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Abstract 

Current ligand-based machine learning methods in virtual screening rely heavily on molecular fingerprinting for 
preprocessing, i.e., explicit description of ligands’ structural and physicochemical properties in a vectorized form. Of 
particular importance to current methods are the extent to which molecular fingerprints describe a particular ligand 
and what metric sufficiently captures similarity among ligands. In this work, we propose and evaluate methods that 
do not require explicit feature vectorization through fingerprinting, but, instead, provide implicit descriptors based 
only on other known assays. Our methods are based upon well known collaborative filtering algorithms used in 
recommendation systems. Our implicit descriptor method does not require any fingerprint similarity search, which 
makes the method free of the bias arising from the empirical nature of the fingerprint models. We show that implicit 
methods significantly outperform traditional machine learning methods, and the main strengths of implicit methods 
are their resilience to target-ligand sparsity and high potential for spotting promiscuous ligands.
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Introduction
Virtual screening is an automated computational method 
of filtering candidate ligands based upon their inferred 
relationship with a given target. Screening virtually has a 
number of cost saving advantages over high throughput 
screening methods and is a vital part of the drug discov-
ery process [1–5].

However, the cost saving advantages of virtual screen-
ing must be reconciled with their ability to accurately 
find ligands with desired properties from relatively few 
examples. This is especially true for methods that employ 
traditional machine learning algorithms to predict bind-
ing affinity. The ability of traditional machine learning 
algorithms to effectively predict binding affinities against 
a specific target depends on the number of ligands 
assayed for that target. This is problematic for traditional 
machine learning algorithms because they generally 
require many training examples before they can predict 
the outcome reliably. Moreover, from these relatively few 

examples, the virtual screening algorithm must score 
candidates well early in the process of ranking (i.e., the 
early recognition problem).

To our knowledge, all existing works employ the use of 
explicit structure featurization in order to “fit” the prob-
lem into the workflow of traditional machine learning 
modeling. These works rely heavily on the cheminfor-
matics tools, such as RDKit [6], to featurize ligands into a 
finite number of descriptors that characterize the ligandś 
geometry and physicochemical properties. Explicit prior 
knowledge of the ligand’s physical structure (either two- 
or three-dimensional) and its chemical formula is a nec-
essary condition for featurization [7–9].

While knowing the ligand structure is not typically a 
limiting problem (at least for the case of two-dimensional 
representation), the reliance on traditional machine 
learning algorithms to map from these explicit features 
to a desired outcome requires many training examples. 
More reliable mapping comes at the expense of needing 
more training assays so that the machine learning model 
can learn the relevant portions of the features for the 
desired task.
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In this work, we mitigate the need for large datasets 
of dense assay examples by adopting an “implicit” struc-
ture model of the ligands. That is, for a given ligand, we 
use the assay results of other implicitly similar ligands to 
help predict if a particular ligand binds to a target. The 
measure of similarity is only based on the results of the 
recorded assays, not featurized descriptors of the ligand. 
By using this implicit similarity, we can more readily pre-
dict if a ligand will bind to a target with far fewer training 
examples per target. In this way, our method can better 
understand the implicit structure of a given ligand using 
assays from another ligand. Thanks to the availability of 
well-curated and constantly growing databases of assay 
outcomes such as ChEMBL [10], implicit structure meth-
ods can increase their ability to effectively predict bind-
ing affinity to targets with sparse assay examples from the 
sheer volume of other assay examples.

To model implicit structure through similarity, we 
choose to explore a machine learning method known as 
collaborative filtering. Collaborative filtering [11, 12] is a 
technique widely used to develop recommender systems, 
the algorithms designed to predict the interests of a user 
based on the analysis of the preferences from many users. 
For example, when deciding to recommend a movie to 
a particular user, collaborative filtering is a means for 
selecting other similar users, then using the ratings of 
these similar users to predict if the user might enjoy a 
particular movie. The implicit “preferences” of the user 
are modeled with collaborative filtering. In this work, we 
investigate various methods of collaborative filtering for 
their utility in inferring binding affinity for virtual screen-
ing. In particular, our contributions include:

1.	 An investigation into how collaborative filtering 
methods can be used to predict binding affinity of 
ligand-target pairs. We compare collaborative filter-
ing methods to traditional machine learning methods 
that use explicit fingerprinting from the RDKit pack-
age, showing collaborative filtering performs on-par 
with other methods in terms of all evaluation criteria, 
including enrichment factor even without the knowl-
edge of explicit ligand’s explicit physical structure.

2.	 An evaluation of collaborative filtering categorized 
by the amount of required training assays needed for 
a target of interest, showing that collaborative filter-
ing has a significant performance advantage when 
the number of training assays for a given target is 
relatively low.

3.	 An introduction of “Implicit Target and Ligand Fin-
gerprints”, a new type of ligand fingerprinting derived 
from the latent factors employed by the collaborative 
filtering method.

Methods
Many previous research approaches have investigated 
methods for virtual screening. We categorize related 
work in this section through its usage of traditional 
machine learning methods. Methods that employ com-
plex physical simulation, such as docking, are grouped as 
“Alternative Methods” as they share the least amount of 
overlap in methodology to our work. We discuss machine 
learning methods in more detail to help distinguish and 
motivate our work.

Alternative virtual screening methods
Virtual screening methods that employ detailed physical 
simulation of the binding of ligands and targets are typi-
cally called “structure-based methods,” docking being the 
most prominent exemplar of such a method. Docking 
methods consist of physically modeling the binding site 
of a target and scoring how well a ligand binds to the site 
in various poses [13]. The performance of a docking tool 
depends overwhelmingly on the scoring function used 
and methods for assessing the binding site and ligand 
structure. Until recently, these methods were limited 
because the scoring function was predetermined by the 
developers of the docking software, which made it diffi-
cult or impossible to improve the performance by enlarg-
ing the training dataset [13–15]. However, the advances 
of machine learning in drug discovery made it possible 
to develop ML-based scoring functions which noticeable 
outperform classical, or expert-based, scoring functions 
[16].

Machine learning for virtual screening
Molecular fingerprinting Molecular fingerprints have 
become the basis of ligand-based virtual screening whose 
requirement is that the molecular structural and phys-
icochemical features are to be represented in the format 
comprehensible by a computer program, such as a binary 
vector of predetermined length. Fingerprint types are 
classified into several families based on the underlying 
feature-to-numeral mapping algorithm:

•	 Dictionary-based fingerprints, often referred to as 
keys. In this method, the structure of the molecule 
to be fingerprinted is inspected for the presence (or 
absence) of certain structural fragments from the 
predefined list, the resulting fingerprint vector ele-
ments being ones (if the molecule contains the struc-
tural fragment) and zeros (for the substructures not 
found in the molecule). Examples of the fingerprints 
belonging to this family are MACCS keys [17] and 
PubChem keys [18], comprised of 166 and 883 keys, 
respectively.
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•	 Topological fingerprints. These include linear [19], 
atom pair-based [20], dendritic [19], and torsional 
fingerprints [21]. These fingerprints encode the types 
of molecule’s atoms and paths between them.

•	 Circular or radial fingerprints [22]. The structural 
features to be encoded by these fingerprints are 
constructed by iterating through all atoms and pick-
ing an atom and including its atomic surroundings 
within N bonds. Whether the focus is on the atom 
types (extended-connectivity fingerprints) or phar-
macophoric features (functional-connectivity finger-
prints), the resulting fingerprints can be represented 
as bit strings and count vectors.

