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Objectives: Acute myeloid leukemia (AML) is a highly heterogeneous hematologic
malignancy with widely variable prognosis. For this reason, a more tailored-
stratified approach for prognosis is urgently needed to improve the treatment success
rates of AML patients.

Methods: In the investigation of metabolic pattern in AML patients, we developed a
metabolism-related prognostic model, which was consisted of metabolism-related gene
pairs (MRGPs) identified by pairwise comparison. Furthermore, we analyzed the predictive
ability and clinical significance of the prognostic model.

Results: Given the significant differences in metabolic pathways between AML patients
and healthy donors, we proposed a metabolism-related prognostic signature index
(MRPSI) consisting of three MRGPs, which were remarkedly related with the overall
survival of AML patients in the training set. The association of MRPSI with prognosis was
also validated in two other independent cohorts, suggesting that high MRPSI score can
identify patients with poor prognosis. The MRPSI and age were confirmed to be
independent prognostic factors via multivariate Cox regression analysis. Furthermore,
we combined MRPSI with age and constructed a composite metabolism-clinical
prognostic model index (MCPMI), which demonstrated better prognostic accuracy in all
cohorts. Stratification analysis and multivariate Cox regression analysis revealed that the
MCPMI was an independent prognostic factor. By estimating the sensitivity of anti-cancer
drugs in different AML patients, we selected five drugs that were more sensitive to patients
in MCPMI-high group than those in MCPMI-low group.

Conclusion: Our study provided an individualized metabolism-related prognostic model
that identified high-risk patients and revealed new potential therapeutic drugs for AML
patients with poor prognosis.
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INTRODUCTION

Acute myeloid leukemia (AML) is the term for a family with high
heterogeneous hematological malignancies, which are caused by
diverse phenotypic and genetic alterations that affect the
differentiation of hematopoietic stem and progenitor cells
(HSPCs). These abnormalities impede HSPCs differentiation at
various stages and lead to clonal expansion of myeloid blasts in
the bone marrow, peripheral blood, and other tissues (1). Despite
current treatments involving intensive chemotherapy, targeted
therapies and hematopoietic stem cell transplantation (HSCT),
AML remains lethal for approximately 50% of young patients
and 80% of elder patients due to relapse, primary resistance, or
treatment-related mortality (2, 3). The diagnosis and prognostic
stratification of AML are mainly based on age, cytogenetic
characteristics, molecular subtypes and other histological
markers (4). Accurate risk stratification of AML patients is
necessary for precise identification of high-risk patients who
may benefit from advanced treatment (2, 5). Thus, additional
factors that can be used for prognostic stratification are urgently
needed to improve the outcomes of AML patients.

Tumor cells share a common phenotype of unrestrained
proliferation and consume extremely large amounts of energy
and metabolites (6, 7). In recent years, many studies have shown
that tumor cells metabolism differs significantly from normal
cells, and the difference can be exploited to diagnose, monitor,
and treat cancer patients (8–10). Metabolomic studies have
revealed that different types of tumor cells have distinct
metabolic phenotypes that vary according to genetic
alterations, epigenetic features and gene dependencies (11).
Glucose metabolism, which is closely related to therapeutic
resistance and clinical outcomes, has been confirmed to be
altered in many cancers (12, 13). Evaluation of serum
metabolomic differences between AML patients and healthy
controls demonstrated alterations in multiple metabolic
pathways, including biosynthesis of proteins and lipoproteins,
glycolysis, the tricarboxylic acid (TCA) cycle, and metabolism of
choline and fatty acids (14, 15). For example, both cholesterol
synthesis and low-density lipoprotein (LDL) processing are
hyperactive in AML cells, and cholesterol levels rise
dramatically following sublethal doses of radiation or
chemotherapeutics (16, 17). In addition, certain gene
mutations in AML also cause metabolic changes. 10% - 20%
AML patients harbor mutations in isocitrate dehydrogenases
(IDHs) (18), critical enzymes in the TCA cycle, and mutant
IDH1/2 with a neomorphic activity that converts alpha-
ketoglutarate (a-KG) to 2-hydroxyglutarate (19, 20). Mutations
of the FMS-like tyrosine kinase-3 (FLT3) are found in
approximately 30% of newly diagnosed AML patients (21, 22).
FLT3 is a transmembrane ligand-activated receptor tyrosine
kinase that regulates cell survival, proliferation, and
differentiation through various signaling pathways (23, 24). To
improve the prognosis of AML patients, efforts should be made
to discover novel and sensitive metabolic markers that could be
used to recognize patients with poor prognosis and optimize
treatment strategies. Based on the above reports, we speculated
that genes involved in metabolism could serve as prognosis-
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related gene signatures and be used to predict the long-term
survival of AML patients.

In this study, we explored 318 differentially expressed
metabolism-related genes (MRGs) between AML patients and
healthy donors by analyzing the gene expression data from The
Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression
(GTEx) databases. To eliminate technical bias caused by data
from different platforms, the metabolism-related prognostic
signature index (MRPSI) was generated from three MRG pairs
(MRGPs) with prognostic values, which were derived from the
relative ranking of MRGs. The predictive performance of the
MRPSI was evaluated by determining the area under the curve
(AUC) value of the receiver operating characteristic (ROC)
curve. And the results of Kaplan-Meier survival analysis
showed that the MRPSI-low patients had significantly better
survival in comparison with the MRPSI-high patients. Next, the
MRPSI was further validated using the GSE12417 and GSE37642
databases. The MRPSI and age were confirmed to be
independent prognostic factors via multivariate Cox regression
analysis. To fully exploit the predictive potential of the clinical
and molecular characteristics of AML patients, we integrated
MRPSI with age, yielding a metabolic-clinical prognostic model
(MCPM), which allowed us to estimate AML prognosis with
improved accuracy. Stratification analysis and multivariate Cox
regression analysis revealed that the MCPMI was an independent
prognostic factor for AML patients. Furthermore, we estimated
half-maximal inhibitory concentration (IC50) values for clinical
drugs and found that AML patients with a high MCPM index
(MCPMI) exhibited enhanced sensitivity to five of these drugs.
The results of these analyses provide important new information
shedding light on the metabolic profile of AML and can be used
to improve the accuracy of risk stratification and better predict
the survival of patients.
MATERIALS AND METHODS

Sample Collection and Study Design
As displayed in the analysis pipeline (Supplementary Figure
S1), data were collected from 730 AML patients and 70 healthy
donors (151 AML patients from the TCGA cohort and 70
healthy donors from the GTEx cohort were used to develop
the signature, 162 AML patients from the GSE12417 cohort were
used to test the signature, and 417 AML patients from the
GSE37642 cohort were used to validate the signature). And all
data included in this study were obtained before treatment.

