
INTRODUCTION

Di (2-ethylhexyl) phthalate (DEHP) is a kind of endocrine dis-

rupting compound that is often added to polyvinyl chloride ma-
terials to increase plasticity [1]. It is widely used in food packaging 
materials, building decoration materials, children’s toys and medi-
cal equipment, as well as other products [2-4]. DEHP and plastic 
substrates combine with non-covalent bonds. Therefore, DEHP 
constantly escapes from plastic products to pollute the atmo-
sphere, soil and water, and ultimately have adverse impacts on hu-
man health [5, 6]. Humans are exposed to DEHP through various 
ways predominantly through food intake, but also by drinking wa-
ter, skin absorption and intravenous injection [7, 8]. After DEHP 
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enters the body, it can rapidly metabolize to mono-(2-ethylhexyl) 
phthalate (MEHP), its primary metabolite, in the gastrointestinal 
tract and other tissues [9, 10]. MEHP is believed to be the main 
way in DEHP exerts toxic effects since it is 10 times more toxic 
than its parent compound [11].

It has been thought that women, especially pregnant women, are 
more susceptible to DEHP than men in the same living environ-
ment [12]. Moreover, it was deemed that DEHP and MEHP could 
pass through the placental barrier and the imperfect fetal cerebral 
blood barrier to affect fetal development [13-15]. Studies have 
shown that maternal exposure to DEHP exerted deleterious effects 
on fetal immune, cardiovascular and endocrine system develop-
ment [16-19]. Lately, there has been increasing concern regarding 
maternal DEHP exposure on fetal neural development. However, 
most of these studies have focused on epidemiological investiga-
tions.

In neural development, the normal function of cerebellum plays 
an important role [20, 21]. It is widely considered that altered 
cerebellar structure and function are associated with emotional, 
cognitive and social behavior abnormalities [22, 23]. Proliferation, 
differentiation and apoptosis are pivotal steps during early postna-
tal cerebellar development, and disturbances in any of these may 
lead to changes in cerebellar function and structure [24-26]. It is 
generally believed that the process of apoptosis is strictly regulated 
by the organism to maintain the stability of various tissues and or-
gans [27]. However, excessive cell proliferation and apoptosis can 
ensue when the regulation of apoptosis is unbalanced, which leads 
to the occurrence of related diseases such as Alzheimer’s disease, 
brain injury and several chronic neurodegenerative disease [28-
31]. Accumulating evidence suggests that the PI3K/AKT signal-
ing pathway is closely related to neuronal apoptosis [32, 33]. The 
PI3K/AKT signaling pathway exists in all mammalian cells and is 
regulated by a series of extracellular signals such as growth factors 
and cytokines [34]. It regulates cell survival by phosphorylating a 
series of downstream targets such as Bcl-2 family members and 
the caspase family of proteins. Bcl-2 is an important downstream 
effector of the PI3K/AKT signaling pathway, which is negatively 
related to regulation of apoptosis [35, 36]. When PI3K-dependent 
AKT is activated, Bcl-2 depolymerizes with phosphorylated Bad 
and free Bcl-2 can play an anti-apoptotic role. Bax also belongs to 
the Bcl2 family and acts as a pro-apoptotic factor [37, 38]. As an 
activator of the PI3K/AKT signaling pathway, insulin like growth 
factor-1 (IGF1) can reduce apoptosis induced by the inhibition of 
the PI3K/AKT signaling pathway [39], while a chemical inhibitor, 
LY294002, can inhibit the PI3K/AKT signaling pathway. 

Although numerous studies on DEHP neurotoxicity have been 
conducted [15, 40-46], relatively little research has been done on 

its effect on the cerebellum, notably, toxicities and related mecha-
nisms are still unclear. Therefore, the aim of the present study was 
to investigate the effects of DEHP on apoptosis in cerebellar gran-
ule cells (CGCs) and the underlying mechanisms involved. 

MATERIALS AND METHODS

Animals

Female Wistar rats (230~250 g) were obtained from the Center 
for Experimental Animals at China Medical University (Shenyang, 
China) with a National Animal Use License number of SCXK-
LN2013-0007. All experiments and surgical procedures were ap-
proved by the Animal Use and Care Committee at China Medical 
University, which complies with the National Institutes of Health 
Guide for the Care and Use of Laboratory Animals. All efforts 
were made to minimize the number of animals used and their 
suffering. Rats were housed at a temperature of 24±1oC with 12 h 
light/12 h dark cycles. DEHP-free food and water were provided 
ad libitum.