As of today, extended-connectivity fingerprints with the 
radius 2 (and the diameter of 4) represented in a form of 
a bit string (ECFP4 [22]) is one of the most popular fin-
gerprints in virtual screening. Its popularity is owed by 
several benchmark studies [23, 24] whereby it was shown 
to outperform other fingerprinting methods. It is this fin-
gerprinting method that we used as the explicit-descrip-
tor baseline when comparing with our implicit-descriptor 
method based on collaborative filtering.

Models using explicit fingerprinting A common method 
used to evaluate explicit fingerprints is to perform a simi-
larity search of a particular ligand which is then linked to 
the ligand activity towards a given target. A number of 
similarity distance metrics, such as Tanimoto [25–27], 
are used for such quantification. The proliferation of 
widespread, publicly available cheminformatics tools 
and molecular fingerprint similarity search algorithms 
[6, 28] dramatically boosted the number of publications 
in the ligand-based virtual screening domain [29]. Many 
researchers have investigated the use of a number of 
different machine learning models with explicit finger-
prints. In most cases, this modeling consists of building 
a machine learning model for each “target” in the data-
set. Ligands that have been assayed with this target are 
used as training data and the label of the binding affin-
ity is typically made to be binary. That is, two thresholds 
are applied to the reported binding affinity value in order 
to separate the ligands into “actives” and “non-actives.” 
Binding affinities that are in the range within the “actives” 
and “non-actives” threshold are typically discarded. 
Using these assumptions, the reported machine learning 
techniques include random forests [30–34], support vec-
tor machines [8, 35–37], k-nearest neighbors [38], naïve 
Bayes [39, 40], extreme gradient boosting [41], influ-
ence relevance voting [42], and shallow artificial neural 
networks that are typically two or three layers in depth 
[43–45].

Some works, rather than convert to problem to binary, 
opt to model the binding affinity value as a multivariate 

regression problem [46]. Even so, these works often com-
pare the regression output to a static threshold to evalu-
ate the accuracy of the methods resulting in a binary 
decision problem. There are also a number of works that 
do not rely on training a model for each specific target. 
For instance, Ramsundar et al. and Dahl et al. used multi-
task neural networks [47, 48]. In these works, the initial 
layers of the neural network are shared and trained using 
all the target-ligand pairs in the dataset. The outputs of 
these shared layers are then fed into other neural net-
work layers that are trained separately for each target. 
These methods can also be applied to traditional machine 
learning models, not just neural networks [49]. These 
methods are typically more resilient to targets with fewer 
training examples because the shared layers are trained 
with many examples. Even so, many training examples 
are required to refine the non-shared parameters for each 
target. Multi-task methodology, while having some over-
lap with our approach in that the analysis is performed 
on multiple targets simultaneously, is nevertheless differ-
ent as it relies on the ligand and target fingerprint.

Finally, recent work has investigated methods that 
employ vectorization of the targets and compounds 
[50]. In this approach, one machine learning model can 
be trained using the fingerprints for both the target and 
compound as input vectors. Theoretically this could 
reduce the training overhead for targets with fewer assays 
because the global machine learning model learns how 
to generalize its knowledge of other targets based on 
their fingerprint. However, this advantage has yet to be 
established in the literature. Moreover, these methods are 
fundamentally limited by the quality of the fingerprint-
ing of the ligands and targets. Current methods employ 
proteochemometric analysis [51], but other methods 
for fingerprinting have yet to be analyzed in conjunc-
tion with machine learning models. The work by Petrone 
et  al investigates the application of using the biological 
activity data from past assays for comparing compounds 
and there by developing a set of biological descriptors, 
termed “high-throughput screening fingerprint” (HTS-
FP) [52]. The Z-scores of the percent inhibition values 
are calculated to derive a vector of a compound’s normal-
ized inhibition values across all assays to create a com-
pounds HTS FP. While their methods also do not rely on 
the explicit molecular structures, they differ from our 
work in terms of the core algorithms used and the results 
achieved as described in subsequent sections. Addition-
ally, the superior performance demonstrated by the col-
laborative filtering algorithm discussed in this paper with 
its results for the targets with limited assays (< 100) fur-
ther differentiates our work from Petrone et al.

We also note that our methods share some overlap 
with the methods of kernel-based collaborative filtering 
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[53] and multi-task learning [47] that have been applied 
to binding affinity prediction. The collaborative filter-
ing algorithm in the study by Erhan et  al.  [53] is based 
on the JRank kernel perceptron algorithm. The basic idea 
of the algorithm is to combine collaborative filtering and 
molecular fingerprinting through a kernel function and 
a multi-layer perceptron neural network. This has the 
effect of unifying the target and compound features in a 
joint feature space in which distances (inner products) 
can be computed easily. Erhan et  al. also investigated 
using only kernel-based collaborative filtering, but their 
best results were attained with an explicit featurization 
process (fingerprinting). Moreover, the reported results 
of Erhan et al. were not conclusive, with evaluation scores 
that did not always support the use of collaborative filter-
ing. We hypothesize this was due to the amount of data 
available in their study (only 24 targets were available for 
investigation), which limits the expressiveness of collabo-
rative filtering. In our study, we see a distinct advantage 
in collaborative filtering (albeit we use different filtering 
methods and have a larger dataset).

Overview of collaborative filtering
Most virtual screening mechanisms have relied on the 
structural information of ligands and/or targets. We pro-
pose an extension to these techniques by incorporating 
the concept of collaborative filtering. Collaborative filter-
ing algorithms have been historically used in the context 
of designing recommendation systems such as movie 
recommendation engines, as well as up-sell and cross-
sell recommendation engines for e-commerce sites. In 
general, collaborative filtering is a method for making 
automatic predictions (filtering) about the interests of a 
user by collecting preferences or taste information from 
other users (collaborating) [54]. This approach relies on 
modeling predictions using past interactions between the 
users and the items rated. This is in contrast to traditional 
machine learning that models individual users or items 
based on their attributes. For example in the context of 
the movie recommendation application, a movie could 
be described by its genre, reviews, starring actors, and 
awards, and a user could be described by her/his demo-
graphic information, any past reviews, genre preferences, 
friends reviews, and so on. It quickly becomes evident 
that identifying the entire gamut of properties that accu-
rately represent the users and movies is an intractable 
task. Collaborative filtering, then, is an alternate tech-
nique which relies on past transactions without relying 
on explicit attributes of the user or movie. We extend 
this concept to the domain of virtual screening where 
we liken the targets to users and ligands to items. The 
“rating” between targets and ligands can be represented 
by the known binding affinities (active or inactive). The 

assays and their results reported in the ChEMBL data-
base serve as a useful source of interaction data for col-
laborative filtering.

In general, collaborative filtering methods can be cat-
egorized into two groups of methods: the neighborhood 
methods [55] and matrix factorization methods [56], also 
known as latent factor models. Neighborhood methods 
compute the relationship between items and/or users to 
identify similar items or like minded users to help predict 
ratings. Latent factor methods try to explain the ratings 
by characterizing the items and users on 20–100 factors, 
derived entirely from past rating patterns.