Fragments per kilobase of exon model per million mapped
fragments (FPKM) data were downloaded from bone marrow
samples of 151 AML patients included in the TCGA database
(https://portal.gdc.cancer.gov/) and 70 healthy donors included
in the GTEx database (https://www.gtexportal.org/home/). First,
we identified 2338 genes that showed differential expression
between normal and abnormal bone marrow using the
“limma” package with the following criteria: false discovery
rate (FDR) < 0.05 and log2(fold change) > 1. Next, among
2031 MRGs from the publicly accessible ccmGDB database
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(http://bioinfo.mc.vanderbilt.edu/ccmGDB) (25), 318 MRGs
that differentially expressed in TCGA cohort were identified.
The microarray datasets for the GSE12417 and GSE37642
cohorts were obtained from the Gene Expression Omnibus
(GEO, http://www.ncbi.nlm.nih.gov/geo) under accession
numbers GSE12417 and GSE37642 (26, 27). The characteristics
and clinical outcomes of the three cohorts are listed in
Supplementary Table S1.

Generation of a Prognostic Model
Using MRGs
Out of 318 MRGs acquired from the TCGA cohort, 67 genes
were shared in all datasets. Therefore, we used the 67 shared
MRGs to generate 505 MRGPs. A pairwise comparison was
performed between the metabolism-related gene expression
value in each sample to obtain a score of 0 or 1 for each
MRGP. When the expression value of the first gene in an
MRGP was greater than the second gene, the MRGP score was
1, otherwise MRGP score was 0 (28). The chosen method was
entirely dependent on the gene expression profile of each
individual tumor sample and did not require normalization.
Next, by utilizing univariate Cox proportional hazards
regression modeling, we determined the prognostic value of
505 MRGPs using the TCGA dataset. Then we applied LASSO
Cox proportional hazards regression modeling (glmnet R
software) to reduce the potential for overfitting, and we
selected the minimum criteria (29). To optimize the
prognostic signature and allow it to be applied more easily,
multivariate Cox proportional hazards regression was used to
select a set of MRGPs, to form the MRPS that was used to make
prediction. The MRPSI was calculated using a formula in which
the scores of the selected MRGPs were weighted according to
their coefficients. Next, we selected the optimal cut-off value for
classifying the subjects of the study into MRPSI-high and
MRPSI-low groups using a time-dependent ROC curve
(survival ROC, version 1.0.3) at five years in the training
cohort (28). The predictive power of the MRPSI for OS was
investigated via Kaplan-Meier survival and ROC analyses using
three independent cohorts. In addition, we conducted
univariate and multivariate Cox regression analyses to
determine whether MRPSI was an independent prognostic
risk factor.

Development and Validation of MCPM
The MRPSI and age were integrated into the MCPM using a
LASSO Cox proportional hazards regression model in the TCGA
dataset based on the results of the multivariate Cox regression
analyses in the three cohorts mentioned above. The MCPMI was
calculated for each sample via a linear combination of the
selected parameters and weighted by the corresponding
coefficients. Similar to the aforementioned method for
determining the optimal cutoff of the MRPSI, the optimal
cutoff value for the MCPMI was also determined on the basis
of the ROC analysis. ROC and Kaplan-Meier survival analyses
were applied to assess the prognostic performance of the MCPMI
in three cohorts. In addition, we conducted univariate and
Frontiers in Oncology | www.frontiersin.org 3
multivariate Cox regression analyses to investigate the
independent prognostic performance of the MCPMI.

Clinical Drug Response Prediction
First, a list of commonly used clinical drugs was acquired from
the Genomics of Drug Sensitivity in Cancer (GDSC) (https://
www.cancerrxgene.org/) database, and prediction analysis was
conducted using the R package “pRRophetic”. The IC50 of each
sample was estimated using ridge regression. All parameters were
set to their default values, and mean values were used to identify
duplicate gene expression (30, 31).

Statistical Analysis
All statistical analyses in this study were conducted using R software
(version 3.6.0) and GraphPad Prism software (version 5.0). Kaplan-
Meier survival analysis with the log-rank test was conducted to
compare survival curves for subgroup analysis. Statistical analyses
between pairs of groups were conducted using the chi-square and
Mann-Whitney U tests. All P-values are reported in this study as
two-tailed values. For all results, the threshold for significance was
P-value < 0.05, unless otherwise specified.
RESULTS

Comparison of the Metabolic Phenotypes
of Bone Marrow Samples From AML
Patients and Healthy Donors
We obtained gene expression data from the bone marrow
samples of 151 AML patients and 70 healthy donors from the
TCGA and GTEx databases. The distinct features of biological
processes associated with AML were investigated by performing
gene set enrichment analysis (GSEA) using normalized mRNA
expression data. The GSEA results showed that the gene
expression data of healthy donors were significantly enriched
in diverse metabolic pathways in comparison with the AML
patients (Figure 1A). Enriched pathways in healthy donors
related to metabolic functions included metabolism of bile acid
(NES = 1.88, P < 0.001), metabolism of fatty acid (NES = 1.75, P <
0.001), glycolysis (NES = 1.83, P < 0.001), xenobiotic metabolism
(NES = 1.78, P < 0.001), metabolism of arginine and proline
(NES = 2.05, P < 0.001), metabolism of nitrogen (NES = 1.92, P <
0.001), metabolism of purine (NES = 2.11, P < 0.001),
metabolism of pyrimidine (NES = 2.06, P < 0.001), and
metabolism of selenoamino acid (NES = 1.99, P < 0.001). To
further explore the differences between the metabolic phenotypes
of AML patients and healthy donors, an analysis of expression
profiles of 2,031 metabolism-related genes obtained from the
ccmGDB database was performed. Among the analyzed genes,
318 MRGs were found to be differentially expressed in AML
patients compared with healthy donors (Figures 1B, C).

Construction and Definition of the MRPSI
for AML in the TCGA Set
Given the significant differences in metabolic reprogramming
between AML patients and healthy donors revealed in the above
June 2022 | Volume 12 | Article 829007
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analysis, we next generated a prognostic signature based on
MRGs. We found that 67 out of the 318 MRGs acquired from
the TCGA dataset were included in all datasets, and pairwise
comparison was used to generate 505 MRGPs. Univariate Cox
proportional hazards regression modeling was utilized to select
122 prognostic MRGPs that had significant relationships with
OS (P < 0.05). Next, we applied LASSO Cox proportional
hazards regression analysis and selected 32 MRGPs with the
optimal predictive performance from the set of 122 prognostic
MRGPs according to criteria described above (Figures 2A, B).
Afterwards, with the optimized and practical values of the
prognostic signatures taken into consideration, we applied
multivariate Cox regression analysis to construct a novel
predictive MRPS, which consisted of three gene pairs
(Figure 2C). Supplementary Table S2 showed the three
selected MRGPs and their corresponding coefficients. Finally,
we calculated the MRPSI score of each patient according to the
Frontiers in Oncology | www.frontiersin.org 4
following formula: MRPSI score = 0.489 × value of FADS1|
NEU1 +0.594 × value of SLC2A5| TBXAS1 +0.427 × value of
FADS1| PDE4B. Using the optimal cutoff value of 0.427, the
patients were classified as the MRPSI-high group (n=90) or the
MRPSI-low group (n=61).

