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Introduction
Cilia and fl agella are elaborate organelles that play important 

roles in generating extracellular fl uid currents in eukaryotes 

(Haimo and Rosenbaum, 1981; Goodenough and Heuser, 1985; 

Satir and Christensen, 2007). For example, left-right asymme-

try in mammals is established by the nodal fl ow generated by 

the rotary movement of cilia (Hirokawa et al., 2006). The beat-

ing motion of cilia/fl agella is driven by ciliary dyneins, which 

produce sliding forces between outer doublet microtubules 

(MTs) using ATP as an energy source (Gibbons, 1996). Eluci-

dation of the mechanisms underlying the mechanochemical 

energy conversion by the dyneins is of great importance.

Since its discovery four decades ago (Gibbons and Rowe, 

1965), the outer dynein arm (ODA) has been extensively stud-

ied by biochemical and structural methods. The Chlamydomonas 
reinhardii ODA molecule is composed of three heavy chains 

and several smaller proteins (Mitchell, 2000; DiBella and King, 

2001; Kamiya, 2002), and its total mass is �2 MD. Isolated 

ODAs have three heads connected to a common base through 

thin stems (Goodenough and Heuser, 1982; Johnson and Wall, 

1983; Tsukita et al., 1983; Witman et al., 1983). The head do-

main contains six tandemly linked AAA+ (ATPases associated 

with diverse cellular activities) modules, which form a ringlike 

structure (Neuwald et al., 1999; Samso and Koonce, 2004). 

Quick-freeze deep-etch (QFDE) EM studies of axonemes 

revealed that ODA has an elliptical head, which binds to the A 

tubule through two spherical feet (P foot and D foot), and a slender 

stalk that binds to the B tubule in an ATP-dependent manner 

(Goodenough and Heuser, 1982, 1984; Tsukita et al., 1983; 

Burgess, 1995; Lupetti et al., 2005). It has been hypothesized 

that the N-terminal stem and/or the stalk domains serve as lever 

arms that amplify ATP hydrolysis–dependent conformational 

changes within the head domain (Vallee and Gee, 1998; King, 

2000; Asai and Koonce, 2001; Burgess et al., 2003; Kon et al., 

2005; Reck-Peterson et al., 2006), but these hypotheses are 

based on studies of isolated dyneins in the absence of MTs. To 

elucidate the mechanism by which dynein generates force under 

physiological conditions, it is necessary to investigate the struc-

tural changes of MT-bound dyneins.

Recently, cryoelectron tomography revealed the 3D archi-

tecture of the axoneme and showed how ODAs and other com-

ponents are arranged in situ (Nicastro et al., 2006); however, the 

tomograph only shows the structure in the rigor state. In addi-

tion, other components of the axoneme, such as the inner dy-

nein arms, interdoublet links, and radial spokes, may affect the 

structural change of the ODA molecule. To elucidate mecha-

nisms of power generation by ODA, it is therefore necessary to 

observe the nucleotide-dependent 3D conformational changes 

of ODA in the absence of other axonemal components.

In this study, we established a method for reconstructing the 

3D structure of in vitro–reconstituted ODA–MT complexes and 

 visualized their nucleotide-dependent conformational changes 
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by cryo-EM and image analysis. By comparing the relaxed and 

rigor states of the ODA–MT complex, we observed the confor-

mational changes that occur in the head domains. These results 

suggest that our system has a high potential to reveal the mecha-

nism of dynein power generation.

Results
Characterization of the ODA–MT complex
To obtain dynein–MT complexes suitable for 3D reconstruc-

tion, we reconstituted the ODA–MT complex in vitro. This 

complex has a structure similar to the axoneme, is periodically 

decorated with ODAs, provides many views necessary for 3D 

reconstruction, and has MT translocation activity.

The dynein–MT complex is formed by copolymerizing 

tubulin in the presence of axonemal dyneins from C. reinhardii 
(Haimo et al., 1979). SDS-PAGE analysis of the complex sug-

gests that it contains the heavy, intermediate, and light chains as 

well as the docking complex (Fig. 1; Sakato and King, 2004). 

Because two MTs are cross-bridged by ODA, we refer to the 

complex as the ODA–cross-bridged MT (ODA–CB-MT) com-

plex. QFDE-EM observation of the ODA–CB-MT complex 

revealed that, like axonemes, ODA has a longitudinal 24-nm 

periodicity (Fig. 2, A–C; Goodenough and Heuser, 1982; Tsukita 

et al., 1983). The globular ODA molecules align along a MT 

(Fig. 2 B) and extend stalks to the other MT (Fig. 2 C, arrows).

