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Abstract

Technological advances have facilitated an exponential increase in the amount of informa-

tion that can be derived from single cells, necessitating new computational tools that can

make such highly complex data interpretable. Here, we introduce DEPECHE, a rapid,

parameter free, sparse k-means-based algorithm for clustering of multi- and megavariate

single-cell data. In a number of computational benchmarks aimed at evaluating the capacity

to form biologically relevant clusters, including flow/mass-cytometry and single cell RNA

sequencing data sets with manually curated gold standard solutions, DEPECHE clusters as

well or better than the currently available best performing clustering algorithms. However,

the main advantage of DEPECHE, compared to the state-of-the-art, is its unique ability to

enhance interpretability of the formed clusters, in that it only retains variables relevant for

cluster separation, thereby facilitating computational efficient analyses as well as under-

standing of complex datasets. DEPECHE is implemented in the open source R package

DepecheR currently available at github.com/Theorell/DepecheR.

Introduction

Since the introduction of the first single colour flow cytometers in the 1960s, there has been a

remarkable increase in the complexity of data that can be generated with single-cell resolution.

Currently, flow and mass cytometers able to simultaneously assess up to 40 cellular traits are

becoming widely available [1]. In parallel, the development of high-throughput sequencing

technology has facilitated single-cell transcriptomic analyses gauging expression of thousands

of distinct transcripts [2]. Furthermore, development of high-resolution single-cell proteomic

analyses are underway, similarly providing highly complex datasets [3].

These technological advances necessitate new computational approaches to analyses of

multi- and megavariate single cell data [4–7]. Previous algorithms have contributed to auto-

mating analyses, thereby enhancing reproducibility and avoiding a need for a priori biological
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knowledge. Thus, these algorithms have major advantages over the classical analysis strategies

of cytometry data that are based on manually defined uni- or bivariate filters, commonly

referred to as gates [8]. Automated analysis algorithms, not restricted to uni- or bivariate dis-

plays of the data, have also made it possible to extract much more of the information embed-

ded in multivariate data. Furthermore, as they generally scale well, automated analysis

algorithms can also be applied to datasets where manual gating is impossible, such as single-

cell transcriptomic data with thousands of transcripts assessed for each cell. To date, however,

analysis strategies based on manual gating still dominate where they can be used and are still

considered as the gold standard for cytometry data analysis. One likely reason for this is that

cell types defined by manual gates are easy to comprehend, as they are defined by few markers.

In an attempt to combine the objectiveness, reproducibility and scalability of automated analy-

sis pipelines with the high interpretability of manual gating strategies, we have developed an

algorithm termed Determination of Essential Phenotypic Elements of Clusters in High-dimen-

sional Entities (DEPECHE). DEPECHE simultaneously clusters and simplifies the data by

identifying the variables that contribute to separate individual clusters from the rest of the

data. We have implemented DEPECHE in R [9] (in the open source package DepecheR), pro-

viding a complete software suite for statistical analysis and visualization of single cell omics

data.

Results and discussion

At its core, DEPECHE uses a penalized k-means clustering algorithm, related to the standard

k-means algorithm [10]. Both k-means and penalized k-means clusters data by fitting k cluster

centers to the data. In k-means, the fitting objective is to minimize the sum of squared dis-

tances from each data point to its closest cluster center. In penalized k-means, the k-means

objective has been complemented by a penalization objective which minimizes the sum of the

L1-norms of the cluster centers, thereby moving them towards the origin.

Generally, when measuring a large number of biological variables, observations tend to

agglomerate around certain positions in some variables, whereas in other variables, the obser-

vations are spread more or less evenly. Due to their even spread, the latter variables can be con-

sidered uninformative. In this situation, the dual clustering objective of penalized k-means will

fit the cluster centers to the observation agglomerates in the informative dimensions, whereas

the penalty will draw the cluster centers to the origin in the uninformative dimensions and

thus discard them. The resulting cluster definitions are referred to as sparse, as the clusters are

only defined in the informative dimensions. The relative importance of the k-means objective

and the penalization objectives in the penalized k-means algorithm is controlled by the penalty

parameter λ. A high penalty λ implies that many variables will be considered uninformative,

implying that many variables will be discarded. When all variables of a cluster are discarded,

the cluster is discarded too. Thus, a high penalty λ results in high sparsity and a low cluster res-

olution, and vice versa [11] (see Methods, “Clustering with DEPECHE”). A key feature of

penalized k-means is that the penalty addresses each variable in each cluster center indepen-

dently, implying that different sparsity patterns will emerge from distinct clusters. This feature

differentiates penalized k-means from sparse k-means [12] and regularized k-means [13],

which only identify variables that are uninformative for all clusters. To illustrate this, a 10,000

point, 11-variate dataset with 10 normally distributed clusters was constructed. In this dataset,

