highest
number of these variants was located at the alpha helix region
with nine SNPs.

In addition, we employed a docking analysis to investigate the
effect of 17 filtered mutations on the binding affinity with the
GTP molecule. A similar approach was employed to study the
consequences of two deleterious SNPs on KRAS, a member of the
Ras family where NRAS belongs (Chen et al., 2013). Moreover,
several docking studies have been adopted to investigate NRAS as
a promising drug target for bis-pyrimidine derivatives (Kumar
et al., 2018), 1,3-diazine scaffolds (Kumar et al., 2019), and
anticancer agents from Ocimum basilicum (Purushothaman
et al., 2019); the results of these studies confirmed the
possibility of NRAS to act as a target for antitumor agents,

TABLE 7 | Predicted SNP impacts on NRAS protein structure by HOPE server.

SNP Id AA
change

Amino acid properties Location/structure SNP’s impact on the
protein

rs757968407 V152F There is a difference in size as the mutant
amino acid is bigger than the wild one.
Therefore, the mutant amino acid could not fit
as the wild residue is buried in the core

The wild residue is buried in the core.
Therefore, the mutant amino acid could not fit
due to its bigger size

The mutation affects a domain that is
important in binding to other molecules and
could disturb its contact with the important
domain for the activity of our protein and
disturb signal transfer between two domains

rs397514553 P34R There are differences in charge, size, and
hydrophobicity between the mutant residue
and the wild one, which could cause repulsions
with neighboring residues, disturbance of
interactions with protein parts or other
molecules, and loss of hydrophobic
interactions, respectively

The mutation occurs at a stretch of residues
described as a special motif in UniProt, which
could suffer from disturbance and loss of
function. In addition, the special backbone
conformation due to proline rigidity could be
disturbed with the mutant residue

The mutation affects a domain that is
important in binding to other molecules and
could disturb its contact with the important
domain for the activity of our protein and
disturb signal transfer between two domains

rs121434596 G13V There is a difference in size as the mutant
residue has a bigger size, which could lead to
bumps. In addition, the unusual torsion angles
by glycine could be lost with disturbance in the
local structure, and the local backbone could
be forced into incorrect conformation as well

The mutation could lead to a loss of the
flexibility of glycine, which may be necessary
for the function of the protein

The mutation affects a domain with
importance for binding to other molecules.
Therefore, this could lead to the disturbance
of this function

rs121434595 G13C There is a difference in size as the mutant
amino acid is bigger than the wild one.
Therefore, the mutant one could not fit as the
wild residue is buried in the core. In addition,
the unusual torsion angles by glycine could be
lost with disturbance in the local structure, and
the local backbone could be forced into
incorrect conformation as well

The mutation could lead to a loss of the
flexibility of glycine, which may be necessary
for the function of the protein

The mutation affects a domain that is
important in binding to other molecules and
could disturb its contact with the important
domain for the activity of our protein and
disturb signal transfer between two domains

G13R There is a difference in charge between the
mutant and wild residues, and the introduced
charge in this buried residue could result in
protein folding problems. Moreover, there is a
difference in size as the mutant amino acid is
bigger than the wild one. Therefore, the mutant
one could not fit as the wild residue is buried in
the core. In addition, the unusual torsion angles
by glycine could be lost with disturbance in the
local structure, and the local backbone could
be forced into incorrect conformation as well

The mutation could lead to a loss of the
flexibility of glycine, which may be necessary
for the function of the protein

The mutation affects a domain that is
important in binding to other molecules and
could disturb its contact with the important
domain for the activity of our protein and
disturb signal transfer between two domains
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which strengthens the need to analyze NRAS structural and
ligand affinity alteration as a result of SNPs. The docking
analysis in the current study demonstrated that out of
17 mutations, 15 mutations showed a higher binding affinity
to GTP compared with the native model, implicating the cell to be
in an active proliferation state and increasing the tendency of
malignancy. On the other hand, only two SNPs (G60E and
S145L) showed a lower affinity.

Analysis of the interacting residues showed that for the native
model, 11 residues, namely, Gly13, Val14, Gly15, Lys16, Ser17,
Ala18, Gly60, Asn116, Lys117, Asp119, and Ala146, were
involved in the reaction with GTP, but for the mutant model
G13R, which showed the highest binding affinity for GTP,
12 residues were involved in GTP-binding. These residues
were the same as the 11 residues of the native model with the
replacement of the Gly13 interacting residue with Arg13 and

FIGURE 6 | Illustration of the substitution of wild type amino acid (green colored) by the mutant one (red colored) in different NRAS SNPs (A) G13C. (B) G13R. (C)
P34R. (D) V152F.