When we observed the ODA–CB-MT complex by nega-

tive staining and cryo-EM, we found that two MTs twist over 

each other (Fig. 2, D and E; arrowheads). This twisting provides 

many views of the complex, allowing 3D reconstruction. The 

computed diffraction pattern of the cryo-EM image again shows 

a uniform 24-nm periodicity (Fig. 2 F). The distance between 

the two MTs of the ODA–CB-MT complex is 24 nm, which is 

the same as that observed by cryo-electron tomography of the 

axoneme (Nicastro et al., 2006). The moiré pattern of the MTs 

shows that both of the MTs in the complex have the same polarity 

(Sosa and Chretien, 1998).

3D reconstruction of the 
ODA–CB-MT complex
To reconstruct the 3D structure of the ODA–CB-MT complex, 

we fi rst determined the helical arrangement of the complex 

from its cryo-EM images. In the layer line–fi ltered image (Fig. 

3 A), the two rows of ODA molecules are staggered. This 

 arrangement was also quantitatively confi rmed by comparing 

the near- and far-side layer line at 24 nm. In principle, the 

phase difference between the two sides allows the determina-

tion of whether the left- and right-side ODAs is in phase (0°) 

or out of phase (180°; Moore et al., 1970). Judging from the 

phase difference at the amplitude peak (Fig. 3 B, arrowhead), 

ODAs are staggered as shown in Fig. 3 A. Therefore, we con-

cluded that the complex has a twofold screw symmetry along 

its longitudinal axis.

Using this helical arrangement, we reconstructed the 3D 

structure of the ODA–CB-MT complex (Fig. 4 A and Video 1, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200609038/DC1). 

Because the long twisting of the two MTs does not always 

 follow the ideal helical symmetry, we combined single-particle 

analysis and helical image analysis to correct the distortions. 

We divided the images into 48-nm-long segments and calculated 

the rotation on the longitudinal axis from the distance between the 

two MTs. Translational alignment of the segments along the 

longitudinal axis was based on the 24-nm periodicity. There-

fore, no assumption was made regarding the ODA structure. 

After 10–15 cycles of refi nements, the 3D structures converged, 

and the effective resolution was determined to be 2.7 nm for 

the wild-type complex in the rigor state from the Fourier shell 

correlation (Fig. 3 C; van Heel, 1987).

Domain organization of ODA
Understanding the domain organization of ODA is essential 

for interpreting its structural changes. The end-on view of the 

ODA–CB-MT complex shows a pair of MTs cross-bridged by 

two rows of ODA molecules (Fig. 5 A). The 3D structure of the 

ODA–CB-MT complex in the rigor state is roughly divided 

into four domains: the α, β, and γ head domains and a base 

complex (Fig. 5, A–C). The stalk domain, which binds to MTs 

in a nucleotide-dependent manner (Johnson, 1985), should be 

located between the head domains and the B tubule. Although 

the stalk is visible in the quick-freeze replica (Fig. 2 C), it did 

not appear in the 3D reconstruction, possibly because of its fl ex-

ibility and its thin structure. An ODA molecule binds to the A 

tubule through a thicker end, which we refer to as a base com-

plex (Fig. 5, A–C; faint green densities). The base complex may 

contain two intermediate chains, which have WD repeat domains 

(Fig. 5, A–C; green bodies; Ogawa et al., 1995; Wilkerson et al., 

1995;  Madrona and Wilson, 2004).

To determine which side of the ODA–CB-MT complex 

harbors the ATP-sensitive MT-binding sites of ODA (Johnson, 

1985), the complex was treated with 20 μM ATP and observed 

Figure 1. SDS-PAGE analysis of the ODA–CB-MT complex. The high-salt 
extract from Chlamydomonas axonemes (Ex) and the purifi ed ODA–
CB-MT complex (Com) were separated by SDS-PAGE and stained with 
 Coomassie brilliant blue. HCs, heavy chains; DC1–3, docking complex 
protein 1–3; IC1/2, intermediate chain 1/2; LCs, light chains; MW, mole-
cular weight marker.
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by cryo-EM (Fig. 6 A). Because ATP treatment disrupts the 

ATP-sensitive binding of the ODAs, in the presence of ATP, the 

cross-bridged MTs separate, whereas the ATP-insensitive bind-

ing remains intact (Haimo and Rosenbaum, 1981). Haimo and 

Rosenbaum (1981) also reported that ATP depolymerizes the 

MTs. To prevent this depolymerization, the MTs were stabi-

lized by the addition of taxol. The cryo-EM image of this hemi-

complex showed that the 24-nm periodicity of the ODAs was 

unaffected by ATP treatment. We compared the averaged cryo-

EM image of the hemicomplex with different projections from 

the 3D reconstruction of the ODA–CB-MT complex. We found 

that the characteristic triangular shape of the ODA density is 

also seen in the projection of the ODA bound to the MT by its 

base complex side (Fig. 6 B). The similarity in the 2D projec-

tion was also supported by the high cross-correlation value 

between the cryo-EM image of the hemicomplex and the 

 projection of ODA. These results demonstrate that the base 

complex side of ODA–MT binding is ATP insensitive, which is 

consistent with the fi ndings by Johnson (1985).