10 of the variables contributed to the separation of two clusters (S1 Fig). In this example, sparse

k-means could only exclude the single variable, which did not define any clusters, whereas

DEPECHE correctly excluded all nine dispensable variables from each cluster individually.

Note that if k is chosen so large that at least one cluster is discarded, the resolution of the
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emerging clusters depends entirely on the magnitude of the penalty λ and not on k, since

DEPECHE redistributes observations belonging to clusters that are pulled to the origin to the

remaining clusters. In DEPECHE, the penalty λ is tuned to identify the most reproducible clus-

tering resolution, here termed the “optimal resolution” [13]. To illustrate what we mean by

reproducible, we constructed an example, featuring a bi-variate dataset D (Fig 1A). Visually,

dataset D contains three clusters, where the centers of the two larger clusters are located close

to either axis. For these two clusters, one variable is sufficient to define their position. Now, if

multiple datasets were generated from the same data source as D, for example by repeated

experiments, we assume that they would contain the same clusters. Hence, the optimal penalty

λi (that corresponds to the optimal resolution of D) is defined as the penalty for which the

resulting clusters have the highest similarity, where similarity is measured in the Adjusted

Rand Index (ARI) [14] (see Methods, “Tuning the penalty”), when clustering the generated

datasets independently. In contrast, when clustering the same datasets with a penalty λ that dif-

fers significantly from the optimal penalty, the stochastic differences between the datasets are

likely to induce solutions that deviate in cluster number, number of defining variables, and

cluster center positions. In practice, DEPECHE tests a range of penalty values, (λ1<� � �<λNλ),

each on a collection of dataset pairs which are generated by sampling Nr data points from D
(Fig 1B) with resampling. The optimal resolution is defined as the penalty λi, which yields the

lowest average variability within each dataset pair, as measured by the ARI. In our example,

this corresponds to the penalty λi that yields 3 clusters, since 3 similar clusters are identified in

each resampled dataset of D (Fig 1C). The penalties λ1 and λNλ are considered suboptimal,

since with these penalties, the stochastic differences in the resampled datasets lead to less

coherent clustering results compared to results obtained with the optimal penalty λi. From

here (Fig 1C) DEPECHE uses two alternative routes. If the dataset D has few data points, the

full dataset D is clustered using the optimal penalty λi (Fig 1D). If instead the number of data

points in the dataset D is high (default in DepecheR >104), the most generalizable cluster cen-

ters that were produced using the optimal penalty are chosen (see Methods, “Simultaneous

Clustering and Parameter Tuning”) and the data points of D are allocated directly to their clos-

est cluster center (Fig 1E). This default setting enables rapid iterated clustering of large datasets

possible (see calculation times in S2 Fig).

To evaluate how biologically accurate DEPECHE clustering is on mass cytometry data, a

32-variate mass cytometry bone marrow dataset [14] was clustered, and the overlap to 14 visu-

ally pre-defined cell populations was quantified using the ARI. With this dataset, DEPECHE

identified 7 clusters at the optimal resolution, corresponding to all large pre-defined cell popu-

lations and to agglomerates of smaller cell populations, rendering an average ARI of 0.96,

where an ARI of 1 corresponds to exact reproduction and an ARI of 0 means that the produced

clusters are no more accurate than random allocation (Fig 2A and 2B, S2A Fig). Furthermore,

using the DEPECHE algorithm, the number of variables defining each cluster was reduced

from 32 to a range from 8 to 28, thereby enhancing interpretability (Fig 2C). When comparing

to other state-of-the-art clustering algorithms [14–19], DEPECHE obtained similar ARI as the

best algorithms for both the 32-variate dataset and another 14-variate, 24 population, mass

cytometry dataset [20] (S3A Fig, Table 1).