Neighborhood‑based collaborative filtering
Neighborhood methods (also called memory-based 
methods) evaluate the relationships between items and 
users by approximating the relative distance between 
users. In this scenario, there is a large user-item matrix, 
A, with users in the rows and items in the columns. A 
particular rating between a user, u, and item, i, is denoted 
as au,i . This matrix is typically sparse, with only a handful 
of ratings for each item per user. The general concept is 
to find similar users by taking the similarity among each 
row of A. In this method the system evaluates a user’s 
preference for an item based on ratings of similar users 
that have also rated that particular item [55]. More for-
mally, we define this process for a particular user, u0 , and 
item, i, as:

where U is the set of all similar users that have also rated 
item i and |U| is the total number of similar users. Vari-
ants of this measure also exist where the au,i measure is 
weighted, for example, by the relative similarity of users. 
Similarity of users can be calculated using various dis-
tances. Common measures of distance include Euclid-
ean, Cosine, and Pearson Dissimilarity. Variants also exist 
on the “rules” for judging similar users. Some methods 
look for the top-N similar users, whereas other methods 
employ a distance threshold for discerning which users 
are similar. In general, neighborhood methods tend to 
work well for a number of different applications, but suf-
fer from computational issues when the user item matrix 
A is large or very dense.

Matrix factorization method
Matrix factorization methods [54] have been one of the 
most popular implementation techniques of latent fac-
tor recommendation systems. These methods find lower 
dimensional representations of the full user-item matrix. 

au0,i =
1

|U |

∑

u∈U

au,i
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The dimensions of the lower dimensional representations 
are often called factors. In the context of movie recom-
mendation engines, the discovered factors from matrix 
factorization methods have been studied extensively. 
While there is no guarantee that the factors found rep-
resent an interpretable quantity, many times the factors 
can be identified as representing a number of interesting 
item and user properties (even though the modeling does 
not explicitly use any features of the user or item). For 
example, in movie recommendations these factors often 
“encode” obvious factors such as comedy versus drama, 
amount of action, or orientation to children. They can 
also represent less well-defined dimensions such as depth 
of character development, quirkiness, or they might 
be completely uninterpretable dimensions. For users, 
each factor represents how much the user likes movies 
that score high on the corresponding movie factor [54]. 
For the target-ligand application, then the factors might 
encode properties of the binding sites for the target or 
chemical properties of the ligands. We illustrate the met-
aphor in Fig. 1.

When applied to the domain of virtual screening, this 
method involves representing the ligands and targets as 
vectors of factors with dimensionality f, to represent the 
latent factor space, where A ≈ Â = P · Q . Here the affin-
ity predictions are modeled using the well established sin-
gular value decomposition method [57] and optimization 

procedures to minimize the reconstruction error between 
A and Â . That is, we model each known affinity at,l ∈ A 
between ligand l and target t as the following dot product 
of vectors pt and ql

where each known ligand l is associated with vector ql 
and each target associated with vector pt . Both ql and pt 
contain f elements. This operation is often represented 
in matrix form when there are L unique ligands and T 
unique targets in the database:

The optimization step involves learning the factor vectors 
ql and pt by minimizing the regularized square error on 
the set of known affinities, at,l , using standard optimiza-
tion techniques such as stochastic gradient descent algo-
rithms [58].

at,l = pt · ql

Â = P · Q =












← p1 →
← p2 →

...
← pt →

...
← pT →












� �� �

target-factor matrix

·





↑ ↑ ↑ ↑
q1 q2 . . . ql . . . qL
↓ ↓ ↓ ↓





� �� �

factor-ligand matrix

Fig. 1  Latent factor embedding. Sub figure a illustrates the concept of latent factor the latent factor recommendation for a movie recommendation 
engine. The latent factor method relies on learning hidden factors from the user-movie ratings alone. In this simplified example the system learns 
two dimensions from the ratings and places the movies and users in this 2D space. The users predicted rating of the movie would be a dot product 
of the user’s and movie’s location in the 2D space. Figure b illustrates the same concept for a target-ligand embedding. Here the latent factors 
correspond to properties that the ligands and protein targets can be jointly modeled with. The properties may correspond to a distinct chemical 
property, but might also pertain to a factor not well described by traditional cheminformatics
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where � is set of t, l for which the affinities at,l is known. 
The optimization function also includes the regulariza-
tion term with the regularization parameter � to help 
minimize over-fitting. Figure  2 illustrates the method 
with an example. The highlighted cells in the matrix At,l 
represents the known affinities between a hypotheti-
cal set of 6 ligands and 12 targets. The matrix factori-
zation involves employing single value decomposition 
[57] method to construct matrices Q and P with f = 6 
factors in this example. The optimization method 
involves reducing the square error between the known 
affinities and the predicted values of the known affini-
ties resulting from P · Q . Variants of the factorization 
methods also exist where the dot product is approxi-
mated in a larger dimensional space using kernels, 
κ(p, q) = φ(pt) · φ(ql) , where φ is a transformation of 
the vectors into a higher dimensional space. However, 
it has been previously shown that this is typically poor 
performing for target-ligand binding affinity prediction 
[53].

We note that the assay training data in the context of 
binding affinities can be sparse (as in our case where 
the observed values of affinities account to .15% of 
the matrix ). The sparsity in the matrix is due to the 
unobserved or unknown binding affinities which the 
algorithm aims to accurately predict.The optimiza-
tion algorithm learns the factor vectors by minimizing 

min
p,q

∑

t,l∈�

(at,l − pt · ql)
2

︸ ︷︷ ︸
mean square error

+ � · (||pt ||
2 + ||ql ||

2)
︸ ︷︷ ︸

regularization

the reconstruction error on the known set of affini-
ties from the training data using the stochastic gradi-
ent descent algorithm. Each observed pair of known 
affinities between targets and ligands from the training 
set are used to train the model across multiple train-
ing iterations. Additionally an adaptive sampling strat-
egy of choosing unobserved pairs complementing the 
observed affinities is also employed. The algorithm 
selects candidate negative ligands for the target for 
which affinities are not known. The algorithm scores 
each one using the current model and then incorpo-
rates the ligand with the largest predicted score for the 
subsequent training iteration. This adaptive sampling 
strategy provides faster convergence [59].

Preprocessing and evaluation methodology
Data selection from ChEMBL23
We use ligand-target bioactivity data from the ChEMBL 
database (Version 23). In an effort to keep the evalu-
ations consistent with previous studies [9],we focus 
exclusively on human targets and three types of binding 
affinity measures: half maximal inhibitory concentra-
tion ( IC50 ), half maximal effective concentration ( EC50 ), 
and the inhibitory constant ( Ki ). When more than one 
binding concentration measure was present in the data-
base, we use the Ki measure. When Ki is not present we 
look at IC50 and then EC50 to categorize the ligand-tar-
get pair as active or inactive. To convert data into the 
binary active-inactive format the following concentra-
tion thresholds were applied: < 100  nM for “actives” 
and > 1000 nM as “inactives.” We note that many other 
works apply two thresholds to the dataset and the 

Fig. 2  Illustration of the matrix factorization method. In this example the highlighted cells represent the known affinities. The SVD method 
generates the matrices P and Q. Optimization methods are employed to minimize the error between the known affinities and their predicted values
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interactions between the two ranges are discarded, as 
their classification is subjective [9, 60]. We also note 
that the thresholds selected in our study are consistent 
with the standardized activity values of the CHEMBL 
database.

The data selection methods described above resulted 
in a bioactivity matrix of size 241,260 (ligands) by 2739 
(targets), with about 0.15% of the matrix containing a real 
value. The mean inactive:active ligand ratio across targets 
in the dataset was approximately 7:3.