To examine the motor activity of the ODAs in the ODA–

CB-MT complex, we performed a motility assay using the 

ATP- treated ODA–MT complex. We attached the Alexa-

Fluor543- labeled ODA–MT complex onto a glass coverslip (Fig. 6 

D, red) and applied AlexaFluor488-labeled plain MTs (Fig. 6 E, 

green). MT translocation was initiated by the addition of 100 μM 

ATP. All of the sliding MTs translocated along the ODA–MT com-

plex (Fig. 6 E, arrowheads; and Video 3, available at http://www.jcb

.org/cgi/content/full/jcb.200609038/DC1). The sliding velocity 

by the ODA–MT complex was 4.0 ± 2.6 μm/s (n = 20), which 

is similar to that by the αβ particle of ODA (Sakakibara and 

Nakayama, 1998). This result demonstrates that the row of ODAs 

in the ODA– CB-MT complex has motor activity.

Figure 2. EM images of the ODA–CB-MT complex by QFDE, negative-staining, and cryo-EM. A–C, QFDE; D, negative staining; E, cryo-EM. (A) A pair of 
cross-bridged MTs, as indicated by the arrowheads. The white lines show the row of ODAs. (B) The 24-nm periodicity is indicated by brackets. (C) The 
globular heads and the thin stalks (arrows) are shown. (D and E) The crossover points are indicated with arrowheads. The black lines indicate the ODAs. 
(F) The averaged diffraction pattern of the cryo-EM images of fi ve ODA–CB-MT complexes showing the prominent 24-nm layer line. The layer line periodici-
ties are indicated. (G) The interdynein connections observed by cryo-EM. The row of ODAs extending past the end of the MT is indicated with arrowheads. 
Bars, 100 nm. 
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The three heavy chains of ODA have different structures 

and functions (King et al., 1985; Marchese-Ragona et al., 1989; 

Sakakibara et al., 1991, 1993; Sakakibara and Nakayama, 

1998). To assign α, β, and γ heavy chains, we compared the 3D 

structures between the wild type and the oda-11 mutant (Fig. 7). 

The lack of an α heavy chain in oda-11 appeared as a loss of the 

outermost density in the top view of the ODA–CB-MT complex 

(Fig. 7 B, arrowhead). Together with the thin-section EM study 

by Sakakibara et al. (1991), this allowed assignment of the α, β, 

and γ heavy chains from the outermost to innermost positions 

(Fig. 5 A). If viewed from the side, the planes of the head 

domain rings appear parallel to the longitudinal axis of the MT 

(Figs. 5 C and 8 B), which is consistent with recent observations 

by Nicastro et al. (2006). The top view (Fig. 5 A) and cross sec-

tion (Fig. 8 A) of our reconstruction also revealed that the planes 

of the head domain rings are not exactly parallel but rather tan-

gential to the circumference of the B tubule (Figs. 5 A and 8 A). 

In addition, the three head domains are offset from each other 

longitudinally (Figs. 5 C and 8 B). The disk-shaped objects in 

the densities of the head domains (Fig. 5) summarize the afore-

mentioned interpretations. The positions and orientations of the 

disks were determined from the center of gravity and the long 

axis of the densities, respectively (Fig. 8, A, B, D, and E).

We correlated the surface structures observed by QFDE-

EM with our 3D structure (Fig. 9; Goodenough and Heuser, 

1982). The elliptical head corresponds to the α head domain and 

a part of the β head domain. The boundary between the α and β 

head domains appears as a medial cleft within the head by 

QFDE-EM (see Figs. 7 and 8 in Goodenough and Heuser, 1982). 

The D foot corresponds to the γ head domain and part of the β 

head domain, and the P foot corresponds to the base complex.