Single-cell transcriptomic datasets feature tens of thousands of variables. Thus, compared

to cytometry datasets, the need to exclude variables of low interest is even more pressing. We

therefore evaluated DEPECHE’s ability to cluster and extract the key transcripts defining clus-

ters of a previously published single-cell transcriptomic dataset (Fig 2D–2F) [21]. In this data-

set, a total of 648 ILC1, ILC2, ILC3 and NK cells from three donors’ tonsils were index-sorted

prior to RNA sequencing. Hence, these cell types, defined by expression of specific sets of

markers using manual gating, can be compared to clusters unbiasedly determined by RNA
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Fig 1. Illustration of the DEPECHE workflow. A) The original dataset D. B) Resampled datasets with Nr data points

per dataset, are generated by sampling data points from D with resampling. Each resampled dataset has a

corresponding penalty λi (i = 1. . .Nλ). C) Each dataset in b is clustered with sparse k-means, using its corresponding

penalty λi. The red frame highlights the clustering with the strongest attractors, i.e. the most generalizable solution (see

Methods, “Simultaneous Clustering and Parameter Tuning”). D, E) Finally, the full dataset is clustered. In cases where

it is computationally feasible, the full data set is re-clustered with the optimal penalty (D). Otherwise, the final

clustering is produced by allocating each data point to its closest cluster center, using the most generalizable cluster

center solution produced with the optimal penalty in B (E).

https://doi.org/10.1371/journal.pone.0203247.g001
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Fig 2. DEPECHE performance with real datasets with 32 or 35177 variables. A-B) bi-variate t-distributed stochastic

neighbor embedding (tSNE) representation of the 32-variate mass cytometry data. A) distribution of manually defined

cell populations over the tSNE field. B) distribution of DEPECHE clusters over the tSNE field. C) Heatmap of the

expression pattern at each cluster center. Light colors show that the marker is highly expressed at the cluster center,

whereas dark colors shows the opposite. Grey color indicates that the variable in question does not contribute to

defining the cluster. For Fig a-c all, 104184 cells have been clustered. D-E) tSNE representation of the 137-variate data

subset that could efficiently distinguish the clusters in the 35177-variate single-cell transcriptome dataset. D)

distribution of the cell types defined by index-sorting and manual gating on protein expression profiles shown over the

tSNE field. E) distribution of DEPECHE clusters over the tSNE field. F) Violin plots illustrating the overlap between

the original analysis by Björklund et al and the DEPECHE analysis. For each subplot, the left and right side illustrate

the distribution of the transcripts defining the clusters, and all other transcripts, respectively. The y-axis shows the

log10 of the p-values in the original analysis adjusted for multiple comparisons. For Fig D-F, all 648 cells have been

clustered.

https://doi.org/10.1371/journal.pone.0203247.g002
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expression profiles [21]. In the DEPECHE analysis, no pre-selection of transcripts was per-

formed, and hence, 35177 unique transcripts were included for each of the 648 cells. With the

optimal penalty λ, four clusters were identified (Fig 2E). These corresponded well to the cell

types as defined by protein expression; 84, 97, 91 and 97 percent of ILC1, ILC2, ILC3 and NK

cells sorted into separate clusters, respectively (Fig 2D and 2E, S2B Fig), leading to an average

ARI of 0.78, which was comparable to clusters obtained in the original publication [21]. Nota-

bly, cluster 1–4, corresponding to NK cells, ILC1, ILC3 and ILC2, were defined by 10, 27, 108

and 27 transcripts, respectively (Figs 2F and 3), leading to a 99.9% average decrease in the

number of variables. The transcripts identified to define the clusters in our analysis corre-

sponded to those identified as most differentially expressed in the original study [21] (Fig 2F).

Thus, by identifying a finite number of variables, DEPECHE analysis can increase interpret-

ability and aide down-stream analyses. When DEPECHE clustering was compared to that of

state-of-the-art algorithms [5–7] on the aforementioned dataset as well as six other datasets

(see Table 1), it consistently performed well as indicated by ARI (S3B Fig). Thus, when applied

to megavariate single-cell transcriptomic data, DEPECHE identifies clusters corresponding to

known cell types and reduces the complexity of the results thousand-fold by finding a subset of

markers that define each cluster in a way that compares well to previous knowledge. Notably,

as DEPECHE selects the most robust identifiers of each cluster, some potentially interesting

transcripts might be excluded by DEPECHE clustering, e.g. transcripts that are highly

expressed in a minority, but lacking from a majority of cells in a cluster.