FIGURE 7 | Post-translational modifications of NRAS produced by the MusiteDeep server.
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adding Thr35 as a new interacting residue. The replacement and
the new interacting residue increased the binding affinity
from −11.3 to −12.3. On the other hand, a comparison
between the native and mutant model G60E, which
demonstrated the lowest binding affinity for GTP, showed a
reduction for interacting residues from 11 to 7 with a
concurrent reduction in the binding affinity for GTP
from −11.3 to −10.6. Altogether, the molecular docking study
revealed that 15 out of the 17 filtered mutations have a high
potential to affect the interaction between NRAS and GTP, which
would reflect on the cell proliferation behavior. The structural
effects on NRAS protein regarding these five mutations with the
highest binding affinity to GTP were analyzed using the HOPE
server. All these mutations were shown to lead to defects in NRAS
structure and function.

Exploring the thermodynamic stability of top-docked GTP-
NRAS complexes through molecular dynamics simulations
showed higher stability and compactness profiles for the SNP
models, particularly for models #2, #6, and #16, as compared to
the native holo protein. This was obvious by depicting steadier and
lower average valued trajectories for alpha-carbon RMSDs, Rg, and
SASA. Depicting steady, rapidly equilibrated, and low-valued RMSD
tones is associated with a protein’s ternary structure stability and
excellent ligand-pocket accommodation, particularly when the
ligand RMSDs are lower than their respective protein’s tones
(Arnittali et al., 2019). The latter is based on the fact that the
RMSD trajectory-based analytical parameter is indicative of
structural distance deviations for atom groups (protein or ligand)
in relation to their reference coordinates (Schreiner et al., 2012). Both
Rg and SASA trajectories emphasized the preferential higher stability
and structural compactness/tightness of the simulated SNP models

#2, #6, and #16 as compared to other SNP as well as the inferior
native holo protein. A protein’s SASA parameters quantify the extent
of protein/solvent interactions being correlated to the solvent-
accessible molecular surface for the surrounding solvent (Pirolli
et al., 2014). Decreased SASA tones imply relative structural
shrinkage under the influence of the solvent’s surface charges,
providing more compact/stable conformations. On similar bases,
lower Rgs reflect sustained structural compactness and stability since
this parameter defines the mass-weighted RMSD for atom groups in
relation to their common mass center (Likić et al., 2005). It is worth
noting that the abovementioned thermodynamic stable behavior,
evaluated through RMSDs, Rgs, and SASAs, confers the complex’s
structural convergence within the designated 100-ns window as
being sufficient with no need for a further time extension (Soltan
et al., 2022; Zaki et al., 2022).

Validation of SNP model stability was also confirmed through
monitoring the ΔRMSF tones across the molecular dynamics-
simulated trajectories. This analytical parameter infers the protein
amino acids’ average deviation from their reference position,
providing information regarding the protein’s inherited flexibility/
mobility down to their constituting amino acid level (Benson and
Daggett, 2012). Higher immobility/stability profiles for the GTP-
binding and Mg2+-coordination motifs within the top-stable SNP
models were also consistent with the protein/ligand RMSDs, Rgs,
and SASAs, inferring preferential GTP-binding. The most
interesting finding within the ΔRMSF analysis is the consistent
flexible residue range 37–50 in the Gly13 SNP model as well as the
native holo proteins. This residue range constitutes most of the
switch-I residues, which highlighted a significant conformational/
orientational shift across the molecular dynamics simulations. This
was confirmed throughout the conformational analysis, where that
switch-I loop attained an open state at the end of the simulation runs.
As being reported for GTPase members, the switch-I could
interconvert between a closed conformation, associated with
effector protein binding, and an opened state, being significant
for nucleotide exchange (Kalbitzer and Spoerner, 2013; Liao et al.,
2008). Inherited flexibility of the NRAS switch-I domain was also
confirmed through the herein presented normal mode analysis
depicting higher B-factor values and deformability. Preferential
residue-wise inherited flexibility for the Gly13 SNP models was
also highlighted throughout the furnished normal mode analysis,
depicting higher eigenvalues than other GNP and native proteins.
Another interesting finding is that the Gly13 SNP models also
depicted particularly highly flexible residues at switch-II (Tyr64,
Ser65, Ala66) conferring their conformational/orientation
alterations. Conformational analysis translated this switch-II
dynamic behavior as being related to a shift from the T-state to
the F state, where the latter is reported to be catalytically active
(Tetlow and Tamanoi, 2013). Depicting non-significant T-to-F state
shift for the native holo NRAS and models #6 and #16 was further
confirmed by having these switch-II residues with lower negative or
even positive ΔRMSF values. Our findings suggest a different
conformational state for the SNP models #1, #2, and #3 that
could favor relevant significant GTP catalysis and nucleotide
exchange in relation to the native NRAS conformer.