Interdomain connections
The interdomain connections (Fig. 5, A–C; arrowheads) indi-

cate that the three heavy chains are functionally distinct. The 

α head domain is connected to the base complex (Fig. 5 C, red 

arrowhead). The β head domain has two densities extending to 

the base complex: one density extends toward the base complex 

within the same ODA molecule (Fig. 5, B and C; orange arrow-

head), and the other extends toward the adjacent base complex 

(Fig. 5, B and C; and Fig. 8, C and F; arrowheads). ODAs are 

connected even in the absence of MTs (Fig. 2 G), suggesting 

that the inter-ODA connection is stable. The γ head domain is 

connected to the base complex (Fig. 5 C, yellow arrowhead) 

and also directly binds to the MT (Fig. 5 A, arrowhead). These 

observations suggest functional differentiation among the three 

head domains (see Discussion).

Nucleotide-induced conformational changes
To observe the ODA–CB-MT complex in the relaxed state, 

we analyzed it in the presence of ATP and vanadate (Fig. 4 B 

and Video 2, available at http://www.jcb.org/cgi/content/full/jcb

.200609038/DC1). It is known that the addition of ATP to 

 vanadate-treated axonemes causes them to straighten and re-

duces their elastic bending resistance, which is referred to as the 

relaxation of axonemes (Sale and Gibbons, 1979; Okuno, 1980). 

Treatment with ATP and vanadate also causes large structural 

changes of ODA (Goodenough and Heuser, 1982; Tsukita et al., 

1983; Burgess, 1995). To prepare the ODA–CB- MT complex 

in the relaxed state, we treated the complex in the rigor state 

with vanadate and ATP. The complex retained the cross-bridging, 

and the radius of the complex in the relaxed state did not change. 

Therefore, we applied the same image analysis methods as for 

the rigor state.

Figure 3. Arrangement of ODAs within the ODA–CB-MT complex and 
resolution estimation of the reconstructions. (A) A 24-nm fi ltered cryo-EM 
image of the ODA–CB-MT complex showing the staggered arrangement of 
the ODAs. Lines indicate the positions of ODAs. (B) An amplitude and 
phase plot of the 24-nm layer line from the ODA–CB-MT complex. Phase 
diff: the phase difference between the near and far sides. The theoretical 
phase difference is 180° if the two rows of ODAs are staggered. Ampli-
tude: the amplitude of the layer line. The phase value at the amplitude peak 
(arrowhead) indicates the staggered arrangement of the ODAs. (C) The 
Fourier shell correlation curves for each reconstruction. The intersection 
between each curve and the horizontal line at 0.3 was taken as the effec-
tive resolution. The effective resolutions are 2.7 nm, 2.7 nm, and 3.5 nm 
for the rigor state, the relaxed state, and the oda-11 mutant, respectively.

Figure 4. 3D reconstructions of the ODA–CB-MT complex from the wild 
type in two nucleotide states. A, rigor state; B, relaxed state. Stereo pairs 
are presented. The color refl ects the distance from the center of the MT. The 
surfaces represent the isosurface of 120% of the volume estimated from the 
molecular weight of ODA. 
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The conformational changes are different among the three 

head domains (Figs. 5 and 8, D–F). The density of the α head 

domain is unclear (Fig. 5 F), probably because of high hetero-

geneity. The center of gravity of the β head domain shifted 

3.7 nm toward the B tubule (Fig. 8, A and D), and its head plane 

inclined 44° inward (Fig. 8, B and E) compared with its confor-

mation in the rigor state. In contrast, the γ head domain remained 

in almost the same position as in the rigor state (Fig. 8, A and D). 

As a result of the conformational change, the distance between 

the β head domain and the B tubule became shorter (Fig. 5, 

A and D; and Fig. 10, B–D), from 14 nm in the rigor state to 10 nm 

in the relaxed state. Considering the reported length of the stalk 

domain (�15 nm; Goodenough and Heuser, 1982, 1984; Gee 

et al., 1997), the change in the distance may affect the orientation 

of the stalk domain.

Our reconstruction and the QFDE-EM image in the re-

laxed state are similar except for the D foot (Fig. 9, C and D). 

The D foot in the QFDE-EM image is apart from the P foot of 

the adjacent ODA. In our reconstruction, the D foot, which cor-

responds to the γ head domain and part of the β head domain, is 

close to the next P foot, which corresponds to the base complex. 

The difference in ATP concentration (1 mM for the QFDE-EM 

image and 2 μM for our reconstruction) may be the reason for 

the different appearance.

Discussion
This study establishes that the ODA–CB-MT complex is suit-

able for reconstructing the 3D structure of dynein from cryo-EM 

images. Our reconstruction revealed the detailed 3D arrangement 

of the ODA complex and the conformational changes between 

ODAs in two functionally critical states without the infl uence of 

other axonemal proteins.

The elaborate interdomain linkers and nucleotide-induced 

conformational changes of the ODA indicate that the three head 

domains have different functions. The appearance of the α head 

domain both in the rigor and relaxed states suggests that it is 

more fl exible than the other two head domains, which may be 

related to a proposed regulatory function (Sakakibara and 

 Kamiya, 1989; Sakakibara et al., 1991; Sakato and King, 2004). 