In conclusion, DEPECHE turns the penalized k-means methodology into a parameter

free analysis technique guided by efficient calculation of the optimal clustering resolution.

By doing so, it can simultaneously address the problems of finding biologically relevant clus-

ters and identifying specific variables that define these clusters. This is crucial in order to

comprehend the noisy and often over-complicated data generated with current single cell

technologies.

Methods

Clustering with DEPECHE

Clustering in DEPECHE is performed using a penalized version of the k-means algorithm,

which is related to the k-means algorithm [10]. In this section, the k-means algorithm is out-

lined, followed by an explanation of how it is extended to penalized k-means.

The k-means algorithm clusters data by fitting a mixture of normal distributions to the data

with k equal mixture components and unit variance. Formally, k d-dimensional cluster centers,

denoted μm,j where m = 1. . .k and j = 1. . .d, are fitted to the n d-dimensional datapoints xl,j,

Table 1. Background information on all datasets.

Dataset Data origin n cells n variables in analysis n clusters in original

Levine[14] Mass cytometry 104184 32 14

Bendall[20] Mass cytometry 81747 14 24

Björklund[21] scRNAseq 648 35177 4

Biase[5] scRNAseq 56 19571 3

Deng[5] scRNAseq 268 13867 10

Goolam[5] scRNAseq 124 15487 5

Kolodziejczyk[5] scRNAseq 704 15117 3

Pollen[5] scRNAseq 301 13860 11

Yan[5] scRNAseq 90 13608 7

https://doi.org/10.1371/journal.pone.0203247.t001
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where l = 1. . .n, by maximizing the score function

Q ¼
Xk

m¼1

Xn

l¼1

zi;l
Xd

j¼1

ðxl;j � mm;jÞ
2
; ð1Þ

where zm,l is 1 if the lth data point belongs to the ith cluster and zero otherwise. The score Q is

optimized using an Expectation Maximization (EM) algorithm [22], i.e. so called E- and M-

steps are iterated alternatingly until the score Q stops improving. In the E-step, the allocation

variables zm,l are updated so that each data point is allocated to its closest cluster according to

the Euclidean norm. That means that zm,l = 1 if the mth cluster center is the cluster center clos-

est to the lth data point and zm,l = 0 otherwise [23]. In the M-step, each cluster center μm,j is

Fig 3. Transcripts defining clusters in Björklund et al dataset. Blue background color indicates 10 transcripts

associated with cluster 1/NK cells. Violet background color indicates 27 transcripts associated with cluster 2/ILC1.

Green background color indicates 27 transcripts associated with cluster 4/ILC2. Yellow color indicates 108 transcripts

associated with cluster 3/ILC3.

https://doi.org/10.1371/journal.pone.0203247.g003
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moved to the center of the data points allocated to it. When no more reallocation occurs in the

E-step, the algorithm has converged.

In order to reduce the influence of uninformative dimensions that only contribute with

noise, penalized k-means introduces an L1-penalty for each element of each cluster center μm,j

to the optimization objective. Formally, the score function Q in Eq (1), is updated:

Q ¼
Xk

m¼1

Xn

l¼1

zm;l
Xd

j¼1

ðxl;j � mm;jÞ
2
� l

Xk

m¼1

Xd

j¼1

jmm;jj; ð2Þ

where λ is a positive penalty term. The additional term in the score function, introduced in Eq

(2) results in a change in the M-step of the original EM-algorithm of the k-means algorithm.

Keeping zm,l for all l fixed and optimizing Q with respect to μm,j, the M-step is:

mm;j ¼ sign
Pn

l¼1
zm;lxl;j

Pn
l¼1

zm;l

 !

�max
Pn

l¼1
zm;lxl;j

Pn
l¼1

zm;l

�
�
�
�

�
�
�
� �

l

2
Pn

l¼1
zm;l

; 0

 !

ð3Þ

Depending on the choice of the penalty parameter λ, some components of some clusters

centers will be set to 0 in the M-step. Note that penalized k-means with penalty λ = 0 reduces

to the original k-means algorithm.