DEHP administration

Female Wistar rats were randomly assigned to four groups (n=10 
per group): the control (only corn oil was administered) and three 
DEHP treatment groups. Female rats were fed for 1 week and then 
mated with normal male rats (♀/♂=2:1). The day of the vaginal 
plug was taken as gestational day (GD) 0. Then pregnant rats were 
administered, via oral gavage, 0, 30 mg/kg/d, 300 mg/kg/d and 750 
mg/kg/d of DEHP (Sigma-Aldrich, St Louis, MO, USA) in 0.1 ml 
corn oil (Sigma-Aldrich)/20 g body weight from GD 0 to postna-
tal day (PN) 21. This dose range was selected with reference to the 
effects on neurodevelopment measured in previous studies [41, 
47].

Primary CGC isolation and treatment

Primary cultures of CGCs were prepared from 7-day-old Wistar 
rats and cultured as previously described using a modified method 
[48, 49]. In brief, the cerebellum was dissected and kept in Hank’s 
Buffered Salt Solution after the meninges were carefully removed. 
Then the cerebella were sliced and tissue was dissociated by 0.125% 
trypsin solution (Invitrogen, Carlsbad, CA, USA) for 15 min at 
37oC, and triturated in the presence of DNase I (Genview Scien-
tific, Tallahassee, Florida, USA) and a few drops of fetal bovine 
serum (Cellmax, Beijing, China). Dissociated cells were collected 
by centrifugation and resuspended in basal Dulbecco’s Modified 
Eagle Medium supplemented with 10% fetal bovine serum and 
penicillin-streptomycin (Invitrogen). The cell suspension was 
plated on poly-l-lysine-coated petri dishes and cultured in a CO2 
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incubator. The medium was changed to neuronal culture medium 
consisting of neurobasal A (Thermo Fisher, Waltham, MA, USA), 
B27 (Thermo Fisher), glutamine (Sigma-Aldrich) and penicillin-
streptomycin after 18 h of culture. Meanwhile, cytarabine (Med-
ChemExpress, Monmouth Junction, NJ, USA) was added to 
inhibit the growth of non-neuronal cells. The culture medium was 
changed every two days.

After 7 days of cell culture, the culture medium was switched to 
that containing the indicated concentration of MEHP (AccuStan-
dard, New Haven, CT, USA) MEHP was dissolved in dimethyl 
sulfoxide (DMSO) because of its poor water-solubility to a final 
concentration of 0.05%, which has no effect on cell development. 
The medium from the control group contained the same content 
of DMSO. IGF1 (R&D Systems, Minneapolis, MN, USA) and 
LY294002 (MedChemExpress) were added for the indicated peri-
ods.

Cell viability assay

The cell viability assay was performed with a Cell Counting Kit-
8 (CCK-8; MedChemExpress) according to the manufacturer’s 
instructions. Briefly, cells were seeded in 96-well plates and treated 
with different concentrations of MEHP, CCK-8 solutions were 
then added and incubated for 4 h. Absorption at 450 nm was sub-
sequently measured on a Varioskan Flash (Thermo Fisher). Each 
experiment was repeated three times. Results were expressed as a 
percentage of the control that was set as 1.

Terminal deoxynucleotidyl transferase-mediated dUTP 

nick-and labeling (TUNEL) assay

Terminal deoxynucleotidyl transferase-mediated dUTP nick-
and labeling (TUNEL) assay was performed on cerebellum 
paraffin-embedded tissue sections and primary CGCs using an in 
situ cell death detection kit (Roche Diagnostics, Mannheim, Ger-
many) according to the manufacturer’s instructions. Briefly, cell 
smears were washed using phosphate buffered saline (PBS) and 
fixed with 4% paraformaldehyde solution for 25 min. Cells were 
then washed with PBS again and permeabilized using 0.2% Triton 
X-100 (Sigma-Aldrich). Tissue sections were heated at 60oC for 2 h, 
followed by washing in xylene and rehydration through a graded 
series of ethanols and double-distilled water. Sections were then 
incubated with 20 μg/ml proteinase K working solution (Beyo-
time, Shanghai, China) for 30 min at 37oC. Finally, cell smears and 
paraffin sections were labeled by TUNEL reaction mixture, and 
incubated at 37oC in a humidified dark chamber for 1 h. Images 
were obtained using a fluorescence microscope (Olympus, Tokyo, 
Japan) under the same conditions of light illumination and at a 
magnification of ×200 (objective ×20 and ocular ×10). TUNEL-

positive cells were counted in a blinded manner only if structures 
were identified clearly. Three different fields were selected from 
inner granule layer regions per section, respectively, and three sec-
tions per animal were evaluated to obtain a mean value. Six male 
and six female rats per group were used to obtain an overall mean 
value for subsequent statistical analysis.