To determine the predictive utility of the MRPSI, we
calculated the AUC value of the ROC, subsequently we
performed Kaplan-Meier survival analysis. The AUC value of
the MRPSI for five-year overall survival (OS) was 0.708
(Figure 2D). In comparison with the MRPSI-low group, the
patients in the MRPSI-high group had significantly worse OS
(P < 0.001; Figure 2E). Clinical factors including age, gender,
French-American-Britain (FAB) classification, FLT3 mutation,
IDH mutation, blast cell, white blood cell (WBC) count and
MRPSI were taken into account in univariate and multivariate
Cox regression analyses of the training set. We found that
MRPSI, age and WBC count were independent prognostic
A

B C

FIGURE 1 | Relationships of the metabolic phenotype of the bone marrow samples between AML patients and healthy donors. (A) GSEA analysis of gene
expression profiles in AML and normal bone marrow. Significant enrichment of metabolic pathways was found in the bone marrow samples of healthy donors,
compared with AML patients. (B, C) Volcano plot (B) and heatmap (C) of metabolism-related genes that were differentially expressed in AML samples compared to
healthy donors.
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A B

C

D

F

E

FIGURE 2 | Construction and definition of the MRPSI for AML in the TCGA set. (A, B7) Screening diagram of Lamda (A) and regression coefficient (B) in the
LASSO Cox regression analysis. (C) The three selected gene pairs included in the signature, their hazard ratios and coefficient values using multivariate Cox
regression analysis. (D) ROC curve of overall survival for AML patients using the MRPSI in the TCGA cohort. (E) Kaplan-Meier curves for overall survival analysis of
AML patients using the MRPSI in the TCGA cohort. (F) Univariate (left) and multivariate (right) Cox regression analyses of the MRPSI and clinical factors for the
predictive value of overall survival in the TCGA cohort.
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factors (MRPSI: P < 0.001; age: P < 0.001; WBC count: P < 0.001;
Figure 2F). Considering that hazard ratio of age was far greater
than 1, ROC and Kaplan-Meier survival analysis were also
performed to determine the prognostic performance of age.
The Kaplan-Meier survival analysis showed significant
difference in the OS of patients younger than 60 years old
(n=88) and that of patients older than 60 years old (n=63) (P
< 0.001; Supplementary Figure S2B). However, the AUC value
of MRPSI was greater than that of age (age: AUC = 0.657;
Supplementary Figure S2A). We also analyzed the prognostic
performance of MRPSI in patients with different age status and
WBC count. The results of Kaplan-Meier survival analysis in the
TCGA cohort showed that among subgroups, long-term survival
times in MRPSI-high group were not always remarkably shorter
than those of MRPSI-low group (Supplementary Figures
S3A–D).

Validation of the MRPSI for AML
To verify the discriminative ability of the novel MRPSI to group
AML patients based on OS, the formula described above was
applied to the test set from the GSE12417 cohort. The 162
patients in the cohort were classified as the MRPSI-low group
(n=49) or MRPSI-high group (n=113) based on the cutoff value
of the training set. The AUC value of the MRPSI for five-year OS
for AML patients in the test set was 0.697, indicating that the
MRPSI was reliable as a prognostic signature (Figure 3A). The
results of the Kaplan-Meier survival analysis demonstrated that
the OS of the patients in the MRPSI-high group was significantly
worse than the patients in the MRPSI-low group (P = 0.002;
Figure 3B). Moreover, according to the univariate and
multivariate Cox regression analyses, we found that MRPSI
and age were predictive factors (MRPSI: P < 0.001; age: P =
0.019; Figure 3C) and significant independent predictive factors
of OS (MRPSI: P = 0.002; age: P = 0.035; Figure 3C). The
Kaplan-Meier survival analysis revealed significant difference in
the OS of patients younger than 60 years old (n=88) in
comparison with patients older than 60 years (n=74) (P =
0.003; Supplementary Figure S2D). In agreement with the
results described above, the AUC value of MRPSI was greater
than that of age (age: AUC=0.617; Supplementary Figure S2C).
When the prognostic performance of MRPSI in patients at
different ages was analyzed, we found that the OS in MRPSI-
low group was not higher than that of the MRPSI-high group in
the AML patients older than 60 years old (Supplementary
Figure S3E, F).

To confirm the reliability and utility of the MRPSI, we
investigated its prognostic value using an independent cohort
(GSE37642). Notably, the MRPSI was a robust prognostic
signature for AML patients, with an AUC value of 0.688 for
five-year OS (Figure 3D). Next, the 417 patients in the
GSE37642 cohort were classified into MRPSI-high (n=303) and
MRPSI-low (n=114) groups based on the same cut-off value used
above. Kaplan-Meier survival analysis demonstrated that the
long-term survival of the MRPSI-high and MRPSI-low groups
differed significantly (P < 0.001; Figure 3E). According to the
univariate and multivariate Cox regression analyses, we found
that the MRPSI and age were both independent prognostic
Frontiers in Oncology | www.frontiersin.org 6
factors for OS (MRPSI: P < 0.001; age: P < 0.001; Figure 3F).
Thus, ROC and Kaplan-Meier survival analyses were performed
to determine the prognostic performance of age, which revealed
that the AUC value of age for OS was 0.688 (Supplementary
Figure S2E). In addition, Kaplan-Meier survival analysis also
showed that the OS of patients younger than 60 years old
(n=226) was significantly higher than that of patients older
than 60 years old (n=191) (P < 0.001; Supplementary Figure
S2F). And the Kaplan-Meier survival analysis showed that,
regardless of the age subgroup, patients in MRPSI-high group
had poorer OS than those in MRPSI-low group (P < 0.05;
Supplementary Figures S3G, H). In addition, we summarized
the distribution of patients in MRPSI-high and MRPSI-low
groups concerning clinical factors, including age, gender, FAB
classification, FLT3 mutation, IDH mutation, blast cell, and
WBC count in Supplementary Table S3. The results revealed
that FLT3 mutation and IDH mutation had no effect on the
grouping of risk groups. However, the difference about the
distribution of FAB classification in MRPSI-high and MRPSI-
low groups was observed in the three datasets.