In DEPECHE, cluster centers that are moved to the origin in the M-step are eliminated and

not assigned any data points in the E-step. Due to the elimination of clusters, the number of

produced clusters is independent of k and dependent on the penalty λ as long as at least one

cluster is eliminated. In DEPECHE, k is always chosen to be so large that at least one cluster is

eliminated. Eq (2) is a special case of the penalized model based clustering algorithm by Pan

and Shen with unit variance and equal mixture components [11]. By imposing the penalty for

each dimension and each cluster, penalized k-means identifies the dimensions that do not dis-

tinguish a particular cluster from the rest of the data, thus leaving these dimensions out of the

definition of that cluster.

Penalized k-means, as well as k-means, relies on a procedure for initializing the positions of

the cluster centers. Therefore, in DepecheR, the initial cluster positions are generated using the

well performing seed generation algorithm of k-means++ by Arthur and Vassilvitskii [24].

The early iterations of the EM-algorithm are particularly delicate in DEPECHE, due to the

elimination of clusters at the origin in the E-step. Poor initialization of the clusters, in combi-

nation with a high penalty λi, might lead to elimination of too many clusters in the early E-

steps, yielding fewer clusters in the end result than necessary to optimize Q. To remedy this,

DEPECHE starts each run of penalized k-means, regardless of the chosen λi, with penalty λ =

0. The penalty is then increased linearly over a number of E-steps until it reaches the predeter-

mined value λi.

The EM-algorithm guarantees convergence to an optimum of the score Q, but not necessar-

ily to the global optimum. In order to diminish the influence of the starting state, the EM-algo-

rithm is run several times with random initialization, and the solution with optimal score Q is

chosen. For penalty optimization, the number of runs is determined according to a set of rules

that are outlined in the section “Tuning the penalty”. For producing the final results (Fig 1E), a

fixed number of runs is performed (21 (3 x (8–1)) processor cores) runs is the default in Depe-

cheR). To further decrease stochastic variability in the computational results, k is set consider-

ably higher than the expected number of final clusters, which also diminishes the sensitivity to

the starting state. In the extreme case where k is set equal to the number of data points n, the

outcome of penalized k-means is deterministic.
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Tuning the penalty

In this section, we describe the optimization scheme which is used for tuning the linear penalty

λ. The outline of the algorithm:

1. Choose a wide and exponentially distributed range of penalty terms λi, i = 1..Nλ, that are

considered for clustering the dataset D.

2. Create 2 datasets per penalty term λi, called D1,i and D2,i, by sampling Nr data points from

D with replacement.

3. Run the penalized k-means algorithm on the datasets D1,i and D2,i, yielding sets of cluster

centers, denoted Μ1,i and Μ2,i.

4. Create the partitions P1,i and P2,i, by allocating all data points of the dataset D to their near-

est cluster center of the sets Μ1,i and Μ2,i. The allocation is equivalent to one E-step of the

k-means algorithm.

5. Determine the Adjusted Rand Index (ARI), denoted r(λi) from P1,i to P2,i [25].

6. Repeat step 2–5 and average the obtained ARIs r(λi) penalty wise until a stopping criteria

regarding the statistical certainty of the obtained ARIs r(λi) is met (remark 2, section “Tun-

ing the penalty).

7. Choose the optimal penalty λi, which is the penalty with the largest ARI r(λi).

Some remarks:

1. To increase the likelihood of finding he optimal penalty value in the pre-defined range,

datasets with very high kurtosis are log2-transformed and all datasets are divided by their

total standard deviation prior to sampling. With this setup, all tested datasets have their

optimal penalty in the default range. However, new datasets might have other requirements

for penalties. In cases where the most extreme low or high penalty value is selected by the

optimization procedure, DepecheR will warn the user, and suggest another range of penal-

ties, or a larger sample size. The default penalty range in DepecheR is 20, 20,5. . . 25.

2. The repetition of Step 6 is necessary, since the obtained ARI r(λi) is a random variable, due

to the random procedure for creating the datasets D1,i and D2,i and the random procedure

for initializing the penalized k-means algorithm. To determine the necessary number of

runs, after an initial fixed number of runs (default 20 in DepecheR), DEPECHE uses three

stopping criteria: The first criterion creates an interval of width 2 standard errors around

the obtained mean of r(λi) and checks if the interval around the optimal ARI r(λi) has a zero

overlap with the other intervals. The second criterion checks whether the standard error of

the mean of r(λi) for the optimal penalty λi is below a threshold. The third criterion termi-

nates the process after a maximal number of runs (default 100 in DepecheR).