Immunofluorescence

Primary CGCs were fixed and permeabilized as previously 
described, and then blocked with goat serum (ZhongShan Bio-
technology, Beijing, China) for 30 min at room temperature. Cells 
were then incubated with mouse monoclonal anti-β-IIItubulin 
(1:400; Abcam, Cambridge, MA, USA) and rabbit anti-cleaved 
caspase 3 (1:100, Cell Signaling Technology, Danvers, MA, USA) 
overnight at 4oC. Next day, after washing in PBS three times, a sec-
ondary antibody conjugated to the fluorescent markers TRITC or 
FITC (1:100, Zhong Shan Biotechnology) was added for 2 h. Im-
ages were obtained by fluorescence microscopy (Olympus, Japan) 
at a magnification of 200× (objective 20× and ocular 10×).

Western blotting

Proteins of pups’ cerebella at PN 7, and PN 14 from each group 
were prepared as previously described. Cells were lysed using a 
total protein extraction kit (Invent Biotechnologies, Plymouth, 
MN, USA) for animal tissue and cultured cells according to the 
manufacturer’s instructions. The concentration of protein in tissue 
lysates was estimated by a Pierce BCA protein assay kit (Thermo 
Fisher) and diluted to 3 μg/μl. Samples were then separated on 
10% SDS-acrylamide gels. Proteins were separated by applying 
a constant voltage of 100 V for 1.5 h and then transferred onto 
polyvinylidene difluoride membranes at a constant voltage of 100 
V for 60 min. After blocking nonspecific sites with Tris-buffered 
saline (TBS) containing 0.1% Tween 20 and 5% defatted dried 
milk, membranes were washed and incubated with rabbit anti-
p-AKT (1:1000; Cell Signaling Technology), rabbit anti-AKT 
(1:1000; Cell Signaling Technology), rabbit anti-PI3K (1:1000; 
Cell Signaling Technology), rabbit anti-Bax (1:1000; Cell Signaling 
Technology), rabbit anti-cleaved caspase 3 (1:1000; Cell Signaling 
Technology), mouse- anti-Bcl2 (0.2 μg /ml; R&D Systems), rab-
bit anti-caspase-3 (1:1000; Cell Signaling Technology) and rabbit 
anti-β-actin (1:1000; Cell Signaling Technology) overnight at 4oC. 
Membranes were then incubated with goat anti-rabbit or mouse 
anti-goat horseradish peroxidase-conjugated secondary antibody 
(1:2500; ZhongShan Biotechnology). Finally, blots were visualized 
using the Bioanalytical Imaging System (Azure Biosystems, Dub-
lin, CA, USA). The relative density of each blot was quantified via 
Image-Pro Plus 6.0 software (Media Cybernetics, Rockville, MD, 
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USA).

Statistics

All analyses were carried out by SPSS software, version 21.0 
(SPSS Inc., Chicago, IL, USA), and all experiments were performed 
at least in triplicate. Data on the net optical density of bands was 
presented as the means±standard deviations (SD), and a one-way 
analysis of variance followed by the Bonferroni test was used to 

compare the treated groups with the control group. Several inde-
pendent sample nonparametric tests were used to compare the 
different groups, and the Kruskal-Wallis test was used to compare 
treated and control groups. A p value of <0.05 was considered sta-
tistically significant.

Fig. 1. Effect of maternal DEHP exposure on cerebellar granule cell apoptosis in pups. Representative photomicrographs show fluorescence staining 
of terminal deoxynucleotidyl transferase-mediated dUTP nick-and labeling (TUNEL)-positive cells in the internal granular layer of cerebellum in the 
four groups (0, 30, 300 and 750 mg/kg/d). (A) Postnatal (PN) day 7 for males and females, (B) PN 14 for males and females. Corresponding bar graph 
shows the TUNEL-positive cell count in the four groups.at PN 7 (C) and PN 14 (D). Scale bar=25 μm. The scale bar is the same for all images in the 
figure. Western blots bands represent the expression of cleaved caspase-3 and caspase 3 for male and female offspring at PN 7 (E) and PN 14 (H). Semi-
quantitative measurements of cleaved caspase-3 and total caspase 3 for male and female offspring at PN 7 (F) (G) and PN 14 (I) (J). With each time point, 
*p<0.05 vs control, #p<0.05 vs 30 mg/kg/d contamination group (n=6).
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RESULTS