The β heavy chain may be important for synchronized move-

ment of ODAs along the axoneme by communication through the 

inter-ODA connections. Given that the swimming velocity of the 

oda-11 α heavy chain–missing mutant is slightly slower than 

that of the wild type (Sakakibara et al., 1991), the nucleotide-

induced movement of the β head domain presumably gener-

ates major force for the sliding. The γ head domain, which 

showed little displacement, may serve as a stable anchor to the 

A tubule.

Figure 5. 3D reconstructions of the ODA–
CB-MT complex in the rigor state and in the 
relaxed state. A–C, rigor state; D–F, relaxed 
state. (A and D) The views from the plus end of 
the MT. (B and E) The side views with the plus 
end up. (C and F) The 120° rotated side view 
seen from the inside of the complex. The mesh 
and solid surfaces represent the isosurface of 
120% and 60% volumes, respectively, esti-
mated from the molecular weight of ODA. The 
domains and fi tted objects are colored as fol-
lows: the α head is pink, the β head is orange, 
the γ head is yellow, the base complex is 
green, and the MTs are light blue. The dark 
gray isosurface (A and D) shows the position 
of the protofi laments. The disk-shaped objects 
were placed according to the center of gravity 
of the head domain densities, and spherical 
objects were manually fi tted to the densities of 
the base complex. The atomic models of the 
tubulins (Lowe et al., 2001) were fi tted to 
the densities of the MT protofi laments (gray). 
The black arrowheads in B and C indicate the 
positions of the interdynein connections. The 
arrow head in A indicates the position of 
the connection between the γ head domain 
and the MT. The red arrowhead in C indicates 
the connection between the α and β head 
domains. The orange and yellow  arrowheads 
indicate the base complex β head domain and 
the base complex γ head domain connections, 
respectively. In C and F, the β head domain 
tilts 44° toward the MT in the relaxed state. 
Bar, 5 nm.
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This displacement of the β head is a new observation, and 

it is distinct from the rotation of the head proposed by Burgess 

et al. (2003). Because their hypothesis is based on the negative-

staining EM of isolated dynein in the absence of MTs, the move-

ment of dynein relative to the MT cannot be observed; however, 

it is possible that both the rotation and the displacement occur at 

the same time and that they amplify the sliding speed.

Because the β head domain displaced vertically in the 

direction of sliding, there should be a mechanism for converting 

the direction of the movement. The stalk domain is the most 

probable candidate for mediating this conversion because it 

bridges the head domain and the B tubule. One possible expla-

nation for how the stalk domain converts the movement of the 

head domain is as follows: if the stalk length is constant, the 

angle of the stalk is a function of distance between the head 

domain and the MT. For example, if the stalk length is 15 nm, 

the 3.7-nm movement of the head domain results in a 40° rota-

tion of the stalk, which can produce a 7-nm sliding movement at 

the stalk head. To investigate these possibilities, the orientation 

of the head domain and stalk must be determined by specifi c 

labeling (for example, by using antibodies).

In the 3D reconstructions and in the aforementioned dis-

cussions, we assumed that most of the ODAs were in the relaxed 

state. This assumption is supported by our EM observations as 

well as previous biochemical data (described in this paragraph). 

When ODA and tubulin are copolymerized, there is more than 

one type of ODA–MT complex (Haimo et al., 1979). For struc-

tural analysis, we used the ODA–CB-MT complex, but it also 

contains ODAs complexed with single MTs as shown in Fig. 

2 G. In this ODA–single MT complex, ODAs are bound to MTs 

by their stalks. All of these ODAs seem to dissociate from the 

MTs upon treatment with ATP and vanadate because we did 

not observe single MTs decorated by ODA via its stalk in the 

same grids, in which we collected cryo-EM images of the 

ODA–CB-MT complex (unpublished data). This demonstrates 

that stalk-side binding of most ODAs became weak after the ATP-

vanadate treatment, which agrees with the fi nding of Shimizu 

and Johnson (1983b). It is also consistent with previous bio-

chemi cal data: according to Shimizu and Johnson (1983a), 2 μM 

is the lowest concentration of ATP that can completely dissociate 

ODA from MTs within 1 s. Furthermore, according to kinetic 

studies of dynein, the rate constants of ATP binding, ATP hy-

drolysis, phosphate release, and vanadate binding are all faster 

than 8/s in our condition (Johnson, 1983; Porter and Johnson, 

1983; Shimizu and Johnson, 1983a; Tani and Kamimura, 1999). 