3. Step 2 requires a samples size Nr. A natural choice is to set Nr equal to the number of data

points, n. However, in cases where n is very large, so that the computational load of the

optimization scheme becomes limiting, it is preferable to choose a smaller Nr. In DepecheR,

Nr = 104 by default, in case n�104. Notice that when an optimal penalty λi is discovered

using sample size Nr6¼n, the corresponding optimal penalty when sampling the full dataset

D with magnitude n is (approximately) λi � n/Nr, since the attraction force of a cluster is

proportional to the number of data points in it.

4. In step 5, the ARI is chosen as similarity measure between the partitions, since it corrects

for chance. This means that it gives a zero similarity for trivial partitions, such as having all
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data points in a single cluster. Exact calculation of the ARI is computationally intractable

for large datasets. Therefore, DEPECHE relies on an approximate ARI computation, based

on 104 random pairs of data points.

Simultaneous clustering and parameter tuning

For very large datasets (n>108), not only the penalty optimization, but also the final cluster-

ing once the optimal penalty has been found, may be computationally intractable. However,

increasing the size of the dataset does not necessarily lead to an increase in number of clus-

ters at the optimal resolution. In this case, it is feasible to cluster a subset of the full dataset

D to obtain cluster centers M and then allocate the remaining data points of D to their

closest clusters in M. This boosts computational efficiency since allocation imposes a much

smaller computational load than clustering. Since several subsets of D are produced and

clustered during the tuning of the penalty parameter λ, it is computationally favorable to

retrieve cluster centers M that were produced during the parameter tuning and use them to

cluster D.

When picking a set of cluster centers M from the penalty tuning, the question arises which

set of centers M to take, since several sets of centers, denoted Mi,p (p = 1. . .Np), are produced

for the optimal penalty λi. In DEPECHE, the centers Mi,p that have the strongest similarity (on

average) to the remaining Np-1 centers is chosen and is referred to as the most generalizable

cluster set. The level of similarity between the centers Mi,p’ and Mi,p’’ is quantified using the

ARI between the partitions Pi,p’ and Pi,p’’, induced by allocating each data point of D to its clos-

est cluster center in Mi,p’ and Mi,p’’ respectively.

Empiric performance of the penalty tuning scheme. Roughly speaking, DEPECHE com-

bines a flavored penalized k-means algorithm with a parameter tuning scheme, which identi-

fies an optimal resolution. A naturally arising question is then whether the parameter tuning

scheme is able to determine a biologically relevant resolution or if other penalized k-means

clustering resolutions outperform the resolution chosen by DEPECHE. Using a range of data-

sets (Table 2), the biological relevance (measured in ARI to the manually curated solution) of

the optimized DEPECHE partitions were compared to the biologically optimal partition

among all partitions generated with 20 repetitions on each of a range of 11 penalties per data-

set. Overall, the DEPECHE resolution-selection showed close to optimal performance, as the

selected solutions only had a median of 0.02 lower ARI to the gold standard (range 0–0.065)

than the best possible solution with all penalties (Table 2).

Table 2. ARI between DEPECHE partitions and golden standard partitions.

Dataset Median ARI in S2 Fig Maximal ARI with any penalty Difference

Levine[14] 0.961 0.975 0.015

Bendall[20] 0.841 0.873 0.032

Björklund[21] 1 1 0

Biase[5] 0.782 0.842 0.06

Deng[5] 0.827 0.848 0.021

Goolam[5] 0.629 0.639 0.009

Kolodziejczyk[5] 0.992 1 0.008

Pollen[5] 0.863 0.928 0.065

Yan[5] 0.626 0.691 0.064

https://doi.org/10.1371/journal.pone.0203247.t002
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Transforming and centering the data

The clusters produced by DEPECHE, as well as their interpretation, depends on the transfor-

mation and centering of the data. The transformation determines the relative importance of

the measured variables, where variables with a larger spread have stronger influence on the

clustering. The centering defines where zero occurs in each variable, thereby influencing the

clustering results due to the linear penalty.