Effects of maternal DEHP exposure on cerebellar granule 

cell apoptosis in pups

The TUNEL assay is a widely used for evaluating the apoptosis 
of cells [50], and caspase-3 is a key executor of apoptosis [51]. To 
determine whether DEHP exposure played a role in apoptosis, 
TUNEL assay was performed on cerebellum sections at PN 7 
and PN 14. TUNEL positive cells in male pups from the 300 and 
750 mg/kg/d exposure groups were significantly increased when 
compared with those of the control group at PN 7 (Fig. 1C. Male: 
p<0.05) and PN 14 (Fig. 1D. Male: p<0.05). However, for female 
offspring, significant changes were not observed at PN 7 and PN 
14 (Fig. 1C, Female; Fig. 1D, Female). Consistent with these results, 
the expression of cleaved caspase-3 in male pups’ of the 300 mg/
kg/d and 750 mg/kg/d exposure groups was significantly also in-
creased when compared with the control at PN 7 (Fig. 1G. Male: 
p<0.05) and PN 14 (Fig. 1J. Male: p<0.05), while the level of total 

caspase-3 was decreased at PN 7 (Fig. 1F. Male: p<0.05) and PN 14 
(Fig. 1I. Male: p<0.05). Moreover, marked differences among the 
four groups of female offspring were not noted (Fig. 1F, Female; 
Fig. 1G, Female; Fig. 1I, Female; Fig. 1J, Female). These findings, 
therefore, suggested that maternal DEHP exposure induced CGC 
apoptosis in male rat offspring only. 

Effects of maternal DEHP exposure on the PI3K/AKT sig-

naling pathway

The PI3K/AKT/Bcl-2/Bax signaling pathway plays an important 
role in maintaining cell survival and function to regulate physi-
ological processes such as cell apoptosis, division and differentia-
tion [52, 53]. In this investigation, for male pups, it was found that 
the expression of p-PI3K (Fig. 2B, Male: p<0.05; Fig. 3B, Male: 
p<0.05), p-AKT (Fig. 2D, Male: p<0.05; Fig. 3D, Male: p<0.05) and 
Bcl-2 (Fig. 2F, Male: p<0.05; Fig. 3F, Male: p<0.05) was significantly 
decreased in 300 and 750 mg/kg/d exposure groups at PN 7 and 
PN 14 in comparison with the control, and the protein expression 

Fig. 2. Effect of maternal DEHP exposure on PI3K/AKT signaling pathway of pups at PN 7. (A) Western blot bands represent the expression level of 
proteins in the PI3K/AKT/Bcl-2/Bax pathway at PN 7 for males and females. The bar graphs show the results of the semi-quantitative measurement of 
p-PI3K (B), PI3K (C), p-AKT (D), AKT (E), Bcl-2 (F) and Bax (G). Each bar represents mean ± standard deviation (SD). The mean expression in off-
spring from 0, 30, 300, and 750 mg/kg/d exposure groups is shown as a fold-change compared to the mean expression in the 0 mg/kg/d group which was 
ascribed an arbitrary value of 1. With each time point, *p<0.05 vs control, #p<0.05 vs 30 mg/kg/d contamination group (n=6).
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of Bax from 300 and 750 mg/kg/d exposure groups was elevated 
(Fig. 2G, Male: p<0.05; Fig. 3G, Male: p<0.05). In addition, for fe-
male pups, no evident differences were found in the expression of 
p-PI3K (Fig. 2B, Female; Fig. 3B, Female), p-AKT (Fig. 2D, Female; 
Fig. 3D, Female), Bcl-2 (Fig. 2F, Female; Fig. 3F Female) and Bax 
(Fig. 2G, Female; Fig. 3G Female) at PN 7 and PN 14. Our results 
indicated that DEHP exposure during pregnancy and latency in-
hibited the PI3K/AKT signaling pathway of male offspring.

