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Abstract: Incorporating reclaimed asphalt pavement (RAP) into asphalt mixtures achieves
astonishingly environmental and economic benefits. However, there is hesitation to use higher RAP
content due to the concern regarding the deterioration in pavement performance, especially the
cracking resistance. Basalt fiber has been considered an effective additive to reinforce the performance
of asphalt mixtures and, subsequently, the reinforcement effect is also expected for high-RAP content
mixtures. Therefore, this study investigated the effect of basalt fiber on the pavement performance of
asphalt mixtures with 0%, 30%, 40%, and 50% RAP contents against high-temperature performance,
moisture susceptibility, low-temperature and intermediate-temperature cracking resistance, based on
the wheel-tracking test, the uniaxial penetration test, the freeze-thaw splitting test, the low-temperature
bending beam test, the semicircular bend fracture test and the indirect tensile asphalt cracking test,
respectively. In addition, a performance-space diagram was developed to determine the mixture
performance shift caused by basalt fiber. The results showed that adding basalt fiber compensated for
the detrimental effect caused by RAP, leading to significant enhancement in moisture susceptibility
and low- and intermediate-temperature cracking resistance of mixtures with high RAP content, along
with the enhancement in high-temperature performance, indicating that basalt fiber can contribute to
the use of high RAP content.
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1. Introduction

The application of reclaimed asphalt pavement (RAP) in asphalt mixtures has been vigorously
encouraged and promoted over the past decades due to the desirable environmental benefit, along with
the cost reduction [1–4]. The use of RAP has been promoted from low-value use (as unbound layer
materials [5], etc.) to high-value use (as surface materials, etc.), and became commonplace in some
developed countries. It is reported that over 99% of RAP is recycled as alternative road materials in
the USA [6], while the RAP use rate is more than 80% in Europe [1]. Chinese transport agencies are
making great efforts to achieve a RAP use rate of over 80% by the end of 2020 [7]. However, the RAP
dosage used in asphalt mixtures is still surprisingly low. By weight of total mixture, the RAP dosage is
still around 20% in most states in the USA [6]. Meanwhile, RAP is not even commonly used in the
surface layer of asphalt pavement in China.

The major reason for the hesitation to use high RAP content in asphalt mixtures (especially surface
layer) is that excessive RAP would make asphalt mixtures stiffer and more brittle [8,9], leading to
potential deterioration in cracking resistance. The Federal Highway Administration (FHWA) considers
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that mixtures with more than 25% RAP can be recognized as high-RAP content mixtures [10], since the
performance of asphalt mixtures changed dramatically when RAP content reached 30%, even compared
to those with 20% RAP [11]. Tremendous studies have been conducted to investigate the effect of RAP
on the performance of asphalt mixtures, especially on cracking resistance. Zhou’s research [12] pointed
out that the use of RAP increased the cumulative rate of fatigue damage, subsequently resulting in
shortened fatigue life of asphalt mixtures, which has been proved by some other investigations [13,14].
The use of RAP also further diminished the low-temperature property of asphalt mixtures, and
commonly made the mixtures prone to thermal cracking [9,15], especially in cold regions. Winkle’s
investigation results from laboratory and field evaluation showed that with an increasing RAP content,
the stiffness of asphalt mixtures increased, while fracture energy decreased [16]. Besides, adding RAP
also impacted negatively on the short-term and long-term aging behaviors of asphalt mixtures [17],
in addition to the self-healing property [18].

The commonly used method to compensate for the adverse effect of RAP is to introduce
rejuvenators or softer asphalt binders into asphalt mixtures. A rejuvenator or softer asphalt binder can
adjust the compositions of the aged asphalt binder in order to recover its rheological properties to some
degree [19,20]. Nevertheless, rejuvenated asphalt binders present inferior re-aging resistance than
fresh binders, despite the desirable performance at an early stage [21,22]. As a result, the long-term
instability and accelerated performance deterioration have been considered to be the main deficiencies
of rejuvenated asphalt mixtures [23–25].

Another solution is to incorporate fibers with RAP into asphalt mixtures, as fibers have been
proved to be effective reinforcing additives for asphalt mixtures [26]. The typical types of fibers used
for asphalt mixtures include: mineral fibers (glass fiber, etc.), polymer fibers [27] (polyolefin–aramid,
polyacrylonitrile, etc.), cellulose fiber, carbon fiber and steel fiber [28], along with a few new fibers
currently being tested, such as aminated graphene fiber [29], kenaf and goat wool [30], etc. The results
showed that incorporating fibers with RAP could effectively improve the tensile strength, rutting
resistance and moisture susceptibility of asphalt mixtures, in addition to enhancing the resistance to
crack initiation and propagation significantly [31–33]. However, each type of fiber presents its own
disadvantages when used in asphalt mixtures. For instance, cellulose fiber mainly has the function of
absorbing and stabilizing asphalt binders rather than enhancing the strength of asphalt mixtures [34].
Polymer fibers exhibit inferior durability and dispersibility in asphalt mixtures [35], while glass fiber
shows poor adhesion with asphalt binder due to its smooth texture [36].