To identify the distinct features of biological processes between
the patients in MRPSI-high and MRPSI-low groups, we performed
GSEA using gene expression data from 417 AML patients in the
GSE37642 cohort. The GSEA results showed that the gene
expression data of patients in MRPSI-low group were
significantly enriched in diverse metabolic pathways in
comparison with those in the MRPSI-high group
(Supplementary Figure S4). Enriched pathways in MRPSI-low
group related to glycolysis (NES = -1.42, P = 0.04), xenobiotic
metabolism (NES = -1.42, P = 0.04), and adipogenesis (NES = -1.46,
P = 0.04). Notably, compared to those in the MRPSI-high group,
patients in MRPSI-low group were also remarkably enriched in
apoptosis pathway (NES = -1.53, P = 0.008) and complement
pathway (NES = -1.48, P = 0.03).
Development of the MCPMI by Combining
the MRPSI With Age
Both MRPSI and age were found to be independent prognostic
risk factors in multivariate Cox regression analysis of three
independent datasets, suggesting that these two factors could be
utilized together and complement each other to improve the
prognostic value of the signature described above. Therefore, a
LASSO Cox proportional hazards regression model was applied
to the TCGA dataset to generate the MCPMI by combining the
MRPSI score with age (Figures 4A, B). Subsequently, the formula
of the MCPMI was determined to be: MCPMI = 0.783 × MRPSI
score + 0.848 × age score. Using the ROC analysis of the TCGA
set, the optimal cutoff value for assigning patients to each group
was determined to be 1.230. After the patients were classified into
MCPMI-high andMCPMI-low groups in three cohorts according
to the formula defined above, ROC and Kaplan-Meier survival
analyses were performed to assess the prognostic performance of
the MCPMI. The MCPMI was confirmed to be a reliable
prognostic model for AML patients. For the five-year OS of the
AML patients, the AUC values of the TCGA cohort, the
GSE12417 cohort and the GSE37642 cohort were 0.754, 0.719,
June 2022 | Volume 12 | Article 829007
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and 0.765, respectively (Figures 4C, 5A, D). Kaplan-Meier
survival analysis showed that the OS of patients in the MCPMI-
high group were significantly worse than that of patients in the
MCPMI-low group (P < 0.001; Figures 4D, 5B, E). In addition,
univariate Cox regression analysis revealed that the MCPMI was a
predictive factor for OS (P < 0.001; Figures 4E, 5C, F). Moreover,
according to multivariate Cox regression analysis, we found that
the MCPMI had independent prognostic value for OS when
Frontiers in Oncology | www.frontiersin.org 7
modified for other clinical characteristics (P < 0.001;
Figures 4E, 5C, F). Although WBC count was also an
independent prognostic factor, its hazard ratio was almost equal
to 1 in TCGA dataset (P < 0.001, hazard ratio = 1.010; Figure 4E).
Furthermore, we summarized the distribution of patients in
MCPMI-high and MCPMI-low groups concerning clinical
factors mentioned previously in Supplementary Table S4. The
results showed a difference in age distribution between the
A B

F

C

D E

FIGURE 3 | Validation of the MRPSI for AML. (A) ROC analysis of overall survival for the MRPSI in the GSE12417 cohort. (B) Kaplan-Meier curves for overall survival
analysis of AML patients based on the MRPSI in the GSE12417 cohort. (C) Univariate (left) and multivariate (right) Cox regression analyses of the MRPSI and clinical
factors for the predictive value of overall survival in the GSE12417 cohort. (D) ROC analysis of overall survival for the MRPSI in the GSE37642 cohort. (E) Kaplan-
Meier curves for overall survival analysis of AML patients based on the MRPSI in the GSE37642 cohort. (F) Univariate (left) and multivariate (right) Cox regression
analyses of the MRPSI and clinical factors for the predictive value of overall survival in the GSE37642 cohort.
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MCPMI-high and MCPMI-low groups. Then we analyzed the
prognostic performance of MCPMI in patients with different age
status and WBC count. The results of Kaplan-Meier survival
analysis in the three cohorts showed that among subgroups, long-
term survival times in MRPSI-high groups were always shorter
than those of MRPSI-low groups (P < 0.05; Supplementary
Figure S5).

Relationship Between the MCPMI and
Drug Response in AML Patients
Chemotherapy and targeted therapy are commonly used in the
comprehensive treatment regimens for AML patients.
Therefore, we used the R package “pRRophetic” to assess the
Frontiers in Oncology | www.frontiersin.org 8
sensitivity of AML patients to clinically used anti-cancer drugs
based on gene expression levels. By estimating the IC50 for each
sample in the GSE37642 cohort of 417 AML patients, five drugs
(cytarabine, bortezomib, lestaurtinib, BI 2536, and ponatinib)
were found to have significantly greater response sensitivity for
MCPMI-high patients in comparison with MCPMI-low
patients (cytarabine: P < 0.0001; bortezomib: P < 0.0001;
lestaurtinib: P < 0.0001; BI 2536: P < 0.0001; ponatinib: P =
0.0002; Figure 6). In addition, MRPSI-high patients also
showed greater sensitivity to these drugs in comparison with
MRPSI-low patients (cytarabine: P < 0.0001; bortezomib: P <
0.0001; lestaurtinib: P < 0.0001; BI 2536: P < 0.0001; ponatinib:
P = 0.0004; Figure S6).
A B

C

E

D

FIGURE 4 | Generation of the MCPMI by combining the MRPSI and age in the TCGA cohort. (A and B) Screening diagram of Lamda (A) and regression coefficient
(B) in the LASSO Cox regression analysis. (C) ROC curve of overall survival for AML patients using the MCPMI in the TCGA cohort. (D) Kaplan-Meier curves for
overall survival analysis of AML patients using the MCPMI in the TCGA cohort. (E) Univariate (left) and multivariate (right) regression analyses of the MCPMI and
clinical factors for the predictive value of overall survival in the TCGA cohort.
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DISCUSSION

AML is an extremely common type of acute leukemia characterized
by low survival rates. Analyses of immunophenotyping,
cytochemistry and cytogenetics are necessary for risk
stratification and treatment guidance in AML patients (4, 32).
However, the interval between diagnosis of AML and its prognosis
varies greatly from patient to patient, thus requiring more precise
Frontiers in Oncology | www.frontiersin.org 9
disease stratification methods and more sensitive drug screening
techniques to improve and prolong the survival of AML patients.
In the last few decades, tumor metabolism has been proved to be of
vital importance in tumorigenesis, tumor progression, tumor
metastasis, responses to therapeutics, and prognosis. Therefore,
tumor metabolism has become a focus of precision medicine
research both in hematological malignancies and solid tumors
(12, 32). Many metabolism-associated pathways have been
A B

D

F

C

E

FIGURE 5 | Validation of the MCPMI for AML patients. (A) ROC analysis of overall survival for the MCPMI in the GSE12417 cohort. (B) Kaplan-Meier curves for
overall survival analysis of AML patients using the MCPMI in the GSE12417 cohort. (C) Univariate (left) and multivariate (right) Cox regression analyses of the MCPMI
and clinical factors for the predictive value of overall survival in the GSE12417 cohort. (D) ROC analysis of overall survival for the MCPMI in the GSE37642 cohort.
(E) Kaplan-Meier curves for overall survival analysis of AML patients using the MCPMI in the GSE37642 cohort. (F) Univariate (left) and multivariate (right) Cox
regression analyses of the MCPMI and clinical factors for the predictive value of overall survival in the GSE37642 cohort.
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shown to be extraordinarily useful for prognostic prediction for
AML patients (33, 34). However, limited studies have been
reported of a comprehensive metabolic signature with utility as a
predictor for AML patient prognosis and survival.