DEPECHE is applicable to a large range of datasets where the numbers of dimensions, d,

and the number of data points, n, can vary with many orders of magnitude. The differing char-

acteristics of these datasets require different treatments with respect to transformation and

centering.

Transformation. Empirically, a majority of single-cell transcriptome datasets tend to

have a few variables where the variance is many orders of magnitude greater than in the other

variables. In this case, the high-variance variables will de-facto determine the clustering, imply-

ing that the clustering will fail to take the majority of the measured information into account.

To even out the influence of these high-variance variables on the clustering outcome, the data

is log transformed when such variables are present. In DepecheR, this data behavior is detected

automatically by concatenating all variables into a one-dimensional vector, for which the kur-

tosis is calculated. A high kurtosis indicates that the variables differ greatly in their variance.

For datasets with low kurtosis, refraining from the log transform is preferable to avoid unnec-

essary data distortion.

Centering. Centering the origin to be close to the bulk of the data is preferable, in order to

have all biological clusters at approximately the same distance from the origin. Having some

biological clusters close to the origin and some far off is often unwanted, since the linear pen-

alty then imposes a preference for creating clusters close to the origin. Apart from influencing

the clustering, the centering also determines the interpretation of the obtained sparsity. Just as

for scaling, which centering scheme to apply depends on the dataset.

For low dimensional datasets (d>100), DEPECHE applies maximal density centering,

which sets the zero in each dimension to coincide with the highest data density. The density it

computed by collecting the data in equally spaced bins (default number of bins in DepecheR is

the number of data points n divided by 50), where the bin with the highest number of data

points has the highest density. Using this scheme, sparsity (i.e. that a variable is non-contribut-

ing to the definition of a cluster) is interpreted as non-deviance from the most common out-

come. It also ensures that the origin is relatively close to the bulk of the data, since it is located

at the most common outcome for each variable respectively. The benefit of this scheme is that

it boosts sparsity, by declaring the most common outcome non-defining. However, for high

dimensional datasets (d�100), maximal density centering can push the origin so far away

from the center of mass of the dataset, that the penalty starts to impose an unwanted, artificial

influence on the clustering, hampering the biological relevance of the clusters. To avoid this,

DEPECHE imposes a mean centering scheme for such datasets, which locates the origin at the

center of mass of the dataset.

A potential complication, related to centering, occurs when a biologically relevant cluster is

located very close to the origin, since DEPECHE creates no clusters in the origin and will then

force the cluster to merge with other clusters. However, this scenario was never detected in

real data.

Experimental procedures

Generation and analysis of synthetic example for k-means algorithm comparisons.

The synthetic dataset was generated using base package functions. The standard deviation was
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identical for all clusters and dimensions. For classical k-means analysis, the k-means function

in the stats package was used. For sparse k-means, the sparcl package was used [26].

Preprocessing of mass cytometry data. The benchmark datasets from Levine et al [14]

and Bendall et al [20] were transformed using the flowTrans package [27] before used in any

clustering algorithm.

Preprocessing of single-cell transcriptomic data. The dataset from Björklund et al [21]

was normalized using the sva package [28] as in the original manuscript. For this dataset, non-

expressed transcripts were removed, lowering the number of variables from 64443 to 35177.

The gold-standard datasets used for benchmarking in the publication by Kiselev et al [5]

were obtained in a pre-processed state. Before clustering with any algorithm, the gene filter

function used in the sc3 package was used [5], with settings removing the genes that were

expressed in more than 90% of the cells. This resulted in the number of transcripts presented

in Table 1 (range 13608–19571 transcripts).

Code availability

All code necessary to generate the figures and tables in the manuscript are included in S1 File.

The software package DepecheR is available for download at (https://github.com/Theorell/

DepecheR).

Supporting information

S1 Fig. A comparison of classical K-means, sparse K-means and DEPECHE. A: Overlap

between true clusters and clusters generated with classical k-means, sparse K-means, or

DEPECHE. Numbers in heatmaps denote percent of the true cluster present in the generated

cluster in question. Red color indicates high overlap, blue color low overlap. B: Total loadings

for all input vectors with sparse k-means. Light color indicates a strong contribution to separa-

tion of the clusters and vice versa. Grey color indicates that the variable has been excluded. C:

Cluster center matrix for DEPECHE analysis. Rows indicate the DEPECHE clusters, columns

indicate the variables that contribute to separating at least one cluster. A light color indicates

that the cluster center is located in the upper part of the distribution of values in the vector

in question, and vice versa. Grey color indicates that the variable has been excluded. For

DEPECHE, only 10 dimensions are shown, as the 11th did not contribute to separating any

cluster.