Using basalt fiber into asphalt mixtures has gained increasing attention over the past years. Basalt
fiber is made from molten basalt rocks, and is considered as an innovative type of cost-effective and
environmentally friendly mineral fiber. Basalt fiber possesses comparable properties with carbon fiber
T300, such as, high fracture strength, excellent acid and alkali resistance, superior high-temperature
and low-temperature resistance, etc. [37]. A few studies have been dedicated to the effect of basalt
fiber on the performance of asphalt mixtures, and the results confirmed the desired enhancing
effect. The mixtures with basalt fiber showed superior resistance to high-temperature permanent
deformation, low-temperature and intermediate-temperature cracking, moisture damage, and fatigue
failure [34,38–42]. Besides, asphalt mixtures with basalt fiber presented better mechanical performance
and drain-down resistance when compared to those mixed with glass fiber [41,43]. Based on the above
analysis, adding basalt fiber has anticipated potentiality to improve the performance of high-RAP
content mixtures, especially cracking resistance. However, very limited amount of research has been
conducted on this topic.

Therefore, the primary objective of this study was to investigate the performance of hot mix asphalt
with high RAP content and basalt fiber. To achieve the goals, asphalt mixture samples containing
0%, 30%, 40% and 50% RAP reinforced with basalt fiber were fabricated. Then, the high-temperature
deformation performance, moisture susceptibility, low-temperature and intermediate-temperature
cracking resistance of all the samples were evaluated. The results were also compared to those of the
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control mixtures without basalt fiber in order to better understand the reinforcing effect caused by
basalt fiber.

2. Materials and Sample Fabrication

2.1. Raw Materials

2.1.1. Basalt Fiber

A type of high-grade basalt fiber was selected as the reinforcing additive for this study.
The morphologies of the fiber are illustrated in Figure 1. The main physical and mechanical properties
are summarized in Table 1. It can be seen from Figure 1 that basalt fiber is golden brown in color,
with a regular cylindrical shape on the micron scale.
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Figure 1. Morphologies of basalt fiber: (a) appearance; (b) scanning electronic microscope image.

Table 1. Main physical and mechanical properties of basalt fiber.

Index Unit Value Standard

Color - Golden brown Visual inspection
Specific gravity g/cm3 2.72 JT/T 776.1

Length mm 6 JT/T 776.1
Diameter µm 16 GB/T 7690.5

Fracture strength MPa 2200 GB/T 20310
Elastic modulus GPa 90 GB/T 20310

Thermostability (retained Fracture strength) % 93 GB/T 7690.3
Elongation at break % 2.7 JT/T 776.1

Oil absorption % 52 JT/T 776.1
Water absorption % 0.1 JT/T 776.1

2.1.2. Asphalt Binder and New Aggregates

A type of styrene-butadiene-styrene (SBS) modified asphalt binder was used in this study.
The properties of the binder are listed in Table 2. Limestone coarse and fine aggregates were selected,
with the density of 2.698 g/cm3 and 2.651 g/cm3, respectively. Limestone powders with a density of
2.714 g/cm3 were chosen as mineral fillers.

Table 2. Properties of asphalt binder.

Index Unit Value Standard

Penetration at 25 ◦C 0.1 mm 71 JTG E20 T0604
Penetration Index - 0.5 JTG E20 T0604
Ductility at 5 ◦C cm 48 JTG E20 T0605
Softening point ◦C 64 JTG E20 T0606

Viscosity at 135 ◦C Pa·s 1.8 JTG E20 T0625



Materials 2020, 13, 3145 4 of 19

2.1.3. RAP Material

The RAP material was obtained from the surface layer of S356 freeway in Jiangsu Province, China.
The asphalt binder was extracted according to JTG E20, and the binder content, binder properties and
RAP gradation were tested. Four replicates were conducted for each test. Table 3 summarizes the
binder content and properties of the extracted binder. Kang [44] proposed a method to determine the
aging degree of extracted binder from RAP, in which the extracted binder can be classified into six
aging grades based on the penetration and viscosity values, as shown in Table 4. According to Kang’s
method, the extracted binder was considered to be grade II—mild aging.

Table 3. Binder content of the reclaimed asphalt pavement (RAP) and properties of the extracted binder.

Index Unit RAP1 RAP2 RAP3 RAP4 Average

Binder content % 4.31 4.33 4.26 4.23 4.28
Penetration at 25 ◦C 0.1 mm 37.7 38.5 38.5 37.9 38.2

Softening point ◦C 57.5 57.2 57.3 57.9 57.4
Viscosity at 135 ◦C Pa·s 1.73 1.84 1.86 1.60 1.76

Table 4. Aging degree classification of the extracted binder.

Index Neat Asphalt SBS Modified Asphalt

Viscosity (Pa·s) η ≤ 1.6 η ≤ 1.6 1.6 < η ≤ 3 η > 3
Penetration (0.1 mm) P > 30 10 < P ≤ 30 P > 30 P > 30 20 < P ≤ 30 10 < P ≤ 20 20 < P ≤ 30 10 < P ≤ 20

Grade I II I II III IV V VI

2.2. Sample Fabrication

2.2.1. Mixture Gradation Design

The dense-graded gradation of asphalt concrete called AC-13 with the nominal maximum
aggregate size (NMAS) of 13.2 mm was selected for this study. Three RAP contents, namely, 30%, 40%,
and 50% were chosen to fabricate the asphalt mixtures. In addition, another set of asphalt mixtures
were reinforced by basalt fiber. According to the newly issued guideline “Technical Guideline for
Construction of Asphalt Pavement with Basalt Fiber” (T/CHTS 10016-2019), basalt fibers with a length
of 6 mm and the dosage of 0.3% by total weight of the mixture were used. The mixture gradations are
illustrated in Table 5. It can be seen that the gradations of the mixtures with 30%, 40%, and 50% RAP
were nearly the same. The optimum asphalt–aggregate ratio of each mixture was determined by the
Marshall design method, which was 5.00%, 4.58%, 4.47% and 4.34% for the mixture with 0%, 30%, 40%,
and 50% RAP, respectively. Meanwhile, when basalt fiber was added, the optimum asphalt-aggregate
ratio of each mixture was determined as 5.20%, 4.78%, 4.67% and 4.54%, respectively.