In this study, we found significant enrichment of diverse
metabolic pathways in the gene expression profiles of healthy
donors in comparison with AML patients, including bile acid
metabolism, fatty acid metabolism, glycolysis, xenobiotic
metabolism, and metabolism of arginine, proline, nitrogen,
purine, pyrimidine, and selenoamino acid. A comparison with
metabolism-related genes from the ccmGDB database revealed
that 318 MRGs were differentially expressed between AML
patients and healthy donors. Subsequently, to eliminate
technical bias as much as possible, we used the 67 shared
MRGs in all three datasets to generate 505 MRGPs. Based on
MRGPs with prognostic values, we constructed a novel formula
called MRPSI to predict the long-term survival of AML patients,
and then divided patients into MRPSI-high and MRPSI-low
groups based on the optimal cutoff value. Kaplan-Meier
survival analysis showed that the MRPSI-high patients had
significantly worse OS compared with the MRPSI-low patients.
Furthermore, univariate and multivariate Cox regression
analyses demonstrated that the MRPSI was an independent
predictive factor for the OS of AML patients. Consistent results
were obtained when we applied an identical formula and cutoff
value to the training, test and validation sets. Based on these
Frontiers in Oncology | www.frontiersin.org 10
strengths, the MRGP-related signature described here could be
translated into clinical practice to predict the survival of AML
patients and contribute to personalized patient management.

The findings of the multivariate Cox regression analysis
demonstrated that age was an independent prognostic risk
factor for AML patients. Recent studies showed that age at
diagnosis of AML patients significantly affected survival (35,
36). In comparison with younger adults, older AML patients
frequently show unfavorable cytogenetics, multidrug resistance
and poor outcomes (37). Therefore, we exploited the
complementary predictive values of the MRPSI and age to
generate the MCPMI. Integration of the MRPSI and age
improved the predictive efficacy and accuracy of survival
assessments for AML patients in three independent cohorts. In
comparison with the MRPSI, the novel prognostic formula of
MCPMI possessed a higher AUC value. Moreover, stratification
analysis and multivariate Cox regression analysis revealed that
the MCPMI was an independent prognostic factor. Compared to
MRPSI, the prognostic performance of MCPMI was always
stable. These results indicated that the MCPMI could be an
effective prognostic tool for AML patients in the future.

Improved patient stratification and the identification of new
targets for anti-cancer therapeutics could be achieved using
prognostic and predictive biomarkers derived from studies of
the metabolic microenvironment in AML. We identified five
candidate drugs for the treatment of AML from a set of
A CB

D E

FIGURE 6 | Relationships between the MCPMI and drug responses in AML patients. (A-E) Boxplots evaluating responses to the chemotherapeutics cytarabine
(A), bortezomib (B), lestaurtinib (C), BI 2536 (D) and ponatinib (E) between MCPMI-high and MCPMI-low patients.
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frequently used clinical drugs from the GDSC database, namely,
cytarabine, bortezomib, lestaurtinib, BI 2536, and ponatinib.
These drugs are currently used clinically or in clinical trials to
treat AML patients. Cytarabine (Ara-C), as an antimetabolic
drug, interfered with cell proliferation by inhibiting the synthesis
of DNA, which has been one of the most commonly used
chemotherapeutic agents in the treatment of AML for a
relatively long period of time (3, 38). Bortezomib is a boronic
acid peptide that inhibits the 26S proteasome by binding and
inhibiting the chymotrypsin-like catalytic domain of the 20S
proteasome core (39, 40). Moreover, bortezomib was the first
proteasome inhibitor to be approved to treat patients with
multiple myeloma or mantle cell lymphoma (41–43). A study
also reported bortezomib could be applied to treat metabolic
disorders via the attenuation of the endoplasmic reticulum stress
palmitic induced by palmitic acid (44). Lestaurtinib (CEP-701) is
an indolocarbazole alkaloid compound that is orally bioavailable
and inhibits the activity of FLT3, Janus kinase 2 (JAK2),
tropomyosin receptor kinases and neurotrophin receptors (45–
47). In a phase 2 clinical trial, lestaurtinib was used as a first-line
treatment for AML patients of relatively advanced age (48, 49).
BI 2536, a selective inhibitor of polo-like kinase 1 (PLK1) (50),
has been used in several clinical trials as a treatment for patients
with AML (Clinicaltrials.gov: NCT00701766) and non-small-cell
lung cancer (Clinicaltrials.gov: NCT02211833). Ponatinib
(AP24534) is a breakpoint cluster region-Abelson (BCR-ABL)
inhibitor that was shown to be capable of overcoming mutation-
based resistance in chronic myeloid leukemia patients (51, 52).
Recent studies have shown that ponatinib may have clinical
promise as a fibroblast growth factor receptor (FGFR) inhibitor
for the treatment of particular patient populations (53). Our
analysis demonstrated that MCPMI-high patients were more
sensitive to cytarabine, bortezomib, lestaurtinib, BI 2536, and
ponatinib than MCPMI-low patients, and these drugs may
provide better treatment options for MCPMI-high patients.

The limitation of this study was mainly the retrospective
analysis. However, we attempted to include as many diverse
datasets as possible to increase the rigor of our signature
validation process. In addition, although we successfully
identified five drugs with higher sensitivity in AML patients
with high MCPMI, further robust prospective studies and
clinical trials are needed to assess the clinical utility of these
drugs across patients with different characteristics.

In conclusion, our findings provided crucial new insight into
the metabolic profile of AML patients. We provided a composite
Frontiers in Oncology | www.frontiersin.org 11
metabolism and clinical model as a novel prognostic
stratification method and identified several potential
therapeutic drugs for AML patients with poor prognosis.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding authors.
AUTHOR CONTRIBUTIONS

CW and LD designed the study, performed experiments,
analyzed data, and wrote the manuscript. QL, XL, XZ, DK, XY,
JF, and YY performed experiments and analyzed data. HH and
LW conceived and designed the study and wrote the manuscript.
All authors contributed to the article and approved the
submitted version.
FUNDING

This work was supported by grants from the National Natural
Science Foundation of China (81730008, 82000180, 82000179),
Zhejiang Provincial Natural Science Foundation of China (No.
LY19H080008) and the Key Project of Science and Technology
Department of Zhejiang Province (2020C03G2013586).
ACKNOWLEDGMENTS

We are grateful to all the participants who have made this
research possible.
SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fonc.2022.829007/
full#supplementary-material
REFERENCES

1. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts
ND, et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia.
N Engl J Med (2016) 374(23):2209–21. doi: 10.1056/NEJMoa1516192