Figure  3 illustrates the distribution of the targets by 
the number of recorded assays available for predictions. 
It was observed that more than half of the targets in the 
data set had less than 200 recorded assays (including 
actives and inactives).

We note that there have been recent reports in the lit-
erature [60, 61] stressing that the overall model perfor-
mance is highly dependent on threshold selection for 
inactive/active as well as the ratio of inactive to active 
examples. Also, many ligand-target databases are biased 
in that the experimental data they are comprised of rep-
resents only a small, nonuniform portion of the chemi-
cal space. This leads to the over representation of certain 
types of ligand-target patterns. Furthermore, experimen-
tal binding affinity measures are often difficult to repro-
duce [62], which means there is inherent noise in the 
datasets such that perfect classification of any test set 
should not be possible (unless models are over-fitted to 
the problem). Although this has been a common knowl-
edge within the community [63], it nevertheless remains 
largely un-addressed.

Following recommendations from [61], we computed 
the bias of our training and test selection to provide an 
estimate on how trustworthy our evaluation metrics are.

Evaluation criteria
In this study three evaluation criteria are employed: the 
area under the receiver operating characteristic (AUC), 
the enrichment factor (EF), and the Boltzmann-enhanced 
discrimination of the receiver operating characteristic 
(BEDROC). We briefly describe our rationale in selecting 
these criteria, as well as an overview of the strengths and 
weaknesses of each criterion.

Our first evaluation criterion is the area under the 
receiver operating characteristic curve (ROC [64, 65], 
the curve that results when the true positive rate is plot-
ted as a function of the false positive rate). This meas-
ure ranks ligands based on their predicted probability of 
being active. An AUC value greater than 0.5 suggests that 
the classifier is better than chance at assigning an active/
inactive target-ligand pair. While widely reported in a 
number of papers that use machine learning for target-
ligand classification, the AUC does not capture impor-
tant aspects of the virtual screening problem. Specifically, 
the challenge is to rank active ligands for a given target 
from the entire dataset. A superior classification model 
would have a high true positive rate for the highest 
ranked ligands, which are the ones that would be assayed 
first (the so-called early recognition problem). The AUC 
does not take into account this early recognition, so it 
can incorrectly judge a classification model superior 
if it has an overall high true positive rate, even though 
the true positives may not occur “early” in the ranking 
of ligands. Such a model would result in many needless 
assays before becoming sufficiently accurate. Therefore, 
more suitable metrics are often sought after that do take 
into account early recognition – the two popular choices 
being Enrichment Factor (EF) and Boltzmann-Enhanced 
Discrimination of Receiver Operating Characteristic 
(BEDROC).

Enrichment Factor [66, 67] is defined as the ratio 
of correctly classified active ligands within a prede-
fined early recognition threshold compared to the total 
ligands selected by the model, further normalized by the 
expected random selection of the ligands.

where NX% is the number of ligands in the top X% of the 
ranked ligands. EF1% , then, is the ratio of true actives 
found in the top 1% of ranked ligands from a model nor-
malized by the total number of actives for a specific tar-
get. In other words, it gives an estimate on how many 
more actives can be found within the early recognition 
threshold compared to a random distribution. While this 
criterion closely matches the virtual screening problem, 
it is not appropriate to compare the EF values obtained 

EFX% =
Compoundsselected/NX%

Compoundstotal/Ntotal

Fig. 3  Number of targets by known assay counts. Illustration of the 
distribution of the number of targets by the known assay counts for 
each target. More than half of the targets have less than about 200 
recorded assays. Therefore, it is imperative that the virtual screening 
methods perform well when the number of assays is relatively sparse
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for different datasets when their number of actives differ. 
Another disadvantage of the criterion is that it assigns 
equal weights to the actives within the threshold, with-
out any knowledge that some actives bind extremely well 
and others have higher Ki concentrations. Robust Initial 
Enhancement (RIE) [68] helps mitigate this by compar-
ing two scenarios, (1) when the most active ligands are 
ranked at the beginning of the threshold and (2) when 
the most active ligands are ranked closer to the end of 
the threshold. This is achieved by applying continuously 
decreasing exponential weight when ranking ligands. The 
RIE metric is similar in meaning to EF in that it quanti-
fies the superiority (to random) of the exponential aver-
age of the distribution generated by the ranking method. 
Its minimum and maximum value dependance on (apart 
from the pre-exponent factor α ) the number of actives 
and the dataset size contributes to the metric disadvan-
tages. Nevertheless, RIE’s desirable property of differen-
tiating actives within the ordered list serves as a driving 
force for the development of the BEDROC metric, dis-
cussed next.

Bound between 0 and 1, the BEDROC metric [69] 
is interpreted as the probability that an active in the 
ordered list will be ranked before a ligand that is 
drawn from a random probability distribution func-
tion. The shape of the distribution is governed by the 
pre-exponent factor α , that must be selected by the 
user. In the words of the original authors: “It is to be 
noted that α should not be chosen in such a way that it 
represents the best performance expected by a ranking 
method, but rather it should be considered as a useful 
standard to discriminate better or worse performance 
in a real problem to which the ranking method will be 
applied.” [69]. Our study chose an α = 20 based on the 
previous study by Riniker and Landrum  [28] in their 
benchmarking of fingerprints for ligand-based virtual 
screening.

Variance and bias in validation set selection
The performance of machine learning models can be 
impacted by variance. A model with high variance per-
forms inconsistently on different validation sets. A model 
with high bias is one that is well fitted to the training data 
but fails to generalize well. Building machine learning 
models by using cross validation to separate training and 
validation can aid in quantifying variance. In our experi-
ments, the train and the test split was randomly gener-
ated by stratifying on the targets, generating a random 
split with the ratio of 70%:30% of associated ligands by 
target between the training and the validation sets.

In order to minimize the effects of variance influenc-
ing the claims in our study, we use four iterations of our 

tests including generating four sets of training and vali-
dation data and building the above mentioned models 
using implicit and explicit methods for each set of train-
ing and validation data. Modeling bias is another design 
consideration while building machine learning models to 
ensure the ability of the models to generalize beyond the 
training and validation datasets. In the field of computa-
tional chemistry the accuracy in practice is not as good 
as the benchmark results from previous virtual screening 
results [54].

Wallach and Heifets [61] introduced a new measure of 
evaluating the redundancies in the training—validation 
sets called the Asymmetric Validation Embedding Bias 
(AVE Bias). The AVE Bias measures the quality of the 
training and validation sets by measuring the similari-
ties between the actives and inactives in the validation 
sets with the actives and inactives in the training sets. 
The Bias is mathematically defined as [61]:

where, Va,Vi represent the validation sets with active and 
inactive ligands, Ta,Ti represent the training sets with 
active and inactive ligands respectively, and H(·) repre-
sents a measure of cluster similarity between the sets. The 
left AA− AI term of the AVE Bias is a measure of how 
clumped the validation actives are among the training 
actives. The right II − IA measures the degree of clump-
ing among the inactives. The study showed that the per-
formance of the ligand based screening methods strongly 
and positively correlated with the AVE Bias. Intuitively, 
it means that an algorithm might perform well because 
there is an inherent difference in the training and valida-
tion sets employed that makes the problem more easily 
separable for the validation set. Positive values indicate a 
bias, whereas negative values indicate that the problem is 
increasingly difficult because the training and validation 
sets differ in a way that makes the classification problem 
even more difficult. The AVE Bias can be measured for 
every target in the dataset. Therefore, it is appropriate to 
present the AVE Bias results as a histogram or boxplot of 
the values.