Applying the molecular dynamics based MM-PBSA free binding
energy calculations was beneficial for highlighting the nature of

FIGURE 8 | Network of NRAS gene–gene interactions produced by the
GeneMANIA tool.
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GTP-NRAS binding as well as pinpointing the hot-spot residues
important for GTP-binding. MM-PBSA accurately accounts for
ligand-protein affinity better than static or even most
sophisticated flexible molecular docking. It is considered of
comparable accuracy to free energy perturbation, yet with
significant cost-effective computational expenses (Kumari et al.,
2014a). Moreover, the binding-free energies of the SNP models
signified the role of SNP residues for GTP anchoring and binding as
depicted by high residue-wise energy contributions compared to
native amino acids. This was consistent with the ΔRMSF findings as
these SNP residues were also with high inflexibility profiles (positive
values). In terms of energy, the arginine SNP residues contributed to
the increase in the Coulomb’s electrostatic potentials, favoring GTP-
binding at models #1 and #6. The significance ofΔGElectrostatic for
the more hydrophilic SNP models was further confirmed through
VMD hydrogen–bond analysis since both models depicted the
widest range of hydrophilic interactions with NRAS polar
residues. Nevertheless, the latter ΔG Electrostatic preferentiality
was with significant cost since the polar solvation energies were
also higher than in other simulated models. This could impose a
penalty against GTP since the ligand binding is considered a solvent
substitution process (Zou et al., 1999). This was confirmed since the
lipophilic G13V SNP residues achieved a lower polar solvation
penalty. On the other hand, the G13C SNP residue was depicted
as being more beneficial for GTP anchoring since the polar
nonionized cysteine residue satisfied the polar character of the
GTP molecule through higher ΔG Electrostatic without
compromising the binding affinity via increasing the repulsive
polar solvation energies. The lipophilic SNP V152F was
considered significant for improving the hydrophobic potentials
without significant energy penalties. All the above MM-PBSA
free binding calculations recapitulated the preliminary docking
results, where SNP models have a higher affinity toward GTP-
binding than the native protein.

PTMs were analyzed using the MusiteDeep server; C164, I55R,
and Y64 mutations were found to affect PTMs of NRAS. PTMs
could modulate the functions of proteins and affect all features of
their biology, including cellular localization, stability, and interaction
with co-factors (Brunmeir and Xu, 2018). Therefore, affecting PTMs
could lead to significant impacts on protein function. The confirmed
existence of interactions among diverse genetic loci showed the
importance of studying gene–gene interactions in the analysis of
disease–gene associations (Cordell, 2009). The GeneMANIA tool
revealed that the SHOC2 gene showed the strongest interaction with
the NRAS gene, followed by the STK19 gene and RGS12 gene
consecutively. NRAS variants could have an effect on these closely
connected genes to NRAS as well.

Overall, 17 mutations were found to be the most deleterious
mutations in NRAS protein. Among these SNPs, G60E, S145L, and
R164C were found to have the lowest risk, as S145L did not show a
decreasing effect on protein stability and did not show high affinity to
GTP and R164C was found to be located on an intermediately
conserved site and was not located on the important small GTP-
binding protein domain. G60E showed the lowest binding affinity to
GTP. All other 14 mutations were expected to affect NRAS structure
and function and were expected to have a role in increasing
carcinogenesis. In addition, the five mutations that showed the

highest binding affinity to GTP (G13R, G13C, G13V, P34R, and
V152F) are expected to have the highest risk of carcinogenesis. It is
important to mention that some of the nominated deleterious SNPs
in the current study have already been correlated to carcinogenesis in
previous wet-lab studies, where G13 mutations have been associated
with chronic myelomonocytic leukemia and juvenile
myelomonocytic leukemia progression in humans and mice
(Kong et al., 2016) and G13V mutation was found to cause an
aggressive phenotype with anaplastic transformation in thyroid
cancer (Pozdeyev et al., 2018); this mutation was also found in
metastatic colorectal cancer along with BRAF codons 594 and
596 mutations (Cremolini et al., 2015). Other mutations that were
predicted to be deleterious from our analysis are G60E, S39F, and
Y64D, and these mutations have been correlated with myeloid
leukemia, oral mucosal melanoma, and primary acral melanoma
patients, respectively (Tyner et al., 2009; Chen et al., 2018;Moon et al.,
2018). On the other hand, mutations such as G12 andQ61 have been
correlated with leukemia patients (Kong et al., 2016), and the current
study failed to nominate them among the deleterious candidates.
Therefore, a thorough investigation of our filtered mutations through
experimental methods is an essential next step.

CONCLUSION

The NRAS protein has a vital role in regulating cell proliferation,
motility, and apoptosis. It has a domain that interacts with a GTP
molecule and converts it to GDP to control the cell activity status.
Hence, the conservation and structural conformation of this
domain are highly important for the protein functional role. The
current computational study sheds light on the deleterious effects of
the nsSNPs on the structural and functional characteristics of this
protein. Our study demonstrated that 14 SNPs are predicted to
affect NRAS structure and function, where the 5 mutations that
showed the highest binding affinity to GTP (G13R, G13C, G13V,
P34R, and V152F) were nominated as the highest risky ones.
Thermodynamic stability was assured for these top-docked SNP
proteins through molecular dynamics simulations. Furthermore,
the Gly13 SNP model adopted differential conformational states
that could confer significant GTP catalysis and nucleotide exchange.
As NRASmutations have been linked to several forms of tumors in
many previous studies, the current analysis would represent a guide
for future experimental SNP validation and clinical analysis on a
large group of people.
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