Table 5. Gradations of asphalt mixtures with different RAP content.

Sieve Size (mm)
16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075

Passing of Combined Aggregate (%)

Upper limit 100.0 100.0 85.0 68.0 50.0 38.0 28.0 20.0 15.0 8.0
Lower limit 100.0 90.0 68.0 38.0 24.0 15.0 10.0 7.0 5.0 4.0
Mid-Range 100.0 95.0 76.5 53.0 37.0 26.5 19.0 13.5 10.0 6.0

0% RAP 100.0 98.3 80.4 51.6 34.1 20.9 14.4 9.7 7.8 6.7
30% RAP 100.0 96.9 80.6 50.2 35.4 24.0 16.7 12.4 9.6 7.8
40% RAP 100.0 96.5 81.0 50.3 35.2 24.3 16.9 12.6 9.6 7.7
50% RAP 100.0 96.1 81.3 50.4 34.3 24.3 16.7 12.7 9.5 7.4

2.2.2. Mixing and Compaction

The mixing process of the high-RAP content mixture was in accordance with the Chinese standard
JTGE20 T0702. In terms of the mixtures with basalt fiber, a “dry mixing process” was essential in
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order to make the fibers disperse as homogeneously as possible, which meant that basalt fiber should
be mixed with the new aggregates for 90 s firstly, and then mixed with RAP for another 90 s before
adding asphalt. Regarding the compaction process, there was no obvious impact of basalt fiber on
the compaction work. However, it is worth noting that the asphalt mixture samples with basalt fiber,
which was compacted by a superpave gyratory compactor, should be demolded at relatively low
temperatures (<80 ◦C), as samples were more prone to collapse when compared to the control samples
without basalt fiber.

3. Experimental Methods

3.1. Wheel-Tracking Test

The wheel-tracking test was performed in accordance with the Chinese standard JTG E20 T0719
in order to evaluate the permanent deformation resistance of asphalt mixtures. Slab samples with the
size of 300 mm × 300 mm × 50 mm were used for this test. The wheel speed was set to be 42 passes per
minute with a default pressure of 0.7 MPa and test temperature of 60 ◦C. Based on the recorded rutting
depth, dynamic stability (DS) was calculated by Equation (1). Generally, a higher DS value will be
expected to achieve superior rutting resistance.

DS =
(t2 − t1) ×N

d2 − d1
×C1 ×C2 (1)

where d1 is the rut depth at the timing of 45 min (mm), d2 is the rut depth at the timing of 60 min (mm),
C1 and C2 are experimental coefficients, C1 = C2 = 1.0 in this study, N means the numbers of wheel
passing in one minute, N = 42 passes/min.

3.2. Uniaxial Penetration Test

The uniaxial penetration test was employed in accordance with the Appendix F of the Chinese
standard JTG D50 in to evaluate the high-temperature shear resistance of asphalt mixtures, as shown in
Figure 2. Cylindrical specimens with a diameter of 150 mm and height of 100 mm were used. This test
was also conducted at 60 ◦C, and the load was applied through a metal plunger (Figure 2a) with a
loading rate of 1 mm/min. Procedure details of this test are available in the reference [45]. The shear
strength can be expressed by Equation (2).

τ0 = f × F/Ac (2)

where τ0 is the shear strength (MPa), F is the maximum load (N), Ac is the cross-section area (mm2),
f = 0.350, representing the sample dimension correction coefficient.
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3.3. Freeze-Thaw Splitting Test

The freeze-thaw splitting test was conducted to access the moisture susceptibility of asphalt
mixtures, according to the Chinese standard JTG E20 T0729. Two groups of Marshall samples were used
in this test. The unconditioned group samples were soaked in a water bath of 25 ◦C for 2 h, while the
conditioned group samples were firstly frozen at −18 ◦C for 16h, then thawed in a water bath of 60 ◦C
for 24 h, and finally soaked in a water bath of 25 ◦C for 2h before the splitting procedure. The indirect
tensile strength ratio (ITSR) was defined to evaluate the strength loss caused by freeze-thaw conditions,
as shown in Equation (3).

ITSR =
ITS o f conditioned samples

ITS o f unconditioned samples
× 100% (3)

3.4. Low-Temperature Bending Beam Test

The low-temperature bending beam test was carried out in accordance with the Chinese standard
JTG E20 T0715 in order to evaluate the tensile property of asphalt mixtures at a low temperature.
The dimension of the beam sample was 250 mm × 30 mm × 35 mm. This test was run at −10 ◦C
with a loading rate of 50 mm/min by a three-point bending mode. The flexural-tensile strength,
maximum flexural-tensile strain at failure point, and flexural stiffness modulus were calculated by
Equations (4)–(6).