As we incubated the ODA–CB-MT complex with ATP-vanadate 

for 10–15 s, <1% of ODA should have remained in the rigor 

state. Although the occurrence of the cross-bridging even in the 

relaxed ODA–CB-MT complex is perplexing, we think that the 

cross-bridging of the two MTs is maintained by the sum of 

many weak ODA–MT interactions.

The arrangement of ODAs in the ODA–CB-MT complex 

also raises the concern that the sliding directions induced by the 

two rows of ODA are antagonistic and should cause distortion of 

the complex. As we show in this study, cross-bridging of the 

ODA–CB-MT complex was retained in the presence of ATP and 

vanadate probably because ODA was in the presliding state and 

did not exert force in this nucleotide state. It seems that phosphate 

release from ODA in the ADP + Pi state is required to separate 

the cross-bridging, as shown in Fig. 6 A. These results are 

Figure 6. Demonstration of the motility of the ATP-treated ODA–CB-MT 
complex. (A) A cryo-EM image of the ATP-treated ODA–CB-MT complex. 
The ODA–CB-MT complex was treated with 20 μM ATP for 3 min before 
freezing. The signal of the ODA was enhanced by averaging seven mole-
cules. The overall shape appears triangular. (A and B) The red circles indi-
cate the domains of ODA. (B) A 2D projection of the 3D reconstruction of 
the ODA–CB-MT complex in the rigor state representing the view in which 
the ODA is bound to the MT by its base side. The projection resembles the 
image in A in the position of the domains and the triangular shape. (C) A 
projection representing the view in which the ODA is bound to the MT by 
its stalks. (D and E) In vitro motility assay of the ODA–MT complex. (D) The 
AlexaFluor543-labeled ODA–CB-MT complex was treated with 20 μM ATP 
and immobilized on the glass coverslips (red). (E) An image sequence of the 
AlexaFluor488-labeled plain MT (green) showing an MT sliding along 
the ODA–CB-MT complex. The time interval between each image is 0.5 s. 
The arrowheads indicate a reference point on the sliding MT. Bar, 5 μm.

Figure 7. 3D reconstruction of the ODA–CB-MT complex from the oda-11 
𝛂 heavy chain–lacking mutant in the rigor state. (A) A stereo pair of the 3D 
reconstruction with the plus end up. (B) The view from the plus end of the 
MT. The arrowhead indicates the expected position of the α heavy chain 
densities. Bar, 5 nm.
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 consistent with other biochemical data showing that ATP and 

vanadate inhibit the MT sliding (Sale and Gibbons, 1979; Satir 

et al., 1981; Warner and Mitchell, 1981) and that force generation is 

suggested to require the release of phosphate (Johnson, 1983; Johnson 

et al., 1984; Kon et al., 2005). Therefore, it is reasonable to assume 

that our relaxed structure represents the presliding state.

In a recent study, cryo-electron tomography was applied 

to study axoneme structures, including ODA (Nicastro et al., 

2006). Although their overall architecture of ODA in the rigor 

state is quite similar to our reconstruction, there are minor dif-

ferences in the assignment of the molecular boundary and of the 

inter-ODA linker to a particular heavy chain. Nicastro et al. 

(2006) did not show the position of the base complex relative to 

the head domains in the tomograph of the C. reinhardii axo-

neme tomograph. In the present study, we assigned the base 

complex to the minus end side of the head domains (Fig. 5, 

green spherical objects). This assignment is based on the globu-

lar shape of ODA and the molecular boundary between adjacent 

molecules (Figs. 4 and 5 and Video 1) and is consistent with 

the QFDE-EM study (Fig. 9; Goodenough and Heuser, 1982). 

 Future high-resolution studies on isolated ODA complexed with 

MTs may be needed to clarify the domain assignments.

Nicastro et al. (2006) also interpreted that ODA molecules 

are connected along the MT by an outer outer dynein linker, 

which extends diagonally from the α head domain to the neigh-

boring γ head domain (see Fig. 5 D in Nicastro et al., 2006). In 

our map, the inter-ODA linker, which is functionally equivalent 

to outer outer dynein, seems to connect the β head domain and 

the neighboring base complex. A similar inter-ODA linker was 

also observed by QFDE-EM (see Fig. 6 in Goodenough and 

Heuser, 1982). The difference between the interpretations of 

Figure 8. Cross sections of the ODA–CB-MT complex in the 
rigor state and in the relaxed state. A–C, rigor state; D–F, re-
laxed state. The plane of each section is indicated in the top 
left corner (solid lines). The nucleotide-induced displacement 
(A and D) and inclination (B and E) of the β head domain is 
shown. The dotted lines indicate the long axes of the head 
domains. (A and D) The asterisks indicate the centers of grav-
ity of the β head domain. The gray lines are placed as a refer-
ence. The β head domain in the relaxed state displaced 3.7 nm 
compared with its position in the rigor state. The position of 
the inter-ODA linker is indicated with arrowheads in C and F. 
The blue contour corresponds to the 120% volume isosurface; 
green, yellow, orange, and red indicate increasing density. 
Bar, 10 nm.