(TIF)

S2 Fig. Heatmaps comparing the golden standard partitions to the DEPECHE partitions

for A) the 32-variate Levine dataset and B) the 35166-variate Björklund dataset. Red color

indicates large overlap, blue color indicates low overlap between a gold standard-vs-

DEPECHE cluster pair. Numbers in heatmaps denote percent of the golden standard cluster

present in the DEPECHE cluster in question.

(TIF)

S3 Fig. Algorithm comparisons. For all graphs, the x-axis shows the algorithms and the y-axis

shows the Adjusted Rand Index comparing the clustering result with the golden standard clus-

tering. Below each graph is the average computational time in seconds for the benchmarking

performed on a laptop computer with 4 2.8 GHz Intel Core i7 processors. A) Subsamples with

20000 unique cells from two mass cytometry datasets published by Levine et al and Bendall

et al were clustered with DEPECHE and six previously published algorithms. For each dataset

and algorithm, clustering was performed on 20 unique subsamples. For flowClust, flowPeaks

and SamSPECTRAL, that do not perform internal parameter tuning, a range of parameter
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values were evaluated and the parameter value sets generating the highest ARI values were

selected for display. B) The full Björklund dataset, as well as six other datasets previously used

for benchmarking by Kiselev et al were clustered 20 times with DEPECHE and three other

algorithms. The Björklund dataset was normalized to reduce batch effects, with the procedure

described in the original publication. These six datasets were also automatically log2-trans-

formed within DEPECHE, and thus, log2-transformation was applied also for Sincera and

pcaReduce, whereas sc3 was fed both log2- and untransformed data. The lower and upper

hinges of all boxplots extend to the 25:th and 75:th percentile, whereas the line in the middle

describes the median. The whiskers extend to the lowest and highest value no further than 1.5

times the distance between the 25:th and 75:th percentile. Outside of this range, the observa-

tions are considered outliers and are shown as dots.

(TIF)

S1 File. The code used generate all figures.

(ZIP)

S2 File. Information on how to retrieve the data used for this study.

(PDF)
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7. Žurauskienė J, Yau C. pcaReduce: hierarchical clustering of single cell transcriptional profiles. BMC

Bioinformatics. 2016; 17: 140. https://doi.org/10.1186/s12859-016-0984-y PMID: 27005807

8. Bashashati A, Brinkman RR. A Survey of Flow Cytometry Data Analysis Methods. Adv Bioinforma.

2009; 2009. https://doi.org/10.1155/2009/584603 PMID: 20049163

9. R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria: R

Foundation for Statistical Computing; 2017. https://www.R-project.org

10. MacQueen J. Some methods for classification and analysis of multivariate observations. Proceedings

of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, California: Uni-

versity of California Press; 1967. pp. 281–297. https://projecteuclid.org/euclid.bsmsp/1200512992

11. Pan W. Penalized model-based clustering with application to variable selection. J Mach Learn Res.

2007; 8: 1145–1164.

12. Witten DM, Tibshirani R. A framework for feature selection in clustering. J Am Stat Assoc. 2010; 105:

713–726. https://doi.org/10.1198/jasa.2010.tm09415 PMID: 20811510

13. Sun W, Wang J, Fang Y. Regularized k-means clustering of high-dimensional data and its asymptotic

consistency. Electron J Stat. 2012; 6: 148–167. https://doi.org/10.1214/12-EJS668

14. Levine JH, Simonds EF, Bendall SC, Davis KL, Amir ED, Tadmor MD, et al. Data-Driven Phenotypic

Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell. 2015; 162: 184–

197. https://doi.org/10.1016/j.cell.2015.05.047 PMID: 26095251

15. Lo K, Hahne F, Brinkman RR, Gottardo R. flowClust: a Bioconductor package for automated gating of

flow cytometry data. BMC Bioinformatics. 2009; 10: 145. https://doi.org/10.1186/1471-2105-10-145

PMID: 19442304

16. Aghaeepour N. flowMeans: Non-parametric Flow Cytometry Data Gating. 2010.
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