RB = 3LPB/2bh2 (4)

εB = 6hl/L2 (5)

SB = RB/εB (6)

where RB is the flexural-tensile strength (MPa), PB is the peak load at failure (kN), εB is the flexural-tensile
strain (µε), SB is the flexural stiffness modulus (MPa), l is the mid-span deflection at failure (mm),
L, b and h are the length, width and height of the beam sample (mm), respectively.

3.5. Semicircular Bend Fracture Test

The semicircular bend (SCB) fracture test was employed to determine the fracture potential of
asphalt mixtures at intermediate temperature, according to the American standard AASHTO TP 124.
The dimension of the SCB samples was 150 ± 1.0 mm in diameter, 50 ± 1.0 mm in thickness, and with a
notch of 15 ± 1.0 mm. This test was conducted at 25 ◦C with a loading rate of 50 mm/min. The flexibility
index (FI), which is rather sensitive to recycled materials, has been proposed to identify brittle mixtures
that are prone to premature cracking. The FI was defined as the total fracture energy divided by the
absolute value of the slope at the inflection point, as shown in Equations (7) and (8).

G f =
W f

Arealig
× 106 (7)

FI =
G f

|m|
(8)

where G f is the fracture energy (J/m2), W f is the work of the fracture (J), Arealig is the ligament area
(mm2), |m| is the absolute value of the slope m at the inflection point (kN/mm).

3.6. Indirect Tensile Asphalt Cracking Test

The indirect tensile asphalt cracking test (IDEAL-CT) was carried out to evaluate the cracking
resistance of asphalt mixtures with RAP. The IDEAL-CT, which was developed by Zhou [46],
was conducted by similar procedures with the conventional indirect tensile strength test, as shown in
Figure 3. The cylindrical specimens with a diameter of 150 mm and a thickness of 62 mm were used in
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this study. The air voids of all samples were kept within 7 ± 0.5%. This test was also run at 25 ◦C with
a loading rate of 50 mm/min. CTindex was proposed as a simple and fast index to determine the crack
growth rate of asphalt mixtures, which is defined by Equation (9). Fracture energy until failure was
defined to determine the energy causing initial cracking, which is the area under the curve before the
failure point, as shown in Figure 4.

CTindex =
G f

|m75|
×

l75

D
(9)

where G f is the fracture energy (J/m2), |m75| is the absolute value of the slope at the 75% inflection point
of the peak load (kN/mm), l75 is the displacement at the 75% point of the peak load (mm), and D is the
diameter of the sample (mm).
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Besides, three to six replicates were conducted for each test according to the corresponding
requirement. The mean values of the replicates were resultantly used for analysis and discursion.
In addition, error bars, which represent plus and minus one standard deviation, are also illustrated in
the relevant figures.

4. Results and Discussion

4.1. Effect of Basalt Fiber on High-Temperature Performance of Asphalt Mixtures with RAP

4.1.1. Wheel-Tracking Test Results

The dynamic stability results from the wheel-tracking test are illustrated in Figure 5. In terms of the
control group samples, the dynamic stability values presented an increasing trend with an increasing
RAP content. For instance, the dynamic stability of asphalt mixtures increased from 3235 passes/mm
to 4320 passes/mm when RAP content increased from 0% to 50%. Higher dynamic stability means
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superior high-temperature deformation resistance. It infers that higher RAP content can result in a
property that allows better resistance to high-temperature deformation for asphalt mixtures due to its
stiffening impact.

Materials 2020, 13, x FOR PEER REVIEW 8 of 20 

4.1. Effect of Basalt Fiber on High-Temperature Performance of Asphalt Mixtures with RAP 

4.1.1. Wheel-Tracking Test Results  

The dynamic stability results from the wheel-tracking test are illustrated in Figure 5. In terms 
of the control group samples, the dynamic stability values presented an increasing trend with an 
increasing RAP content. For instance, the dynamic stability of asphalt mixtures increased from 3235 
passes/mm to 4320 passes/mm when RAP content increased from 0% to 50%. Higher dynamic 
stability means superior high-temperature deformation resistance. It infers that higher RAP content 
can result in a property that allows better resistance to high-temperature deformation for asphalt 
mixtures due to its stiffening impact. 

With regard to the samples with a certain RAP content, the dynamic stability values of asphalt 
mixtures escalated significantly when basalt fiber was introduced, which was in accordance with 
the results from the reference [42]. The improvement ratio of dynamic stability caused by basalt 
fiber was calculated and illustrated as the red line in Figure 5. Compared to the control samples 
without basalt fiber, the dynamic stability values of fiber-reinforced asphalt mixtures with 0%, 30%, 
40%, and 50% RAP increased by 24.5%, 18.3%, 13.4% and 13.0%, respectively. This indicates that the 
addition of basalt fiber can enhance the high-temperature deformation resistance of asphalt mixture 
to a great extent. However, this enhancing effect would be weakened by RAP content. The reason 
might be that basalt fiber can absorb some parts of the light components of the asphalt binder [41], 
resulting in higher viscosity of the binder and subsequently better high-temperature performance. 
However, less light components could be absorbed by basalt fiber when high RAP content was 
utilized in asphalt mixtures, leading to a reduction in the enhancing effect. 