Effects of MEHP on cell viability of primary cerebellar 

granule cell

Cultured CGCs were identified by β-III tubulin, an appropriate 
marker for CGCs, which is located in the cytoplasm and axons 
[54]. CGCs are stained with red fluorescence in the cytoplasm 
and axons. Their purity was calculated by the ratio of the number 
of CGCs to the total number of cells. Three batches of cells and 

five fields per batch were selected to obtain this average. We found 
that the purity of primary cultured CGCs was about 95% and cells 
were used in subsequent experiments. CGCs cells were treated 
with MEHP at the indicated concentrations for 12 h, 24 h and 48 
h, and cell viability was measured by CCK-8 assay. As shown in 
Fig. 4B, cell viability decreased with an increase in MEHP dose 
and exposure time. The results showed that 25 μM MEHP did 
not noticeably affect the cell viability of CGCs after 12 and 24 h 
exposure, but decreased it after 48 h exposure. Moreover, exposure 
to 250 μM MEHP for 24 h led to an approximately 20% reduction 
in cell viability when compared to the control (Fig. 4B, p<0.05). 
The cell viability was reduced to 50% when CGCs were exposed 
to 1000 μM MEHP for 24 h. Based on these results, we selected 0, 
25, 100 and 250 μM as MEHP exposure concentrations and 24 h 
as the exposure time for subsequent experiments to eliminate the 
interference of DEHP-induced cell death.

Fig. 3. Effect of maternal DEHP exposure on PI3K/AKT signaling pathway of pups at PN 14. (A) Western blot bands represent the expression level of 
proteins in PI3K/AKT/Bcl-2/Bax pathway at PN 14 for males and females. The bar graphs show the results of the semi-quantitative measurement of p-
PI3K (B), PI3K (C), p-AKT (D), AKT (E), Bcl-2 (F) and Bax (G). Each bar represents mean±SD. The mean expression in offspring from the 0, 30, 300, 
and 750 mg/kg/d exposure groups is shown as a fold-change compared to the mean expression in the 0 mg/kg/d group which was ascribed an arbitrary 
value of 1. With each time point, *p<0.05 vs control, #p<0.05 vs 30 mg/kg/d contamination group (n=6).
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MEHP induced CGC apoptosis through inhibiting the 

PI3K/AKT signaling pathway in vitro

Primary CGCs were stained by TUNEL and cleaved caspase-3 to 
evaluate apoptosis induced by MEHP in vitro. The percentage of 
TUNEL positive cells gradually increased in CGCs as the MEHP 
exposure concentration increased (Fig. 5B, p<0.05). We also found 
that the percentage of cleaved caspase-3 positive cells significantly 
increased in MEHP treatment groups in comparison with the 
control (Fig. 5D, p<0.05). Furthermore, the protein expression of 
cleaved caspase-3 was also upregulated in the three MEHP expo-
sure groups when compared with the control (Fig. 5G, p<0.05), 
while the level of total caspase-3 was downregulated (Fig. 5F, 
p<0.05). 

The PI3K/AKT signaling pathway was also measured after cul-
tured CGCs were exposed to MEHP. The results showed that p-
PI3K (Fig. 6B, p<0.05), p-AKT (Fig. 6D, p<0.05) and Bcl-2 (Fig. 
6F, p<0.05) protein expression in MEHP exposure groups was 
significantly decreased when compared with the control, while 
the protein level of Bax (Fig. 6G, p<0.05) increased as the MEHP 
exposure concentration became elevated. In addition, there was 

no marked difference in total PI3K and AKT protein levels of the 
four independent groups (Fig. 6C, 6E). These results indicate that 
MEHP promoted CGC apoptosis via the PI3K/AKT signaling 
pathway in vitro.

IGF1 protects CGCs from apoptosis induced by MEHP via 

the PI3K/AKT pathway, while LY294002 aggravated apop-

tosis

IGF1 is considered to be an activator of the PI3K/AKT signal-
ing pathway [55]. To further observe apoptosis induced by DEHP 
when the PI3K/AKT signaling pathway was activated, CGCs were 
pretreated with IGF1 (30, 50 and 100 ng/ml) for 2 h, and then 
treated with 250 μM MEHP for 24 h. Compared with the control 
group, the protein expression of Bax (Fig. 7G, p<0.05) and cleaved 
caspase-3 (Fig. 7I, p<0.05) increased in the MEHP only treatment 
group when compared with the control, while the levels of p-PI3K 
(Fig. 7B, p<0.05), p-Akt (Fig. 7D, p<0.05), Bcl-2 (Fig. 7F, p<0.05) 
and total caspase 3 (Fig. 7H, p<0.05) proteins decreased. In addi-
tion, combined treatment with IGF1 led to the recovery of levels 
of p-PI3K, p-AKT and Bcl-2 proteins, but decreased the expres-