Figure 9. A comparison of the QFDE-EM images of the axoneme and the 
corresponding views of the ODA–CB-MT complex in the rigor state and in the 
relaxed state. (A and C) QFDE-EM images of the axoneme (Goodenough 
and Heuser, 1982). (B and D) Corresponding views of the ODA–CB-MT 
complex. Views in the rigor state (A and B) and in the relaxed state 
(C and D). The densities corresponding to the D foot, P foot, and head 
are  indicated. Bar, 10 nm.
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Nicastro et al. (2006) and our study could result from the loss of 

some axonemal proteins during salt extraction. For example, a 

cape structure of ODA in the Tetrahymena thermophila axo-

neme (see Fig. 4 in Avolio et al., 1984) appears to be missing in 

the reconstituted ODA–MT complex (Fig. 6 B; see Fig. 7 C in 

Avolio et al., 1984). This cape structure looks similar to the 

outer outer dynein linker observed by Nicastro et al. (2006) in 

that it extends diagonally from the α head domain.

We anticipate that our new 3D reconstruction method will 

serve as a starting point for the more detailed analysis of the 

dynein power generation mechanism. The future combination of 

ODA mutants, antibody labeling, and our reconstruction method 

will reveal the complicated subunit organization and regulation 

within the ODA. Given the complexity of the axoneme, both 

bottom-up (e.g., this study) and top-down (studies of whole 

 axonemes) approaches are essential.

Materials and methods
Strains
The C. reinhardii 137c strain and the oda-11 mutant strain, which lacks the 
α heavy chain and the 16-kD light chain, were provided by R. Kamiya 
(University of Tokyo, Tokyo, Japan) and S.M. King (University of Connecticut 
Health Center, Farmington, CT), respectively.

Preparation of the ODA–CB-MT complex
Axonemes were obtained from wild type (137c) and the oda-11 mutant 
C. reinhardii by the dibucaine method (Witman et al., 1978; Kagami and 

Kamiya, 1992). The axoneme extract was desalted using a Sephadex 
G-25 gel fi ltration column equilibrated in PEM buffer (100 mM Pipes-NaOH, 
pH 6.8, 1 mM MgCl2, and 1 mM EGTA). The eluent was concentrated to 
2–3 mg/ml using Centricon YM-100 (Millipore). Bovine tubulin was puri-
fi ed as described previously (Shelanski et al., 1973). MTs were polymer-
ized in PEM buffer with 1 mM GTP in the presence of 1.3 mg/ml axonemal 
extract at 30°C for 1 h. The ODA–CB-MT complexes were purifi ed by 
centrifugation through a 50% (wt/vol) sucrose cushion in PEM buffer at 
35,000 g for 30 min at 30°C.

In vitro motility assay
ODA–CB-MT was labeled with AlexaFluor543 (Invitrogen), and the molar 
ratio of unlabeled to labeled tubulin was 20:1. 100 μg/ml of the ODA–
CB-MT complex in HMDE buffer (10 mM Hepes-NaOH, pH 7.2, 5 mM 
MgCl2, 1 mM DTT, 1 mM EGTA, and 1 mM PMSF) containing 10 μM pa-
clitaxel was treated with 20 μM ATP and attached onto the glass-bottom 
microwell dish (MatTek). Next, the glass surface was blocked with HMDE 
buffer containing 1 mg/ml casein. Plain MTs labeled with 10 μg/ml Alexa-
Fluor488 in HMDE buffer containing 0.1% NP-40 were sheared with a 
28-gauge needle and added to the dish. MT translocation was initiated by 
adding 100 μM ATP (fi nal concentration). The movements of the MTs were 
observed using a total internal refl ection fl uorescence microscope (IX71; 
Olympus) equipped with plan Apo 100× NA 1.45 total internal refl ection 
fl uorescence microscopy oil immersion lens (Nikon). The images were pro-
jected onto a CCD camera (Cascade II; Photometrics) and were contrast 
enhanced with RS Image software (Roper Scientifi c). Experiments were 
performed at room temperature.