0

1000

2000

3000

4000

5000

6000
 control
 with basalt fiber

 0%               30%               40%               50%  
                           RAP content    

D
yn

am
ic

 S
ta

bi
lit

y 
(p

as
se

s/m
m

)

0

10

20

30

40

50

60

 improvement

Im
pr

ov
em

en
t (

%
)

 

Figure 5. Wheel-tracking test results of control and basalt fiber-reinforced asphalt mixtures. 

4.1.2. Uniaxial Penetration Test Results 

The shear strength results from uniaxial penetration test are shown in Figure 6. As for the 
control group samples, it can be seen that asphalt mixtures exhibited a remarkable increase in shear 
strength when 30% RAP was added, reaching 97.6% higher than the asphalt mixtures with 0% RAP. 
It is worth noting that shear strength reached the maximum value when 40% RAP was used, and 
then declined a little bit by adding more RAP. These findings disagree with the dynamic stability 
results, which kept growing with increasing RAP content. This indicates that the stiff RAP material 
does significantly impact the high-temperature shear strength of asphalt mixtures, resulting in 
superior high-temperature performance. However, excessive RAP can not only cause cracking 
problems; it can also lead to a reduction in shear strength. Therefore, the uniaxial penetration test 
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With regard to the samples with a certain RAP content, the dynamic stability values of asphalt
mixtures escalated significantly when basalt fiber was introduced, which was in accordance with the
results from the reference [42]. The improvement ratio of dynamic stability caused by basalt fiber was
calculated and illustrated as the red line in Figure 5. Compared to the control samples without basalt
fiber, the dynamic stability values of fiber-reinforced asphalt mixtures with 0%, 30%, 40%, and 50%
RAP increased by 24.5%, 18.3%, 13.4% and 13.0%, respectively. This indicates that the addition of
basalt fiber can enhance the high-temperature deformation resistance of asphalt mixture to a great
extent. However, this enhancing effect would be weakened by RAP content. The reason might be
that basalt fiber can absorb some parts of the light components of the asphalt binder [41], resulting
in higher viscosity of the binder and subsequently better high-temperature performance. However,
less light components could be absorbed by basalt fiber when high RAP content was utilized in asphalt
mixtures, leading to a reduction in the enhancing effect.

4.1.2. Uniaxial Penetration Test Results

The shear strength results from uniaxial penetration test are shown in Figure 6. As for the control
group samples, it can be seen that asphalt mixtures exhibited a remarkable increase in shear strength
when 30% RAP was added, reaching 97.6% higher than the asphalt mixtures with 0% RAP. It is worth
noting that shear strength reached the maximum value when 40% RAP was used, and then declined a
little bit by adding more RAP. These findings disagree with the dynamic stability results, which kept
growing with increasing RAP content. This indicates that the stiff RAP material does significantly
impact the high-temperature shear strength of asphalt mixtures, resulting in superior high-temperature
performance. However, excessive RAP can not only cause cracking problems; it can also lead to a
reduction in shear strength. Therefore, the uniaxial penetration test can provide a different perspective
to evaluate the high-temperature performance, which may be used as a complementary approach to
the wheel-tracking test.

In terms of the samples with basalt fiber, the shear strength values further increased compared
to the control samples. The improvement ratio caused by basalt fiber was also plotted as the red
line in Figure 6. Compared to the control samples without basalt fiber, the improvement ratio of
fiber-reinforced asphalt mixtures with 0%, 30%, 40%, and 50% RAP increased by 11.6%, 9.4%, 7.6% and
9.5%, respectively. This indicates that the addition of basalt fiber can reinforce the shear strength of
asphalt mixtures with RAP to some extent, but not as much as the effect caused by RAP.



Materials 2020, 13, 3145 9 of 19

Materials 2020, 13, x FOR PEER REVIEW 9 of 20 

can provide a different perspective to evaluate the high-temperature performance, which may be 
used as a complementary approach to the wheel-tracking test. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
 control
 with basalt fiber

 0%              30%               40%               50%  
                          RAP content    

Sh
ea

r 
St

re
ng

th
 (M

Pa
)

0

5

10

15

20

25

30

35

 improvement

Im
pr

ov
em

en
t(%

)

 

Figure 6. Uniaxial penetration test results of control and basalt fiber-reinforced asphalt mixtures. 

In terms of the samples with basalt fiber, the shear strength values further increased compared 
to the control samples. The improvement ratio caused by basalt fiber was also plotted as the red line 
in Figure 6. Compared to the control samples without basalt fiber, the improvement ratio of 
fiber-reinforced asphalt mixtures with 0%, 30%, 40%, and 50% RAP increased by 11.6%, 9.4%, 7.6% 
and 9.5%, respectively. This indicates that the addition of basalt fiber can reinforce the shear 
strength of asphalt mixtures with RAP to some extent, but not as much as the effect caused by RAP. 