Fig. 4. Effects of MEHP on cell viability of primary CGCs. (A) Representative photomicrographs show the intact morphological structure of primary 
cerebellar granule cell neurons. Positive staining cells (yellow arrow) are CGCs and negative staining cells (white arrow) indicate non-CGCs, Scale 
bar=100 μm. (B) CGCs were exposed to various concentrations of mono-(2-ethylhexyl) phthalate (MEHP; 0~1000 μM) for 12 h, 24 h and 48 h, and cell 
viability was measured by CCK-8 kit. Data are expressed as the mean±SD for three independent experiments. Each assay was performed in triplicate 
*p<0.05 vs control.
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sion of cleaved caspase-3 and Bax when compared to MEHP only 
treatment. Moreover, there was no obvious difference in the ex-
pression of these proteins between the IGF1 alone treatment and 
the control.

Furthermore, a TUNEL assay was performed to evaluate apop-
tosis after IGF1 treatment. We found that the number of cells that 
were TUNEL positive was reduced upon pretreatment with 100 

ng/ml IGF1 in comparison with the MEHP only treatment group, 
and there was no evident difference between the control and IGF1 
only treatment groups (Fig. 8B, p<0.05). Therefore, IGF1 protects 
CGCs from apoptosis induced by MEHP via the PI3K/AKT path-
way.

In addition, to confirm that IGF1 could rescue the inhibitory 
effect of DHEP on CGC cell death via partially affecting PI-3K/

Fig. 5. MEHP induces CGC apoptosis in vitro. Cultured cerebellar granule cells (CGCs) were treated with 25, 100 and 250 μM MEHP for 24 h. (A) 
Representative photomicrographs show the percentage of TUNEL positive CGCs in the four different exposure groups. (B) Corresponding bar graph 
shows TUNEL positive rate of CGCs in the four groups. (C) Representative photomicrographs show the percentage of CGCs with cleaved caspase-3 
positive cells in the four groups. (D) The bar graph shows the percentage of CGCs with cleaved caspase-3 in the four exposure groups. (E) Western blot 
showing the expression of cleaved caspase-3 after MEHP exposure in vitro (F) Semi-quantitative measurements of cleaved caspase-3 for the four groups. 
(G) Semi-quantitative measurements of caspase-3 for the four groups. *p<0.05 vs control, #p<0.05 vs 25 μM MEHP exposure group, & p<0.05 vs 100 
μM MEHP exposure group. Scale bar=25 μM. The scale bar is the same for all images in the figure.
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AKT pathway, the PI3K/AKT signaling pathway in four groups 
were measured, including the control group and the experiment 
groups with LY294002 (chemical inhibitor of PI-3K), MEHP, and 
LY294002 plus MEHP. We found that DEHP had a similar effect 
to that of LY294002 in that it inhibited the PI3K/AKT signal-
ing pathway (Fig. 9B, p<0.05; Fig. 9C, p<0.05; Fig. 9E, p<0.05; Fig. 
9F, p<0.05; Fig. 9G, p<0.05; Fig. 9H, p<0.05) and increased the 
TUNEL positive rate in CGCs (Fig. 10B, p<0.05). Moreover, the 
inhibition effect is more obvious when applying both MEHP and 
LY294002.

DISCUSSION

DEHP is one of the most widespread endocrine-disrupting 
chemicals in the environment [56, 57]. DEHP and its primary 
metabolite, MEHP, have also been found in human tissues such as 
blood, urine, breast milk and amniotic fluid [58, 59]. An increasing 
number of studies has shown that exposure to DEHP during preg-
nancy and lactation is associated with cerebellar-related neurobe-
havioral disorders [60-63]. However, the direct effects of DEHP 

on the cerebellum and any related mechanisms have not been well 
studied. Therefore, in this study, we established an animal model of 
DEHP exposure and cultured primary CGCs exposed to MEHP 
to observe the effects on apoptosis of CGCs and the underlying 
mechanisms involved.

Neuronal apoptosis and survival are closely controlled processes 
that regulate cell fate and homeostasis during central nervous sys-
tem development [64]. In the process of apoptosis, the activation 
of the caspase family plays a key role. Of these, caspase-3 is in a 
pivotal position. Upon activation, caspase-3 is cleaved to produc-
ing an active subunit of cleaved caspase-3, which can further acti-
vate nucleic acid endonuclease, break down DNA fragments and 
eventually induce apoptosis [65]. In this study, it was found that 
TUNEL positive cells in the internal granular layer of 300 mg/kg/
d and 750 mg/kg/d exposure groups were increased when com-
pared with the control group in male offspring at PN 7 and PN 14. 
Moreover, cleaved caspase-3 is also elevated in comparison with 
the control, while total caspase-3 is decreased. These results dem-
onstrated that maternal exposure to DEHP could induce CGC 
apoptosis in male offspring, and the increased cleaved caspase-3 