As described, we use four stratified shuffle splits of 
the data. We computed the AVE Bias for all targets in 
each of the four iterations of train-validation sets. In 
our calculations, we employed Tanimoto similarity [25] 
to compute H(·) . Figure 4 illustrates the AVE Bias scores 
using a boxplot to summarize the AVE Bias per target (a 
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separate boxplot is used for each iteration of the shuf-
fle split). All four sets of train and validation sets have 
similar AVE Bias measures. The imbalanced natured of 
our data set (inactives to actives, 7:3) in addition to the 
method of classifying molecules as active or inactive 
based on the 100 nM and 1000 nM concentration thresh-
olds and the randomized selection of training and vali-
dation set resulted in a good distribution of targets with 
varying AVE Biases across targets. In addition, it was 
also observed the data set also contained a subset of tar-
gets with a negative bias, thus makes the classification of 
actives and inactives challenging for these sets [61]. Sepa-
rate plots are shown for each iteration of the validation 
split. Each box plot represents distribution of the AVE 
Bias calculated per Target for each iteration of Training 
and validation sets. Figure 4 also illustrates the AVE Bias 
for each target in the dataset.

Results and discussion
In the following section we compare the performance of 
the implicit-descriptor methods with the performance 
of explicit-descriptor methods. A number of different 
variants of collaborative filtering methods were investi-
gated, discussed below. In addition we use two popular 
classification algorithms that are often employed in vir-
tual screening applications, Random Forests (RF) and 
K-Nearest-Neighbors (KNN) to comparatively asses the 
performance of collaborative filtering. For these base-
line classification models, we employ two “modes” of 
training: “per target” mode and a “across targets” mode.

•	 In the per target mode, a machine learning model 
was trained for each target. The features used for 
training, then, only consist of fingerprints for the 

compounds. Because we use four-fold cross valida-
tion, this results in four models created for each tar-
get.

•	 In the across targets mode, one machine learning 
model is trained using all targets and ligands. This 
method requires that we use training features com-
prised of fingerprints for each compound and finger-
print of each target. Because we use four-fold cross 
validation, this results in four models trained.

We create explicit structural fingerprinting of the com-
pound using RDKit [6] and we create fingerprints of the 
targets using ProFeat with principal components analy-
sis. Compound fingerprints from RDKit were generated 
using 512, 1024, and 2048 bit length sequences. We chose 
to use fingerprints of length 512 because they performed 
relatively the same regardless of length (see “Appendix” 
for this additional analysis). For the target fingerprints, 
we reduced the dimensionality of the 1447 target features 
provided by ProFeat to 150 components, which cap-
tured nearly 100% of the variation in the data. Additional 
details on this process are available in the “Appendix”.

All the classification models for explicit structure were 
implemented using the scikit-learn [70] python library. 
Hyper parameters of the RF and KNN algorithm were 
chosen through a randomized grid search, using the 
Area Under the Curve as the evaluation criteria. The 
grid search yielded that the Random Forest algorithm 
was most optimal using 500 total trees. We note that the 
ensemble tree methods such as Random Forest are typi-
cally more robust under data scarcity and our parameter 
selection is consistent with the previous studies employ-
ing random forest classifiers [71]. For the K-Nearest 
Neighbor algorithm, the grid search yielded that the most 

Fig. 4  AVE bias. The image to the left visualizes the comparison of AVE Bias across 4 sets of training and validation data. The figure shows that 
the 4 training and validation sets are randomly split with similar bias measures across the sets, thereby minimizing the impact of variance across 
our study. The image to the right shows the spread of the AVE Bias for each target in the dataset. The distribution of the AVE Bias from − 0.5 to 1.5 
(where closer to 0 indicates no bias) across targets facilitates the study of the resilience of the collaborative filtering algorithm to the impact of such 
a bias
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optimal parameters were: using brute force distance cal-
culations, “jaccard” distance (which is most appropriate 
distance calculations in this case as the explicit finger-
prints are binary vector), and k = 5 nearest neighbors. 
Formally, the upper limit of k is the total number of com-
pounds in the data set; however, the best value from our 
grid search was found to be in line with previous studies 
employing this technique [72].

The best performing baseline model was found to be 
the Random Forest model trained using across targets 
mode, with a median AUC ≈ 0.86 . A more detailed expla-
nation of the baseline results follows later in this section.

Collaborative filtering parameter selection
In order to identify the best performing collaborative fil-
tering model, we employ two randomized grid searches.

The first grid search investigates parameters for neigh-
borhood CF methods. The second grid search inves-
tigates parameters for using matrix factorization CF 
methods. We separate the grid searches because the 
parameters in each algorithms are quite different. We 
use collaborative filtering algorithms implemented in the 
GraphLab API [59].

For the neighborhood CF methods we investigate three 
separate distance metrics: Jaccard, Cosine, and Pear-
son. We also investigate a number of threshold values 
to determine neighborhood size, logarithmically spaced 
from 10−7 up to 10−1 . For each combination of hyper 
parameters, we calculate the mean for each of our evalua-
tion criteria: AUC, BEDROC20 , and EF1% scores. The best 
performing neighborhood CF method utilized the Pear-
son similarity metric with a threshold of 10−2 . The mean 
AUC, BEDROC20 , and EF1% scores were 0.79, 0.72, and 

4.22%, respectively. Table 1 summarizes additional results 
for the top 5 models, sorted by the EF1% score.

For the matrix factorization-based CF models, we 
investigated the number of latent factors, ranging from 5 
to 60 in increments of 5. We also investigated the value 
of the regularization constant, C, used in the stochastic 
gradient descent method [58], with values logarithmically 
spaced from 10−7 up to 10−1 . Finally, we swept the values 
of the step size used for updates in the stochastic gradi-
ent descent (SGD) optimization, spaced logarithmically 
from 10−3 up to 10−1 . We remind that the factorization 
CF method learns latent factors for each ligand and for 
each target and uses them to rank ligands according to 
the likelihood of observing those (target, ligand) pairs. 
The stochastic gradient descent algorithm was used as 
the optimization function to minimize the mean square 
error between the known affinities and their predictions. 
Table  1 summarizes the results of the factorization CF 
method, sorted by EF5% (SGD step size not shown for 
brevity). From the table, it is clear that the performance 
of the factorization CF method exceeds that of the neigh-
borhood recommender. The best model was found with 
50 latent factors, a value of C = 10−3 for regularization, 
and 10−3 for the SGD step size. The best model had a 
mean AUC, BEDROC20 , and EF1% as 0.89, 0.92, and 5.47, 
respectively.