4.2. Effect of Basalt Fiber on Moisture Susceptibility of Asphalt Mixtures with RAP 

The indirect tensile strength (ITS) and indirect tensile strength ratio (ITSR) results from the 
freeze-thaw splitting test are illustrated in Figure 7. With regard to the control group samples, it can 
be seen that asphalt mixtures presented a sharp fall in the ITSR by the increasing RAP content, as 
shown in the black line in Figure 7. The ITSR values declined from 87.7% to 77.8% when RAP 
content increased from 0% to 50%. Meanwhile, in terms of the samples with basalt fiber (BF), the 
ITSR values showed a similar decreasing trend to the control samples, as shown in the red line in 
Figure 7. Moreover, no distinct variations in the ITSR could be observed between the control and 
fiber-reinforced samples. It seemed that basalt fiber had no impact on the moisture susceptibility of 
asphalt mixtures with RAP. Nevertheless, it can be noticed from the bar charts in Figure 7 that the 
ITS values of the fiber-reinforced samples, for both unconditioned and conditioned ones, increased 
significantly compared to the control samples, indicating that the fiber-reinforced samples possess 
better strength, even after the severely conditioned freeze-thaw procedures. 

Figure 6. Uniaxial penetration test results of control and basalt fiber-reinforced asphalt mixtures.

4.2. Effect of Basalt Fiber on Moisture Susceptibility of Asphalt Mixtures with RAP

The indirect tensile strength (ITS) and indirect tensile strength ratio (ITSR) results from the
freeze-thaw splitting test are illustrated in Figure 7. With regard to the control group samples, it can be
seen that asphalt mixtures presented a sharp fall in the ITSR by the increasing RAP content, as shown in
the black line in Figure 7. The ITSR values declined from 87.7% to 77.8% when RAP content increased
from 0% to 50%. Meanwhile, in terms of the samples with basalt fiber (BF), the ITSR values showed
a similar decreasing trend to the control samples, as shown in the red line in Figure 7. Moreover,
no distinct variations in the ITSR could be observed between the control and fiber-reinforced samples.
It seemed that basalt fiber had no impact on the moisture susceptibility of asphalt mixtures with RAP.
Nevertheless, it can be noticed from the bar charts in Figure 7 that the ITS values of the fiber-reinforced
samples, for both unconditioned and conditioned ones, increased significantly compared to the control
samples, indicating that the fiber-reinforced samples possess better strength, even after the severely
conditioned freeze-thaw procedures.Materials 2020, 13, x FOR PEER REVIEW 10 of 20 
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Therefore, a new index of the ITSR’ was defined by the ITS of conditioned samples with BF
divided by the ITS of unconditioned control samples, as shown in Equation (10). The comparisons of
the ITSR of control samples to the ITSR’ were plotted in Figure 8, as they shared the same denominator
as the benchmark for comparison.

ITSR′ =
ITS o f conditioned samples with BF

ITS o f unconditioned control samples
× 100% (10)

It can be observed from Figure 8 that the ITSR’ showed a tremendous growth compared to the
ITSR of control samples. The ITSR’ values increased by 25.9, 15.9, 9.8 and 7.4 percentage points for
asphalt mixtures with 0%, 30%, 40% and 50% RAP, respectively. From this perspective, adding basalt
fiber can enhance the moisture susceptibility of asphalt mixtures with RAP significantly. These findings
are in accordance with the results in [42]. This reinforcement may be due to the spatial network
structure formed by basalt fiber in the asphalt mixtures.
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4.3. Effect of Basalt Fiber on Low-Temperature Performance of Asphalt Mixtures with RAP

The flexural stiffness modulus and flexural-tensile strain results from the low-temperature bending
beam test are shown in Figures 9 and 10. It can be seen from Figure 9 that the flexural stiffness modulus
of the control samples increased dramatically with an increasing RAP content. For instance, the stiffness
modulus of asphalt mixtures increased by 71.3% when 30% RAP was added. Meanwhile, the stiffness
modulus decreased to a certain extent by introducing basalt fiber to the samples with each RAP content.
This means that basalt fiber can compensate for the stiffening impact caused by RAP and make the
relevant asphalt mixtures more flexible at a low temperature, which is potentially beneficial to the
low-temperature cracking resistance.

As shown in Figure 10, the flexural-tensile strain values of the control samples descended greatly.
For instance, the flexural-tensile strain decreased from 3053 µε to 2240 µε when the RAP content rose
from 0% to 50%, indicating the negative impact caused by RAP on the low-temperature cracking
resistance of asphalt mixtures. With regard to the fiber-reinforced asphalt mixtures, the flexural-tensile
strain values improved greatly for the samples with each RAP content, and these results are in line with
the findings in [34]. The improvement ratio of flexural-tensile strain caused by basalt fiber was plotted
as the red line in Figure 10. Compared to the control samples without basalt fiber, the flexural-tensile
strain values increased by 22.3%, 15.8%, 18.2% and 17.5% for the fiber-reinforced asphalt mixtures
with 0%, 30%, 40%, and 50% RAP, respectively. This means that adding basalt fiber does improve the
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low-temperature performance of asphalt mixtures with RAP. This may be due to the high fracture
strength and superior elongation at the break of basalt fiber, which can bear and transit the stress and
delay the fracture development [34].
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4.4. Effect of Basalt Fiber on Cracking Resistance of Asphalt Mixtures with RAP