2. Wouters BJ, Delwel R. Epigenetics and Approaches to Targeted Epigenetic
Therapy in Acute Myeloid Leukemia. Blood (2016) 127(1):42–52.
doi: 10.1182/blood-2015-07-604512

3. Burnett A, Wetzler M, Lowenberg B. Therapeutic Advances in Acute
Myeloid Leukemia. J Clin Oncol (2011) 29(5):487–94. doi: 10.1200/JCO.
2010.30.1820
4. Tallman MS, Wang ES, Altman JK, Appelbaum FR, Bhatt VR, Bixby D, et al.
Acute Myeloid Leukemia, Version 3.2019, Nccn Clinical Practice Guidelines
in Oncology. J Natl Compr Canc Netw (2019) 17(6):721–49. doi: 10.6004/
jnccn.2019.0028

5. Estey EH. Acute Myeloid Leukemia: 2021 Update on Risk-Stratification and
Management. Am J Hematol (2020) 95(11):1368–98. doi: 10.1002/ajh.25975

6. Cantor JR, Sabatini DM. Cancer Cell Metabolism: One Hallmark, Many Faces.
Cancer Discov (2012) 2(10):881–98. doi: 10.1158/2159-8290.CD-12-0345

7. Faubert B, Solmonson A, DeBerardinis RJ. Metabolic Reprogramming and
Cancer Progression. Science (2020) 368(6487):152-62. doi: 10.1126/
science.aaw5473
June 2022 | Volume 12 | Article 829007

https://www.frontiersin.org/articles/10.3389/fonc.2022.829007/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.829007/full#supplementary-material
https://doi.org/10.1056/NEJMoa1516192
https://doi.org/10.1182/blood-2015-07-604512
https://doi.org/10.1200/JCO.2010.30.1820
https://doi.org/10.1200/JCO.2010.30.1820
https://doi.org/10.6004/jnccn.2019.0028
https://doi.org/10.6004/jnccn.2019.0028
https://doi.org/10.1002/ajh.25975
https://doi.org/10.1158/2159-8290.CD-12-0345
https://doi.org/10.1126/science.aaw5473
https://doi.org/10.1126/science.aaw5473
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wei et al. Metabolism-Related Prognostic Models for AML
8. Deshmukh A, Deshpande K, Arfuso F, Newsholme P, Dharmarajan A.
Cancer Stem Cell Metabolism: A Potential Target for Cancer Therapy. Mol
Cancer (2016) 15(1):69. doi: 10.1186/s12943-016-0555-x

9. Pavlova NN, Thompson CB. The Emerging Hallmarks of Cancer Metabolism.
Cell Metab (2016) 23(1):27–47. doi: 10.1016/j.cmet.2015.12.006

10. Luengo A, Gui DY, Vander Heiden MG. Targeting Metabolism for Cancer
Therapy. Cell Chem Biol (2017) 24(9):1161–80. doi : 10.1016/
j.chembiol.2017.08.028

11. Li H, Ning S, Ghandi M, Kryukov GV, Gopal S, Deik A, et al. The Landscape
of Cancer Cell Line Metabolism. Nat Med (2019) 25(5):850–60. doi: 10.1038/
s41591-019-0404-8

12. Zhao Y, Butler EB, Tan M. Targeting Cellular Metabolism to Improve Cancer
Therapeutics. Cell Death Dis (2013) 4:e532. doi: 10.1038/cddis.2013.60

13. Farge T, Saland E, de Toni F, Aroua N, Hosseini M, Perry R, et al.
Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not
Enriched for Leukemic Stem Cells But Require Oxidative Metabolism. Cancer
Discovery (2017) 7(7):716–35. doi: 10.1158/2159-8290.CD-16-0441

14. Wang Y, Zhang L, ChenWL, Wang JH, Li N, Li JM, et al. Rapid Diagnosis and
Prognosis of De Novo Acute Myeloid Leukemia by Serum Metabonomic
Analysis. J Proteome Res (2013) 12(10):4393–401. doi: 10.1021/pr400403p

15. Musharraf SG, Siddiqui AJ, Shamsi T, Choudhary MI, Rahman AU. Serum
Metabonomics of Acute Leukemia Using Nuclear Magnetic Resonance
Spectroscopy. Sci Rep (2016) 6:30693. doi: 10.1038/srep30693

16. Klock JC, Pieprzyk JK. Cholesterol, Phospholipids, and Fatty Acids of Normal
Immature Neutrophils: Comparison With Acute Myeloblastic Leukemia Cells
and Normal Neutrophils. J Lipid Res (1979) 20(7):908–11. doi: 10.1016/s0022-
2275(20)40020-3

17. Banker DE, Mayer SJ, Li HY, Willman CL, Appelbaum FR, Zager RA.
Cholesterol Synthesis and Import Contribute to Protective Cholesterol
Increments in Acute Myeloid Leukemia Cells. Blood (2004) 104(6):1816–24.
doi: 10.1182/blood-2004-01-0395

18. Medeiros BC, Fathi AT, DiNardo CD, Pollyea DA, Chan SM, Swords R.
Isocitrate Dehydrogenase Mutations in Myeloid Malignancies. Leukemia
(2017) 31(2):272–81. doi: 10.1038/leu.2016.275

19. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al.
Cancer-Associated Idh1 Mutations Produce 2-Hydroxyglutarate. Nature
(2009) 462(7274):739–44. doi: 10.1038/nature08617

20. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, et al.
The Common Feature of Leukemia-Associated Idh1 and Idh2 Mutations Is a
Neomorphic Enzyme Activity Converting Alpha-Ketoglutarate to 2-
Hydroxyglutarate. Cancer Cell (2010) 17(3):225–34. doi: 10.1016/
j.ccr.2010.01.020

21. Rosnet O, Matteï M, Marchetto S, Birnbaum D. Isolation and Chromosomal
Localization of a Novel Fms-Like Tyrosine Kinase Gene. Genomics (1991) 9
(2):380–5. doi: 10.1016/0888-7543(91)90270-o

22. Gilliland DG, Griffin JD. The Roles of Flt3 in Hematopoiesis and Leukemia.
Blood (2002) 100(5):1532–42. doi: 10.1182/blood-2002-02-0492

23. Chen W, Drakos E, Grammatikakis I, Schlette E, Li J, Leventaki V, et al. Mtor
Signaling Is Activated by Flt3 Kinase and Promotes Survival of Flt3-Mutated
Acute Myeloid Leukemia Cells. Mol Cancer (2010) 9:292. doi: 10.1186/1476-
4598-9-292

24. Gerloff D, Grundler R, Wurm AA, Brauer-Hartmann D, Katzerke C,
Hartmann JU, et al. Nf-Kappab/Stat5/Mir-155 Network Targets Pu.1 in
Flt3-Itd-Driven Acute Myeloid Leukemia. Leukemia (2015) 29(3):535–47.
doi: 10.1038/leu.2014.231