Fig. 6. MEHP disturbed the PI3K/AKT signaling pathway of CGCs in vitro. (A) Western blot bands represent the expression level of proteins in the 
PI3K/AKT/Bcl2/Bax pathway in the four MEHP exposure (0, 25, 100 and 250 μM) groups of primary CGCs. The corresponding bar graphs show the 
results of the semi-quantitative measurement of p-PI3K (B), PI3K (C), p-AKT (D), AKT (E), Bcl-2 (F) and Bax (G). Each bar represents the mean±SD. 
Mean expression in CGCs from each MEHP exposure group is shown as a fold-change compared to the mean expression in the control group that has 
been ascribed an arbitrary value of 1. With each time point, *p<0.05 vs control, #p<0.05 vs 250 μM MEHP exposure group, & p<0.05 vs 100 μM MEHP 
exposure group (n=4). 
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induced by DEHP might attributed to the increased proteolysis 
of pro-caspase-3. Similarly, another environmental endocrine 
disruptor significantly increased apoptotic cells in the brain [66]. 
To further verify whether DEHP played a role in promoting apop-
tosis, we cultured primary CGCs and exposed them to MEHP. 
MEHP is the main metabolite of DEHP in vivo, and is considered 
to be the primary substance that plays a role in toxicity [67, 68]. 
We found that the number of cells that were TUNEL positive as 
well as cleaved caspase-3 expression significantly increased with 
increasing MEHP concentration while the total caspase 3 level 
decreased. Previous studies have also shown that MEHP exposure 

induced caspase-3 dependent apoptosis in neuronal cells [69, 70]. 
These results indicated that DEHP induced CGC apoptosis.

The PI3K/AKT signaling pathway plays a crucial role in neu-
ronal cell survival [71-73]. Activation of PI3K can phosphorylate 
and activate AKT by binding to its PH region of it, causing the 
translocation of AKT to the inner surface of the cell membrane 
[74-76]. Phosphorylated AKT (p-AKT) can further activate down-
stream signals, such as Bcl-2 and Bax, which participate in growth, 
development, differentiation and cell survival [77]. Bcl-2 promotes 
cell survival by blocking cell apoptosis, while Bax, in contrast 
to Bcl-2, induces cell apoptosis [78, 79]. In this investigation, we 

Fig. 7. IGF1 protects CGCs from apoptosis induced by MEHP by activating the PI3K/AKT pathway. CGCs were pre-treated with 30, 50 and 100 ng/
mL of insulin-like growth factor (IGF) 1, an activator of the PI3K/AKT, signaling pathway, for 2 h followed by treatment with 250 MEHP for 24 h. (A) 
Western blot bands represent the expression of proteins in the PI3K/AKT/Bcl-2/Bax pathway. (B~I) Each column represents the mean±SD. The mean 
expression in CGCs from each group is shown as a fold-change compared to the mean expression in the control group which was ascribed an arbitrary 
value of 1. With each time point, *p<0.05 vs control, #p<0.05 vs MEHP only treatment group (n=4).
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Fig. 8. IGF1 reduced apoptosis caused by MEHP exposure in vitro. CGCs were pre-treated with 100 ng/mL IGF1 for 2 h, and then treated with 250 μM 
MEHP for 24h. (A) Representative photomicrographs show TUNEL positive cells in the four indicated exposure groups. (B) The corresponding graph 
shows percentage of TUNEL positive cells in the four groups. Scale bar=25 μm, *p<0.05 vs control, #p<0.05 vs MEHP only treatment (n=4).

Fig. 9. LY294002 aggravated the suppression of PI3K/AKT signaling pathway induced by MEHP. CGCs were pre-treated with 5 μM of LY294002, an 
inhibitor of PI-3K/AKT pathway, for 2 h followed by treatment with 250 MEHP for 24 h. The corresponding graphs the semi-quantitative measure-
ment of PI3K (B), p-AKT (C), AKT (D), Bcl-2 (E), Bax (F), total caspase-3 (G) and cleaved caspase-3 (H). Each column represents the mean±SD. Mean 
expression in CGCs from each MEHP exposure group is shown as a fold-change compared to the mean expression in the control group, which was 
ascribed an arbitrary value of 1. With each time point, *p<0.05 vs control, #p<0.05 vs 250 μM MEHP exposure group (n=4).
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found that p-PI3K, p-AKT, Bcl-2 and total caspase-3 expression 
decreased in male offspring after maternal exposure to 300mg/
kg/d and 750 mg/kg/d DEHP, while Bax and cleaved caspase 3 

expression increased. These results indicated that PI3K/AKT may 
be involved in the CGC apoptosis induced by DEHP. Meanwhile, 
the PI3K/AKT signaling pathway was measured in primary CGCs 