To more clearly understand how the hyper-param-
eters change the performance of the factorization CF 
algorithm, we plot the BEDROC20 values as each hyper-
parameter value changes. Figure  5 illustrates the effect 
of the number of latent factors on the performance of 
the model. It was observed that the performance pla-
teaus near 50 factors. Similarly Fig.  5 illustrates the 

Table 1  Collaborative Filtering hyper-parameter tuning: Tabulated top 5 results from  training multiple collaborative 
filtering models using neighborhood methods and matrix factorization methods

Distance N. Threshold AUC​ BEDROC20 EF1%

Neighborhood-based collaborative filtering

 Pearson 10−2 0.791 0.723 4.225

 Pearson 10−5 0.792 0.723 4.225

 Pearson 10−4 0.791 0.723 4.225

 Jaccard 10−2 0.648 0.647 3.670

 Cosine 10−5 0.644 0.647 3.670

Num. Factors SGD step size AUC​ BEDROC20 EF1%

Matrix factorization-based collaborative filtering

 50 10−3 0.891 0.929 5.476

 32 10−4 0.860 0.889 5.028

 32 10−2 0.899 0.872 4.994

 25 10−4 0.868 0.867 4.765

 25 10−2 0.892 0.847 4.547
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performance of the regularization parameter of the SGD 
optimizer [58] on the model performance. It is noticed 
that there is no consistent effect of the value of regulari-
zation on the performance of the model.

Overall performance comparison
In the following section, we analyze the comparative per-
formance of the collaborative filtering model (which uses 
implicit featurization) and the baseline models (which 
use explicit featurization from structure modeling). We 
use the evaluation criteria explained previously: AUC, 
BEDROC20 , and EF1% . Figure  6 shows boxplots of per-
formance per target across all the algorithms and all 
evaluation criteria. That is, a performance criterion is cal-
culated for each target and then all values are displayed in 
each boxplot. Results from all cross validation iterations 
are combined in each boxplot.

Across all evaluation criteria collaborative filtering 
performs similar to the baseline methods, despite the 
absence of known structural information of the ligands. 
In general, collaborative filtering is a slightly superior 
performer, followed by the across target RF model, fol-
lowed by per target RF, and KNN for across target and per 
target rounding out the bottom. When taking the AVE 
Bias into account, the average AUC scores of the models 
generated by RF and KNN are consistent with the perfor-
mance of the same algorithms on the unbiased training 
and validation tests for the J and J Benchmark reported 
by Wallach and Heifets [61].

Although we have shown performance for all cross 
validation iterations combined, similar performance was 
observed individually for each validation set. Because the 
performance is near identical and for brevity, the “Appen-
dix” enumerates this comparative performance per cross 
validation iteration.

Performance by number of known actives
While the overall performance of collaborative filtering 
is encouraging, it is still unclear if the implicit features 
employed help to mitigate the need for large numbers of 
training assays for each target. To help delineate this, we 
now focus our attention on grouping the results by how 
many training assays were used to model a given target. 
We remind from Fig. 3 that the number of training assays 
per target is typically less than 200, which comprises the 
majority of targets in the ChEMBL database. As such, it is 
desirable for an algorithm to perform well even when the 
number of training assays is relatively low. Figure 7 shows 
the performance of the algorithms on the validation sets 
with results grouped by the number of available training 
assays. That is, each performance criteria is calculated 
for each target and, then, the results are grouped by the 
number of assays used in the training of that target. For 
example, targets with less than 100 training assays are in 
the first bin, 100–200 in the second bin, and so on until 
targets contain more than 500 training assays. We then 
clumped together all targets with more than 500 assays 

Fig. 5  Hyperparameter tuning for matrix factorization collaborative 
filtering. Illustration of the effects of the number of factors, f, and 
regularization parameter, � , on model performance. While model 
performance improves with more factors, it may lead to over 
fitting. The regularization parameter does not have a consistent 
performance, revealing that performance is not sensitive to �.
The error bars represent the standard error of the mean across the 
BEDROC20 scores for each Target at the specified parameter value

Fig. 6  Comparison of AUC, BEDROC20, and EF1% scores across all algorithms. The collaborative filtering based implicit structure method, based only 
on assay outcomes performs on par with the other methods across the three evaluation criteria. The across target Random Forest model is the next 
best performer. All other models perform about the same and poorer than collaborative filtering
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into the last bin. This approach enables us to compare 
the relative performance of the algorithms based on the 
the amount of available training assays. A consistent pat-
tern was observed across all the three evaluation criteria. 
The predictions from collaborative filtering on the valida-
tion set significantly outperform the baseline methods 
when there were 100 or fewer assays in the training set 
based on a two tailed t-test ( p < 0.01 ). Between 100–500 
training assays, the implicit feature modeling methods 
perform statistically no different than the baseline mod-
els ( p > 0.5 ). Beyond 500 training assays, the traditional 
baseline method using the Random Forest algorithm out-
performs collaborative filtering.

It is interesting to note that the average enrichment fac-
tor in the top 1% is the highest across all methods when 
there are not many training assays available per target. 
We hypothesize that collaborative filtering becomes less 
effective (in terms of EF1% ) when the number of ligands 

already tested is relatively numerous because the most 
likely candidates have already been assayed by chance.

To further evaluate the differences between algorithms 
when the training assays are relatively sparse, we expand 
on the performances of the AUC, BEDROC20 , and EF1% 
scores for targets with less than or equal to 100 training 
assays. Figure  8 represents the kernel density plots for 
the distribution of the three aforementioned evaluation 
criteria. Kernel density estimation is a means of esti-
mating a smooth distribution from a finite set of points, 
similar in spirit to a histogram. Below each density esti-
mate is a “rug plot” of the values for each machine learn-
ing method, with one “tick” for each observed value (this 
makes outliers easier to see as they can easily be hid-
den in kernel density estimates). The distribution of the 
scores from the implicit structure methods using collabo-
rative filtering has a clear and visual separation from the 
other baseline methods using explicit structures. With 
the exception of across target RF, no other model has 

Fig. 7  Comparison of AUC, BEDROC20, and EF1% scores by number of known activities. Illustration of the comparative performance of the 
algorithms by the number of known affinities per target in the training data. Error bars correspond to standard error. The collaborative filtering 
based implicit structure methods significantly outperform other algorithms when the training data has 100 or fewer activities. Beyond 100 activities 
the performance of all algorithms converge

Fig. 8  Distribution of AUC, BEDROC20, and EF1%. Distribution of AUC, BEDROC20, and EF1% scores across all algorithms when the number of 
known affinities per target is less than or equal to 100 activities. Based on a two-tailed t-test of the scores ( p < 0.01 ), the difference in scores for 
collaborative filtering with other methods is statistically significant
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overlap in the performance for any evaluation criteria. 
Even so, based on a two-tailed t-test of the distributions, 
collaborative filtering is the significantly best perform-
ing algorithm in terms of all evaluation criteria when the 
number of training assays is less than 100.

We further investigated the performance of the implicit 
and explicit models in the context of the AVE Bias. Fig-
ure 9 illustrates correlation of the AUC scores across the 
implicit and explicit models with the AVE Bias for targets 
with more than 100 recorded assays in the training set. 
The Pearson correlation for the Random Forest method 
was found to be 0.69, the K-Nearest Neighbor method 
was 0.74 and the collaborative filtering algorithm using 
implicit fingerprints was 0.07. A lower correlation is 
preferable, indicating that the algorithm is robust to how 
training and testing sets are selected. While our results 
are consistent with the prior work by Wallach and Heif-
ets  [61] for the explicit methods, we conclude that the 
collaborative filtering methods are resilient to the AVE 
Bias because the predictions of the affinities are based 
on the interactions between the ligands and the targets 
rather than the molecular fingerprints. They are hence 
impervious to the AVE Bias in the training and the vali-
dation sets because they do not rely on “closeness” as 
measured by the fingerprinting process—this “closeness” 
is discovered through the factorization process of collab-
orative filtering.