25. Kim P, Cheng F, Zhao J, Zhao Z. Ccmgdb: A Database for Cancer Cell
Metabolism Genes. Nucleic Acids Res (2016) 44(D1):D959–68. doi: 10.1093/
nar/gkv1128

26. Metzeler KH, Hummel M, Bloomfield CD, Spiekermann K, Braess J,
Sauerland MC, et al. An 86-Probe-Set Gene-Expression Signature Predicts
Survival in Cytogenetically Normal Acute Myeloid Leukemia. Blood (2008)
112(10):4193–201. doi: 10.1182/blood-2008-02-134411

27. Li Z, Herold T, He C, Valk PJ, Chen P, Jurinovic V, et al. Identification of a 24-
Gene Prognostic Signature That Improves the European Leukemianet Risk
Classification of Acute Myeloid Leukemia: An International Collaborative
Study. J Clin Oncol Off J Am Soc Clin Oncol (2013) 31(9):1172–81.
doi: 10.1200/jco.2012.44.3184
Frontiers in Oncology | www.frontiersin.org 12
28. Li B, Cui Y, Diehn M, Li R. Development and Validation of an Individualized
Immune Prognostic Signature in Early-Stage Nonsquamous Non-Small Cell
Lung Cancer. JAMA Oncol (2017) 3(11):1529–37. doi: 10.1001/
jamaoncol.2017.1609

29. Simon N, Friedman J, Hastie T, Tibshirani R. Regularization Paths for Cox's
Proportional Hazards Model Via Coordinate Descent. J Stat Softw (2011) 39
(5):1–13. doi: 10.18637/jss.v039.i05

30. Geeleher P, Cox N, Huang RS. Prrophetic: An R Package for Prediction of
Clinical Chemotherapeutic Response From Tumor Gene Expression Levels.
PLoS One (2014) 9(9):e107468. doi: 10.1371/journal.pone.0107468

31. Geeleher P, Cox NJ, Huang RS. Clinical Drug Response Can Be Predicted
Using Baseline Gene Expression Levels and in Vitro Drug Sensitivity in Cell
Lines. Genome Biol (2014) 15(3):R47. doi: 10.1186/gb-2014-15-3-r47

32. Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, et al.
Prognostic Relevance of Integrated Genetic Profiling in Acute Myeloid
Leukemia. N Engl J Med (2012) 366(12):1079–89. doi: 10.1056/
NEJMoa1112304

33. Hao X, Gu H, Chen C, Huang D, Zhao Y, Xie L, et al. Metabolic Imaging
Reveals a Unique Preference of Symmetric Cell Division and Homing of
Leukemia-Initiating Cells in an Endosteal Niche. Cell Metab (2019) 29
(4):950–65.e6. doi: 10.1016/j.cmet.2018.11.013

34. Jones CL, Stevens BM, D'Alessandro A, Reisz JA, Culp-Hill R, Nemkov T,
et al. Inhibition of Amino Acid Metabolism Selectively Targets Human
Leukemia Stem Cells. Cancer Cell (2019) 35(2):333–5. doi: 10.1016/
j.ccell.2019.01.013

35. Shallis RM, Wang R, Davidoff A, Ma X, Zeidan AM. Epidemiology of Acute
Myeloid Leukemia: Recent Progress and Enduring Challenges. Blood Rev
(2019) 36:70–87. doi: 10.1016/j.blre.2019.04.005

36. Byrne MM, Halman LJ, Koniaris LG, Cassileth PA, Rosenblatt JD, Cheung
MC. Effects of Poverty and Race on Outcomes in Acute Myeloid Leukemia.
Am J Clin Oncol (2011) 34(3):297–304. doi: 10.1097/COC.0b013e3181dea934

37. Appelbaum FR, Gundacker H, Head DR, Slovak ML,Willman CL, Godwin JE,
et al. Age and Acute Myeloid Leukemia. Blood (2006) 107(9):3481–5.
doi: 10.1182/blood-2005-09-3724

38. Veuger M, Heemskerk M, Honders M, Willemze R, Barge R. Functional Role
of Alternatively Spliced Deoxycytidine Kinase in Sensitivity to Cytarabine of
Acute Myeloid Leukemic Cells. Blood (2002) 99(4):1373–80. doi: 10.1182/
blood.v99.4.1373

39. Olejniczak SH, Blickwedehl J, Belicha-Villanueva A, Bangia N, Riaz W, Mavis
C, et al. Distinct Molecular Mechanisms Responsible for Bortezomib-Induced
Death of Therapy-Resistant Versus -Sensitive B-Nhl Cells. Blood (2010) 116
(25):5605–14. doi: 10.1182/blood-2009-12-259754

40. Boccadoro M, Morgan G, Cavenagh J. Preclinical Evaluation of the
Proteasome Inhibitor Bortezomib in Cancer Therapy. Cancer Cell Int
(2005) 5(1):18. doi: 10.1186/1475-2867-5-18

41. Kane RC, Dagher R, Farrell A, Ko CW, Sridhara R, Justice R, et al. Bortezomib
for the Treatment of Mantle Cell Lymphoma. Clin Cancer Res (2007) 13(18 Pt
1):5291–4. doi: 10.1158/1078-0432.CCR-07-0871

42. Sánchez-Serrano I. Success in Translational Research: Lessons From the
Development of Bortezomib. Nat Rev Drug Discovery (2006) 5(2):107–14.
doi: 10.1038/nrd1959

43. Bross P, Kane R, Farrell A, Abraham S, Benson K, Brower M, et al. Approval
Summary for Bortezomib for Injection in the Treatment of Multiple
Myeloma. Clin Cancer Res Off J Am Assoc Cancer Res (2004) 10:3954–64.
doi: 10.1158/1078-0432.ccr-03-0781

44. Kwak HJ, Choi HE, Jang J, Park SK, Bae YA, Cheon HG. Bortezomib
Attenuates Palmitic Acid-Induced Er Stress, Inflammation and Insulin
Resistance in Myotubes Via Ampk Dependent Mechanism. Cell Signalling
(2016) 28(8):788–97. doi: 10.1016/j.cellsig.2016.03.015

45. Hexner EO, Mascarenhas J, Prchal J, Roboz GJ, Baer MR, Ritchie EK, et al.
Phase I Dose Escalation Study of Lestaurtinib in Patients With Myelofibrosis.
Leuk Lymphoma (2015) 56(9):2543–51. doi: 10.3109/10428194.2014.1001986

46. Levis M, Allebach J, Tse K, Zheng R, Baldwin B, Smith B, et al. A Flt3-Targeted
Tyrosine Kinase Inhibitor Is Cytotoxic to Leukemia Cells in Vitro and in Vivo.
Blood (2002) 99(11):3885–91. doi: 10.1182/blood.v99.11.3885