EM
The MT pellet was resuspended in HMDE buffer and absorbed to holey 
carbon grids. After washing with HMDETN buffer (HMDE buffer containing 
10% trehalose and 0.2% NP-40), the grids were blotted for 5 s and 
plunged into liquid ethane (−180 C). Images of the ODA–CB-MT complex 
were recorded on SO-163 fi lm under low-dose conditions with an electron 
microscope (JEM-2200FS; JEOL) at a nominal magnifi cation of 40,000× 
with a 15,000–35,000 Å defocus.

For QFDE-EM, the MT pellet was resuspended in PEM buffer without 
sucrose and centrifuged again. Quick-freeze replicas of the MTs were pre-
pared as described previously (Hirokawa and Heuser, 1981). For negative-
staining EM, samples were fi xed in 0.5% glutaraldehyde and stained with 
5% uranyl acetate.

Relaxed state
To prepare the ODA–CB-MT complex in the relaxed state, we treated 
the complex in the rigor state with 10 μM vanadate from the sucrose 
 cushion step and added 2 μM ATP 10–15 s before plunge freezing. This 
concentration of ATP is shown to be enough for relaxing the axoneme 
(Okuno, 1980).

Image processing
ODA–CB-MT complexes that have MTs with 14 protofi laments/three-start 
helix were selected (Ray et al., 1993), and their polarity was determined 
based on the moire pattern in the image (Sosa and Chretien, 1998). Se-
lected micrographs were digitized with a scanner (LeafScan 45; Scitex) at a 
pixel size of 10 μm, which corresponds to 2.5 Å in the specimen. Each 
 fi lament was straightened by fi tting the longitudinal axis to a cubic spline 
curve. The straightened fi laments were divided into 48-nm-long segments.

For the initial angle assignment for each segment, we assumed that 
the distance between the two MTs is constant and used a simple relation-
ship between the diameter of the complex and the rotation angle around 
the axis: ϕ = cos−1(d/dmax), where d is the distance between the centers of 
the two MTs, and dmax is the maximum of the distance determined from two 
representative ODA–CB-MT complexes.

For the translational alignment along the long axis of the complex, 
we generated a model reference composed of two MTs twisted over 
each other and spherical densities aligned along the MT with a periodicity 
of 24 nm. We fi ltered the Fourier transformed image and the reference 
segments, leaving 6-, 12-, and 24-nm layer lines and calculated the cross-
correlation between the image and the reference. The hand of the helix 
was determined to be left by the images of QFDE and negative-staining EM 
with tilting.

Initial 3D reconstruction was generated using back projection based on 
the rotation and translation determined as described in the previous two para-
graphs. We imposed twofold helical symmetry on the reconstruction and ap-
plied solvent fl attening with a fi ve-pixel Gaussian mask (pixel size = 4.872 Å). 

Figure 10. Head domain displacement between the rigor state and the 
relaxed state. (A) An end-on view of the 3D reconstruction of the ODA–CB-MT 
complex in the rigor state. The box used for the slab view in B and C is 
shown as a dashed rectangle. (B and C) A comparison between the β head 
domains in the rigor state (B) and the relaxed state (C) showing the change 
in distance to the B tubule. The double arrows indicate the changes of dis-
tance between the β head domain and B tubule from 14 (rigor state) to 
10 nm (relaxed state). (D) Model images of the ODA–MT complex in the rigor 
state (top) and the relaxed state (bottom). The α head domain is omitted from 
the relaxed state because of the uncertainty of the position. Bar, 5 nm.
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After each refi nement, we replaced the reference with the symmetry-
 imposed and masked reconstruction. We repeated this cycle until the phase 
residual values converged.

The numbers of ODA molecules and fi laments used for each of the 
reconstructions were as follows: 3,737 molecules from 31 fi laments for the 
rigor state, 3,872 molecules from 38 fi laments for the relaxed state, and 
1,350 molecules from 11 fi laments for the oda-11 mutant. The effective 
resolution was determined to be 2.7 nm, 2.7 nm, and 3.5 nm for the rigor 
state, the relaxed state, and the oda-11 mutant, respectively, from the Fou-
rier shell correlation between two independent datasets using a 0.3 cut off. 
Image analysis was performed using Ruby-Helix scripts (Metlagel et al., 
2007) and Frealign (Grigorieff, 1998). Surface renderings were per-
formed with UCSF Chimera (Pettersen et al., 2004), Pymol (Delano Scien-
tifi c), or the AVS software package (Advanced Visual Systems).

Online supplemental material
Videos 1 and 2 show 3D reconstructions of the ODA–CB-MT complex in 
the rigor state (Video 1) and relaxed state (Video 2) rotating on the long 
axis of the complex. Video 3 shows sliding of the MT by the ODA–MT 
complex. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200609038/DC1.
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