4.4.1. SCB Fracture Test Results

The fracture energy Gf and the flexibility index (FI) from the SCB fracture test are illustrated in
Figures 11 and 12. It can be seen from Figure 11 that the Gf values of the control samples dropped
sharply with an increasing RAP content. For instance, the Gf of asphalt mixtures declined from
3348J/m2 with 0% RAP to 924 J/m2 with 50% RAP. This indicates that incorporating RAP into asphalt
mixtures reduces its toughness and subsequently leads to inferior cracking resistance. In terms of the
fiber-reinforced samples, the Gf values increased compared to the control ones. Specifically, the Gf

increased by 10.1%, 11.9%, 16.1% and 37.0% for the mixtures with 0%, 30%, 40% and 50% RAP,
respectively. The higher the RAP content, the greater the improvement in the fracture energy of asphalt
mixtures caused by basalt fiber.
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resultant strain [31]. Therefore, mixtures with RAP can bear higher stress results in enhanced 
fracture energy until failure. Besides, the fracture energy until failure of the fiber-reinforced 
mixtures further increased compared to those of the control samples with each RAP content. This 
result can be due to the strengthening effect caused by basalt fiber. 
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with an increasing RAP content. This infers that using RAP will contribute to the accelerated 
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As shown in Figure 12, flexibility index (FI) values of the control samples also presented a
sharp falling trend by increasing the RAP content, indicating a huge reduction in the cracking
resistance of asphalt mixtures. However, FI values improved dramatically by introducing basalt
fiber. The improvement ratio of FI caused by basalt fiber was plotted as the red line in Figure 12.
Compared to the control sample, the FI values increased by 60.7%, 80.5%, 83.4% and 162.1% for the
fiber-reinforced asphalt mixtures with 0%, 30%, 40%, and 50% RAP, respectively. The higher the RAP
content, the greater the improvement ratio in the FI of asphalt mixtures. These findings are in line with
the previous research [26]. One possible explanation for this result would be that the network structure
of basalt fiber can reduce the stress concentration and delay crack propagation at an intermediate
temperature. It is worth noting that the SCB fracture test is very sensitive to asphalt mixtures with
RAP, as both Gf and FI presented a distinct decrease when RAP was used. However, the coefficient of
variation (COV) is relatively high, especially for the FI values with the COV range of 22.5% to 74.8%.
Furthermore, the COV of FI values increased with an increase in RAP content.

4.4.2. IDEAL Cracking Test Results

The fracture energy until failure and the CTindex from the IDEAL cracking test are shown in
Figures 13 and 14. It can be observed from Figure 13 that the fracture energy until failure enhanced
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greatly by increasing the RAP content for the control samples. This indicates that asphalt mixtures
with RAP can bear higher fracture energy until the crack initiation. The reason for this could be that
adding RAP material makes the mixtures stiffer and more brittle, and the load-bearing capacity of the
mixtures dominates the impact on the fracture energy rather than the resultant strain [31]. Therefore,
mixtures with RAP can bear higher stress results in enhanced fracture energy until failure. Besides,
the fracture energy until failure of the fiber-reinforced mixtures further increased compared to those of
the control samples with each RAP content. This result can be due to the strengthening effect caused
by basalt fiber.
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As shown in Figure 14, CTindex values of the control samples also exhibited a deep drop trend
with an increasing RAP content. This infers that using RAP will contribute to the accelerated cracking
propagation of asphalt mixtures. However, CTindex values also grew significantly by adding basalt
fiber. The improvement ratio of CTindex caused by basalt fiber is shown as the red line in Figure 14.
Compared to the control sample, the CTindex increased by 66.1%, 104.6%, 104.7% and 130.1% for the
fiber-reinforced asphalt mixtures with 0%, 30%, 40%, and 50% RAP, respectively. The higher the RAP
content, the greater the improvement ratio in the CTindex of asphalt mixtures. This indicates that basalt
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fiber can effectively slow down the cracking propagation rate, and subsequently enhance the cracking
resistance of asphalt mixtures with RAP. Besides, it is clear that the CTindex is also rather sensitive to
the impact caused by RAP on the cracking resistance of asphalt mixtures. Though it increased with an
increasing RAP content, the COV of CTindex values was within the range of 5.5% to 21.2%, which was
much smaller than those of FI values. Therefore, the CTindex results were chosen for further discussions
in the next section.

4.5. Performance-Space Diagram Analysis

Buttlar [47] proposed the “Hamburg-DC (T) Performance-Space Diagram” to evaluate the high-
and low-temperature performance of asphalt mixtures through a two-dimensional view. This diagram
provides a visualized tool to determine the effect of additives and (or) alternative materials on
the rutting and cracking behavior of asphalt mixtures simultaneously. Inspired by this diagram,
the results from the wheel-tracking test and low-temperature bending beam test were chosen to
represent the high- and low-temperature mixture performance in order to develop the so-called
“dynamic stability-flexural-tensile strain (DS-FTS) performance-space diagram”. Specifically, dynamic
stability (DS) and flexural-tensile strain (FTS) values were plotted on the Y-axis and X-axis, respectively,
as shown in Figure 15.
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According to the Chinese standard JTG F40, the wheel-tracking test is unusually accompanied
with three levels of DS thresholds based on climate regions (1800, 2400, and 2800 passes/mm for summer
standard hot regions, summer very hot regions and summer extremely hot regions, respectively).
Meanwhile, the low-temperature bending beam test also comes with three levels of FTS thresholds
(2500, 2800, and 3000 µε for winter standard and heavy cold regions, winter very cold regions and
winter extremely cold regions, respectively). The summer extremely hot region and all the cold regions
have been identified on this diagram. The control group samples were marked as “Ctrl” with the
RAP content as the subscript, while the fiber-reinforced samples were marked as “BF”. Moreover,
the effects of RAP and basalt fiber on the mixture performance shift were denoted by the dotted-line
and solid-line arrows, respectively.