47. Marshall J, Kindler H, Deeken J, Bhargava P, Vogelzang N, Rizvi N, et al.
Phase I Trial of Orally Administered Cep-701, a Novel Neurotrophin
June 2022 | Volume 12 | Article 829007

https://doi.org/10.1186/s12943-016-0555-x
https://doi.org/10.1016/j.cmet.2015.12.006
https://doi.org/10.1016/j.chembiol.2017.08.028
https://doi.org/10.1016/j.chembiol.2017.08.028
https://doi.org/10.1038/s41591-019-0404-8
https://doi.org/10.1038/s41591-019-0404-8
https://doi.org/10.1038/cddis.2013.60
https://doi.org/10.1158/2159-8290.CD-16-0441
https://doi.org/10.1021/pr400403p
https://doi.org/10.1038/srep30693
https://doi.org/10.1016/s0022-2275(20)40020-3
https://doi.org/10.1016/s0022-2275(20)40020-3
https://doi.org/10.1182/blood-2004-01-0395
https://doi.org/10.1038/leu.2016.275
https://doi.org/10.1038/nature08617
https://doi.org/10.1016/j.ccr.2010.01.020
https://doi.org/10.1016/j.ccr.2010.01.020
https://doi.org/10.1016/0888-7543(91)90270-o
https://doi.org/10.1182/blood-2002-02-0492
https://doi.org/10.1186/1476-4598-9-292
https://doi.org/10.1186/1476-4598-9-292
https://doi.org/10.1038/leu.2014.231
https://doi.org/10.1093/nar/gkv1128
https://doi.org/10.1093/nar/gkv1128
https://doi.org/10.1182/blood-2008-02-134411
https://doi.org/10.1200/jco.2012.44.3184
https://doi.org/10.1001/jamaoncol.2017.1609
https://doi.org/10.1001/jamaoncol.2017.1609
https://doi.org/10.18637/jss.v039.i05
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1186/gb-2014-15-3-r47
https://doi.org/10.1056/NEJMoa1112304
https://doi.org/10.1056/NEJMoa1112304
https://doi.org/10.1016/j.cmet.2018.11.013
https://doi.org/10.1016/j.ccell.2019.01.013
https://doi.org/10.1016/j.ccell.2019.01.013
https://doi.org/10.1016/j.blre.2019.04.005
https://doi.org/10.1097/COC.0b013e3181dea934
https://doi.org/10.1182/blood-2005-09-3724
https://doi.org/10.1182/blood.v99.4.1373
https://doi.org/10.1182/blood.v99.4.1373
https://doi.org/10.1182/blood-2009-12-259754
https://doi.org/10.1186/1475-2867-5-18
https://doi.org/10.1158/1078-0432.CCR-07-0871
https://doi.org/10.1038/nrd1959
https://doi.org/10.1158/1078-0432.ccr-03-0781
https://doi.org/10.1016/j.cellsig.2016.03.015
https://doi.org/10.3109/10428194.2014.1001986
https://doi.org/10.1182/blood.v99.11.3885
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wei et al. Metabolism-Related Prognostic Models for AML
Receptor-Linked Tyrosine Kinase Inhibitor. Investig N Drugs (2005) 23(1):31–
7. doi: 10.1023/B:DRUG.0000047103.64335.b0

48. Knapper S, Burnett AK, Littlewood T, Kell WJ, Agrawal S, Chopra R, et al. A
Phase 2 Trial of the Flt3 Inhibitor Lestaurtinib (Cep701) as First-Line
Treatment for Older Patients With Acute Myeloid Leukemia Not
Considered Fit for Intensive Chemotherapy. Blood (2006) 108(10):3262–70.
doi: 10.1182/blood-2006-04-015560

49. Wu M, Li C, Zhu X. Flt3 Inhibitors in Acute Myeloid Leukemia. J Hematol
Oncol (2018) 11(1):133. doi: 10.1186/s13045-018-0675-4

50. Steegmaier M, Hoffmann M, Baum A, Lenart P, Petronczki M, Krssak M, et al.
Bi 2536, a Potent and Selective Inhibitor of Polo-Like Kinase 1, Inhibits Tumor
Growth in Vivo. Curr Biol (2007) 17(4):316–22. doi: 10.1016/j.cub.2006.12.037

51. O'Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM, Wang F, et al.
Ap24534, a Pan-Bcr-Abl Inhibitor for Chronic Myeloid Leukemia, Potently
Inhibits the T315i Mutant and Overcomes Mutation-Based Resistance. Cancer
Cell (2009) 16(5):401–12. doi: 10.1016/j.ccr.2009.09.028

52. Huang WS, Metcalf CA, Sundaramoorthi R, Wang Y, Zou D, Thomas RM,
et al. Discovery of 3-[2-(Imidazo[1,2-B]Pyridazin-3-Yl)Ethynyl]-4-Methyl-N-
{4-[(4-Methylpiperazin-1-Y L)Methyl]-3-(Trifluoromethyl)Phenyl}
Benzamide (Ap24534), a Potent, Orally Active Pan-Inhibitor of Breakpoint
Cluster Region-Abelson (Bcr-Abl) Kinase Including the T315i Gatekeeper
Mutant. J Med Chem (2010) 53(12):4701–19. doi: 10.1021/jm100395q
Frontiers in Oncology | www.frontiersin.org 13
53. Gozgit JM, Wong MJ, Moran L, Wardwell S, Mohemmad QK, Narasimhan
NI, et al. Ponatinib (Ap24534), a Multitargeted Pan-Fgfr Inhibitor With
Activity in Multiple Fgfr-Amplified or Mutated Cancer Models. Mol Cancer
Ther (2012) 11(3):690–9. doi: 10.1158/1535-7163.MCT-11-0450

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Wei, Ding, Luo, Li, Zeng, Kong, Yu, Feng, Ye, Wang and Huang.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited and
that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.
June 2022 | Volume 12 | Article 829007

https://doi.org/10.1023/B:DRUG.0000047103.64335.b0
https://doi.org/10.1182/blood-2006-04-015560
https://doi.org/10.1186/s13045-018-0675-4
https://doi.org/10.1016/j.cub.2006.12.037
https://doi.org/10.1016/j.ccr.2009.09.028
https://doi.org/10.1021/jm100395q
https://doi.org/10.1158/1535-7163.MCT-11-0450
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Development and Validation of an Individualized Metabolism-Related Prognostic Model for Adult Acute Myeloid Leukemia Patients
	Introduction
	Materials and Methods
	Sample Collection and Study Design
	Generation of a Prognostic Model Using MRGs
	Development and Validation of MCPM
	Clinical Drug Response Prediction
	Statistical Analysis

	Results
	Comparison of the Metabolic Phenotypes of Bone Marrow Samples From AML Patients and Healthy Donors
	Construction and Definition of the MRPSI for AML in the TCGA Set
	Validation of the MRPSI for AML
	Development of the MCPMI by Combining the MRPSI With Age
	Relationship Between the MCPMI and Drug Response in AML Patients

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