Because of the clear performance separation of col-
laborative filtering, we conclude that the implicit struc-
ture methods demonstrate a consistent and significantly 
increased performance when the number of known 
assays is limited to about 100 assays. We also conclude 

that when the number of training assays is greater than 
about 500, traditional methods provide an increased per-
formance. Unlike these baseline methods that use molec-
ular fingerprinting, collaborative filtering methods can 
“learn” about the ligands based on their affinities with 
other targets and vice-versa, even with fewer numbers of 
known assays per target. This aspect of the collaborative 
filtering method contributes to the better performance 
even with relatively sparse assay counts.

Implicit target and ligand fingerprints
We now turn our attention to an initial analysis of how 
the latent factors computed by collaborative filtering, by 
virtue of the information encoded within them can be 
used to complement the traditional molecular and target 
fingerprints. Therefore we introduce a new type of finger-
printing technique called Implicit Fingerprints,which are 
the latent factors determined by the collaborative filtering 
method on the known affinities. From our grid search, we 
found that 50 latent factors for each ligand and target was 
the most optimal performing number of factors for the 
matrix factorization. We further evaluate the applicability 
of the 50 latent factors to identify and cluster known can-
cer and thyroid related protein targets. Greater than 20% 
of industrial cancer drug development programs focus 
on a small subset of proteins when approximately 20,000 
possible proteins are known [73]. While there have been 
studies investigating the pharmaceutical vulnerabili-
ties of these proteins, the challenges with costs and off-
target effects have been a limiting factor in realizing the 
proteins’ clinical potential. We investigated the inherent 

Fig. 9  Correlation of AUC and AVE bias. Illustration of the performance of Implicit method using collaborative filtering,Random Forest and KNN 
algorithms using explicit features for targets with greater than 100 assays in training set. Both Random Forest and KNN show clear correlation 
between AVE bias and AUC while the collaborative filtering is impervious to the presence of AVE Bias.The Pearson correlation for the Random Forest 
method was found to be 0.69, the K-Nearest Neighbor method was 0.74, and the collaborative filtering algorithm using implicit fingerprints was 
0.07
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properties of the implicit fingerprints to identify tar-
gets with similar binding affinities based on prior assays 
results. For the purposes of the tests, we re-trained a col-
laborative filtering model without discarding the assays 
with concentration levels 100  nM and 1000  nM. The 
experiment was rerun as a multi-label affinity classifica-
tion problem with the following labels to indicate binding 
affinities : < 1 nM was associated with the affinity label of 
1, between 1 and 100 nM was labeled as 2, 100 nM and 
1000 nM labeled as 3 and greater than 1000 nM labeled 
as 4.

To visually elucidate the power of Implicit Target Fin-
gerprints, we mapped the dimensions of the 50 latent 
factors of the targets into a 2-dimensional space using 
t-distributed stochastic neighbor embedding (t-SNE) 
[74], a powerful method for reducing dimensional-
ity of high dimensional datasets by minimizing the 
Kullback-Liebler divergence of distributions in the 
higher and lower dimensional space. Figure  10 illus-
trates the distribution of the protein targets when 
mapped into a 2-dimensional space, with the cancer 
related target proteins highlighted in blue, and thyroid 
related in red. Interestingly, the graph demonstrates 
the presence of three potential clusters of known can-
cer related targets appearing close to each other. Simi-
larly three potential clusters of thyroid related targets 
also appear close together. These cancer-related targets 
are visually separated from other biological targets in 

the latent space. The clusters also contain other targets 
which are found to have expressions with known can-
cer/thyroid targets. For example, consider the target 
clusters containing Vascular Endothelial Growth Fac-
tor Receptor-2 Expression (CHEMBL1878) with breast 
cancer 1 protein(CHEMBL1615382) or Thyroid per-
oxidase (CHEMBL1839) with PHD13 ovarian cancer 
1(CHEMBL1764945). In the 2D implicit target finger-
prints space, the close distances among these targets 
corresponds to known observations of similarity from 
prior research [75, 76]. This also engenders a potential 
for identifying other unexplored relations between the 
protein targets that appear close to each other in the 
implicit fingerprint space.

Similar to the biological targets, the the ligands can 
also be mapped in this latent space, as illustrated next. To 
help intuit the compound-protein binding affinity predic-
tion capabilities of the implicit latent space, we randomly 
selected three cancer related targets from the ChEMBL 
database. We selected target with IDs CHEMBL4899, 
CHEMBL3774295 and CHEMBL2150837 as shown in 
Fig. 11. Again, the 50-dimensional implicit fingerprints of 
the compounds are reduced into a 2-dimensional space 
using the aforementioned t-SNE method. We visualize 
all compounds with known assays for the three selected 
cancer related protein targets. The compounds are color-
coded on the basis of their standardized concentration 
levels in the assays, where a decreasing concentration 

Fig. 10  Implicit target fingerprints: t-SNE plot reducing the dimensions of the 50-dimensional implicit fingerprints into two dimensions for a 
subset of targets in the ChEMBL database, highlighting known cancer and thyroid related protein targets. The method successfully clusters related 
targets close to each other,as indicated in the zoomed version of the largest cluster of cancer targets. Interestingly the clusters also contain other 
targets which are found to have expressions with known cancer/thyroid targets as in the example of Vascular Endothelial Growth Factor Receptor-2 
Expression in breast cancer 1 protein
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level indicates stronger binding affinity. For the t-SNE 
plots, the ideal result would be perfect clustering for each 
concentration level. The implicit fingerprints from the 
figure demonstrate a very clear separation between the 
compounds based on the concentration levels required 
to trigger binding affinities with the respective targets. 
This visual separation is striking for assays with excel-
lent binding affinity (standard value below 100 nM), indi-
cating that the implicit representation is excellent in its 
ability to capture properties of similar compounds using 
Euclidean distance.

From the above evaluations, we conclude that the base-
line modeling methods traditionally can be enhanced by 
the use of Implicit Target and Ligand Fingerprints. The 
models generated by the Implicit Fingerprints have better 
predictive power than their explicit counterparts when 
the number of known assays for training is less than 100. 
For the remaining targets, Implicit Fingerprints performs 
about equally to explicit molecular fingerprinting up to 
about 500 assays. When the number of assays is above 
500, traditional methods have a slight, but significant 
advantage over collaborative filtering.

Conclusions
Traditional virtual screening methods in cheminformat-
ics have historically relied on molecular modeling of 
explicit ligand and protein features. However, determin-
ing all the intrinsic molecular features which contribute 
to bindings is a daunting, perhaps intractable task. In 
this work, we proposed the use of collaborative filtering 
to implicitly model the binding affinity between ligands 
and targets. We leveraged the ever-growing databases of 
ligand and targets binding affinity that provide a wealth 

of insights into various assays and their outcomes. Our 
study has shown that implicit structure modeling is 
superior to explicit structure based methods especially 
when the number of known assays is limited to less than 
100 assays. Beyond 100 assays of training, explicit and 
implicit modeling approaches converge. Our study also 
introduced a new type of fingerprint technique generated 
from the latent factors found through matrix factoriza-
tion in collaborative filtering. We compared the relative 
performance with the traditional molecular fingerprint-
ing techniques, showing the virtual screening models 
trained on implicit fingerprints outperformed models 
with traditional molecular fingerprints especially when 
the training assay counts were fewer than 100 assays.