It can be seen from Figure 15 that the control samples with 0% RAP (marked as Ctrl0) presented
qualified high- and low-temperature performance. The mixture performance moved to the upper-left
section with an increasing RAP content. This indicates that the mixtures have superior rutting resistance,
but risk high cracking potential. It is noteworthy that 30% RAP lead to a two-level degradation in FTS,
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which means that the low-temperature performance of mixtures shifted from the “winter extremely
cold region” to the “winter standard and heavy cold regions”. Furthermore, both mixtures with 40%
and 50% RAP failed in the FTS requirement and were recognized as unqualified mixtures. Meanwhile,
it is clear that the mixture performance moved toward to the upper-right section by introducing
basalt fiber to mixture with each RAP content. This means that both rutting and cracking resistance
have been enhanced desirably. Specifically, basalt fiber resulted in a two-level bump in FTS for the
mixtures with 30% and 40% RAP, and a one-level bump for the mixtures with 50% RAP. Therefore,
compared to the control mixtures with 0% RAP, the mixtures with 30% RAP exhibited competitive
low-temperature performance but better rutting resistance when basalt fiber was used. Moreover,
due to the reinforcement caused by basalt fiber, the performance of unqualified mixtures with 50%
RAP shifted into the same climate region as that of the control mixtures with 30% RAP. This infers
that using basalt fiber can improve the performance of asphalt mixtures with RAP, or maintain the
performance at a desirable level while increasing RAP content.

In addition, the shear stress (SS) results from the uniaxial penetration test and CTindex results from
the IDEAL cracking test were also plotted on the Y-axis and X-axis, respectively in order to develop
the “SS-CTindex performance-space diagram”, as shown in Figure 16. Zhou [46] proposed three levels
of CTindex thresholds based on mixture gradation type (65, 105, 145 for dense-graded, superpave,
and Stone Matrix Asphalt (SMA) gradation, respectively), which were identified on this plot. It can
be seen from Figure 16 that the mixture performance also shifted to the upper-left section with an
increasing RAP content. However, the CTindex of the control mixtures with RAP still fell into the
qualified zone. Even the CTindex of mixtures with 50% RAP meet the requirement for dense-graded
gradation, while the mixtures with 30% and 40% RAP present comparable CTindex to that of superpave
gradation. It is of no doubt that the mixture performance moved toward to the upper-right section
again by adding basalt fiber, indicating that both rutting and cracking resistance have been enhanced
for mixtures with each RAP content. Moreover, the CTindex of all the mixtures with basalt fiber met
the requirement for SMA gradation. This means that using basalt fiber can slow down the crack
propagation rate to a great extent. However, the CTindex thresholds proposed so far may not be
universally applicable. More tests and corrections need to be conducted for both lab and filed mixtures.
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5. Conclusions

This study has evaluated the effect of basalt fiber on the pavement performance of asphalt
mixtures with high RAP contents by means of high- and low-temperature resistance, moisture
susceptibility, and intermediate-temperature cracking resistance according to a series of laboratory
tests. The performance-space diagram was plotted to analyze the performance changes caused by
basalt fiber. Based on the analysis and discussion mentioned previously, the following conclusions can
be drawn:

(1) Basalt fiber further enhances the high-temperature performance of asphalt mixtures by increasing
both of the dynamic stability and shear stress, despite the stiffening effect caused by RAP. However,
shear stress presents a declining trend when RAP content exceeds 40%, indicating a reduction in
rutting resistance when excessive RAP material is used.

(2) Basalt fiber improves the indirect tensile strength (ITS) of conditioned and unconditioned samples.
Based on the ratio of ITS of the conditioned fiber-reinforced samples when compared with the
unconditioned control samples, superior moisture susceptibility of the fiber-reinforced mixtures
could be determined, especially for the mixtures with RAP.

(3) Basalt fiber compensates for the stiffening impact caused by RAP at low temperature, subsequently
resulting in better low-temperature cracking resistance of asphalt mixtures with RAP.

(4) Basalt fiber not only increases the fracture energy before crack initiation, but also slows down the
cracking propagation rate at an intermediate temperature, meaning an overall improvement in
intermediate-temperature cracking resistance of asphalt mixtures with RAP.

(5) Based on the “DS-FTS performance-space diagram”, basalt fiber improves both rutting and
cracking resistance of asphalt mixtures with RAP simultaneously to a great extent. When basalt
fiber is used, mixtures with 30% RAP exhibit comparable performance to control mixtures with
0% RAP, while unqualified mixtures with 50% RAP present a competitive performance to control
mixtures with 30% RAP.

(6) Overall, adding basalt fiber can improve the performance of asphalt mixtures with RAP
significantly, or increase the RAP content while maintaining the desired performance.

This study used an extensive range of laboratory tests to access the pavement performance of
mixtures reinforced by basalt fiber. However, based on the recommendation from T/CHTS 10016-2019,
only the basalt fiber with a length of 6 mm and a dosage of 0.3% were used. Different fiber lengths
and dosage could be considered in future studies. Besides, a fatigue test and more low-temperature
cracking tests such as DC (T) test (American standard ASTM D7313) could be performed to make a
comprehensive investigation into the cracking resistance caused by basalt fiber. Furthermore, a life-cycle
cost analysis is also a very interesting topic for future research.
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