Fig. 10. LY294002 exacerbated apoptosis caused by MEHP exposure in vitro. (A) Representative photomicrographs show TUNEL positive cells in the 
four indicated exposure groups. (B) The corresponding graph shows percentage of TUNEL positive cells in the four groups. Scale bar=25 μm *p<0.05 vs 
control, #p<0.05 vs MEHP only treatment (n=4).

Fig. 11. Di-(2-ethylhexyl) phthalate (DEHP) induce apoptosis of cerebellar granule cells (CGCs). The apoptosis induced by DEHP is associated with 
inhibition of the PI3K/AKT signaling pathway. Insulin-like growth factor (IGF) 1 may partially protect CGCs from apoptosis and LY294002 aggravated 
the apoptosis induced by DEHP.
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after exposure to MEHP, showing that the signaling pathway was 
also inhibited. In line with these results, other studies have shown 
that the PI3K/AKT pathway plays an important role in inhibiting 
neuronal cell apoptosis and increasing cell survival [80-82]. 

Various neurotrophic factors inhibit apoptosis and play a protec-
tive role in neurodevelopment by activating the PI3K/AKT signal-
ing pathway [83-85]. As a neurotrophic factor, IGF1 can regulate 
cell growth and differentiation, and protect neurons from death 
induced by many stimuli [86]. IGF1 can activate PI3K by binding 
to insulin-like growth factor receptor (IGF1R) on the cell mem-
brane, which is capable of phosphorylating downstream AKT and 
then inducing cascade changes of downstream substrates [87-89]. 
IGF1 can prevent apoptosis via the PI3K/AKT signaling pathway 
[90, 91]. In order to demonstrate whether apoptosis decreased 
when the PI3K/AKT signaling pathway is activated, exogenous 
IGF1 was added to CGCs in vitro  and the apoptotic level and 
PI3K/AKT signaling pathway then measured. We found that IGF1 
reduced apoptosis in CGCs caused by MEHP, as seen in the sig-
nificantly decreased number of TUNEL positive cell and reduced 
cleaved caspase 3 protein expression. Furthermore, the protective 
effect of IGF1 on CGCs was by activating the PI3K/AKT signaling 
pathway. Meanwhile, LY294002 aggravated apoptosis via inhibit-
ing the signaling pathway. Taken together, these results indicated 
that the activation of the PI3K/AKT signaling pathway may par-
tially rescue increased apoptosis in CGCs exposed to MEHP. 

Our results showed an interesting phenomenon in that male 
offspring seemed to be more susceptible to DEHP exposure than 
female offspring. We speculated that the vulnerability of male rats 
to DEHP exposure may involve decreased estrogen levels through 
the suppression of aromatase activity in the male brain according 
to previous reports [92, 93]. Our previous work also demonstrated 
that aromatase expression and the estrogen level in the 300 and 
750 mg/kg/d DEHP exposure groups significantly decreased 
when compared to the controls for male offspring, but did not 
have an evident effect on females [94]. Aromatase activity is the 
key enzyme in the transformation of peripheral circulating andro-
gens to estrogens, which is the primary source of this hormone in 
the male brain [95], and estrogen plays an important role in CGC 
development [96]. Therefore, it has been speculated that DEHP 
affects cerebellar development by interfering with the synthesis of 
estrogen, making male cubs more susceptible to DEHP. Similarly, 
epidemiological studies have found that some neurological dam-
age is more pronounced in men [97-99].

In summary, DEHP and its metabolite MEHP induced apoptosis 
of CGCs. The apoptosis induced by DEHP was associated with 
the inhibition of the PI3K/AKT signaling pathway. Furthermore, 
IGF1 may partially protect CGCs from apoptosis and LY294002 

can aggravate it (Fig. 11). These findings indicate that DEHP ex-
posure induced apoptosis in CGCs via the PI3K/AKT signaling 
pathway. Understanding the pathological effect of DEHP exposure 
may bring in treatments for DEHP overexposure. Also, a line on 
future research directions would be useful.
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