Limitation
We conclude that implicit-descriptor modeling is a 
promising method for virtual screening. Even so, we 
point out that our analysis was completed on a large sub-
set of the ChEMBL database, Version 23. Therefore, the 
consistency of implicit fingerprints for ligands across 
different bio-activity databases needs to be further eval-
uated, as well as the predictive power of the implicit fin-
gerprints across different databases. Further studies need 
to be conducted on the cumulative predictive powers of 
the traditional ligand fingerprinting techniques and the 
implicit fingerprints generated from collaborative filter-
ing in order to understand if the implicit fingerprints 
are consistent with other groups of targets and ligands. 
We also note that a limitation of our approach is that we 
require ligands to be assayed upon more than one target 
in order to evaluate them. That is, a ligand must be paired 
with a target in the training set and paired with another 

Fig. 11  t-SNE plots of implicit ligand fingerprints. Plots for three cancer targets are shown where each point represents a compound assayed from 
the ChEMBL database. The concentration results of the assays are color-coded. t-SNE plots of the 50-dimensional implicit representations, reduced 
to 2 dimensions preserving distance
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target in the testing set for our method to be able to eval-
uate binding affinities. We also point out that our imple-
mentation of across target training mode is not widely 
used in the cheminformatics community. We only inves-
tigated one method of fingerprinting targets using the 
ProFeat feature generation tool. Other target methods 
could provide superior performance. Moreover, we note 
that the Random Forest method trained using combined 
target and ligand fingerprinting through RDKit was typi-
cally a strong performer compared to traditional per tar-
get training (which is most often employed in the virtual 
screening literature). While the performance of Random 
Forests was inferior to collaborative filtering, this result 
does warrant further investigation into techniques for 
featurizing protein targets. Such an investigation may 
prove to uncover models that can perform superior to 
collaborative filtering methods.

Additional files
Additional source code, results and sample fingerprint 
files are available at https​://githu​b.com/rsrin​ivas-repo/
deepb​ind_Impli​citFi​ngerp​rinti​ng. The site contains the 
relevant code files for calculating AVE Bias, and training 
models using KNN, Random Forest and Collaborative 
Filtering algorithms, file contains the csv file of 50K sam-
ple ligands with their implicit fingerprints generated from 
the collaborative filtering algorithm and csv files with the 
results per target across all the evaluated algorithms.
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Appendix
Molecular fingerprinting approach
We generated RDKit ligand fingerprints of sizes 512, 
1024, and 2048 bits and created per target models across 
50 randomly selected targets. The purpose of this exer-
cise was to evaluate the most optimal fingerprint size 
for the achieving best performance with regards to the 
BEDROC20 and EF1% scores. The performance of the 
machine learning algorithm trained on molecular finger-
prints of size 512 bits, 1024 bits and 2048 bits for the 50 
selected targets is shown in Fig. 12. As can be seen from 
the figure the performance the three machine learn-
ing models using molecule extended connectivity fin-
gerprint [22] with the radius of two bonds (i.e., ECFP4 
in RDKit package) hashed to a binary vector are similar 

Fig. 12  Performance of RandomForest models with molecular 
fingerprint Sizes 512, 1024 and 2048 BITS. Illustration of BEDROC20 
and EF1% scores on Random Forest models trained on molecular 
fingerprints across 3 sizes exhibit similar performance across 
the 3 models. We randomly chose 50 Targets and trained 3 p̈er 
Targetm̈odels for each Target. Each model was trained with 
fingerprint sizes of 512 Bits, 1024 Bits and 2048 Bits. The BEDROC20 
and EF1% scores were found to be similar across the 3 models for each 
Target.With little or no discernible difference in the influence of the 
sizes of the explicit molecular fingerprints towards the performance 
of the modes, we chose 512 bits to create additional models to 
compare performance with the collaborative filtering models for our 
study

Fig. 13  Dimensionality reduction on PROFEAT. Dimensionality 
reduction of 1447 Protein Features to 150 derived features

https://github.com/rsrinivas-repo/deepbind_ImplicitFingerprinting
https://github.com/rsrinivas-repo/deepbind_ImplicitFingerprinting
https://www.ebi.ac.uk/chembl/downloads
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and correlated across all evaluation criteria. Because all 
results were highly similar, we chose to use 512 bits for 
the vector size.

Protein sequencing approach
The availability of structured representation of tar-
get proteins aids in virtual screening and serves as an 
alternate approach to pure ligand based virtual screen-
ing techniques. In our work, we utilize ProFeat (Protein 
Features) by Li et  al., which is a web tool for comput-
ing commonly-used structural and physicochemi-
cal features of proteins and peptides from amino acid 
sequence. It computes six feature groups composed 
of ten features that include 51 descriptors and 1447 

descriptor values. The computed features include amino 
acid composition, dipeptide composition, normalized 
Moreau-Broto autocorrelation, Moran autocorrelation, 
Geary autocorrelation, sequence-order-coupling num-
ber, quasi-sequence-order descriptors and the compo-
sition, transition and distribution of various structural 
and physicochemical properties. The protein features 
were generated for the 1976 protein targets which were 
a part of this study.

Many of the features in the 1447 features generate by 
ProFeat are correlated. Hence we use principal com-
ponent analysis dimensionality reduction on the target 
features to reduce redundancy in the feature sets. Fig-
ure  13 displays the explained variance with respect to 

Fig. 14  Performance across 4 iterations. Comparison of ROC, BEDROC20, and EF1% scores across all algorithms for each iteration of the cross 
validation

Fig. 15  Grid search results on K nearest neighbors and random forest algorithms. Comparison of the area under the curve metric from the models 
trained with various hyper-parameters for K nearest neighbors and random forest algorithms
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the number of derived components from principal com-
ponent analysis. The explained variance plateaus around 
150 derived features. As such, this study uses the 150 
derived features in lieu of the 1447 features generated 
by ProFeat.

Overall results across multiple iterations
The composition of the training and validation sets 
can influence the metrics and the performance results 
reported on machine learning models. It is best practice 
to conduct multiple iterations of training and validations 
to ensure consistency of the reported metrics across all 
iterations. We conducted four iterations of our tests. 
While the above sections dissect the results from the 
combined results of the four iterations, we present in this 
section the overall results from all iterations. Figure  14 
exhibits the consistent performance of the algorithms 
across all iterations of training and validation data.

Hyper‑parameter tuning for K‑nearest neighbors 
and random forest algorithms using grid search
We tuned the parameters for the K Nearest Neighbors 
algorithm and the Random Forest on the external struc-
tural fingerprints to select the best performing models 
using the grid search mechanism. The grid search yielded 
that the Random forest algorithm was most optimal 
when the gini index was used as the measure of impurity 
to split the trees. We experimented with the number of 
trees in the forest ranging from 10 to 1000 trees. While 
the performance gain was limited when moving up from 
a 100 to 1000 trees, we chose 500 as the number of trees 
in our final RF model to be consistent with previous stud-
ies [71]. For the K-Nearest Neighbor algorithm, the grid 
search yielded that the most optimal parameters were: 
using brute force distance calculations, “jaccard” dis-
tance (which is appropriate as the external fingerprints 
are binary vectors), and k = 5 nearest neighbors. The K 
Nearest neighbhors algorithm was Fig.  15 exhibits the 
consistent performance of the algorithms across all itera-
tions of training and validation data.
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