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Abstract 

Carcinogenesis often in v olv es significant alterations in the cancer genome, mark ed b y large str uct ural variants (SVs) and copy number variations 
(CNVs) that are difficult to capture with short-read sequencing. Traditionally, cytogenetic techniques are applied to detect such aberrations, but 
they are limited in resolution and do not co v er features smaller than se v eral hundred kilobases. Optical genome mapping (OGM) and nanopore 
sequencing [Oxford Nanopore Technologies (ONT)] bridge this resolution gap and offer enhanced performance for cytogenetic applications. 
Additionally, both methods can capture epigenetic information as they profile native, individual DNA molecules. We compared the effectiveness 
of the two methods in characterizing the str uct ural, copy number and epigenetic landscape of a clear cell renal cell carcinoma tumor. Both 
methods provided comparable results for basic karyotyping and CNVs, but differed in their ability to detect SVs of different sizes and types. 
ONT outperf ormed O GM in detecting small SVs, while O GM e x celled in detecting larger SVs, including translocations. Differences were also 
observed among various ONT SV callers. Additionally, both methods provided insights into the tumor’s methylome and hydroxymethylome. 
While ONT was superior in methylation calling, hydroxymethylation reports can be further optimized. Our findings underscore the importance 
of carefully selecting the most appropriate platform based on specific research questions. 
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ne of the most prominent signs of carcinogenesis is the struc-
ural deviation of the cancer genome from that of the par-
nt cell, which often involves large structural variants (SVs)
nd copy number variations (CNVs). Such variations are an-
otated as structural features (deletions, insertions, duplica-
ions, inversions and translocations) differing from the human
enome reference or a matched sample for comparison ( 1 ).
raditionally, cytogenetic techniques such as karyotyping are
sed to detect large SVs ranging from whole chromosome du-
lications, chromosome arm deletions, and down to SVs of
5–10 mega basepairs (Mb) ( 2 ,3 ). Applying fluorescence in-

itu hybridization techniques may bring the resolution down
o several hundred kilo basepairs (kb) ( 4 ), but a critical res-
lution gap remains between cytogenetics and short-read se-
uencing. The lack of access to genomic variation on the scales
f 1–500 kb has nourished the development of long-read tech-
ologies that can address this need. Various long-read meth-
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ods have been introduced in recent years, including SMRT
sequencing commercialized by PacBio, which routinely pro-
vides high-quality reads on the 10 kb scale ( 5 ). Another con-
cept involves a library preparation technique that allows link-
ing proximal DNA fragments computationally by sequence
barcode ligation [linked reads-10 × genomics ( 6 ) / TELseq ( 7 )].
Here, we utilized two techniques, optical genome mapping
(OGM) and nanopore sequencing, that stand out in their abil-
ity to cover the full gap in mapping ability between short-read
sequencing and karyotyping, offering an enhanced alternative
to traditional cytogenetic analysis. 

OGM, commercialized by Bionano Genomics Inc. (BNG),
has already gained clinical utility and is emerging as an alter-
native to cytogenetics by mapping the coarse grain structure
of unamplified genomic fragments hundreds of kb in length
( 8 ,9 ). The molecules are labeled at a specific sequence mo-
tif (CTTAAG) by a methyltransferase enzyme that transfers
a fluorescent molecule to the labeling site from a synthetic
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cofactor analog. Every molecule acquires a sequence-specific
fluorescent pattern along the DNA backbone during this pro-
cess. The labeled DNA sample is applied to a silicon chip,
where the molecules are electrophoretically extended in an ar-
ray of parallel nanochannels. Millions of long, extended DNA
molecules with their overlaying fluorescent barcode are im-
aged in the channels at high throughput. Once the images are
digitized, DNA molecules may be mapped to their genomic lo-
cation according to the pattern of fluorescent spots along the
DNA and its matching to the expected pattern on the genome
reference. Alternatively, the patterns may be stitched and as-
sembled to build the whole genome structure de-novo ( 10 ) . 

Oxford Nanopore Technologies (ONT) is another promi-
nent player in the long-read mapping and sequencing space.
Recent advancements in flow cell chemistries, purification kits
for ultra-high molecular weight (UHMW) DNA, and base-
calling algorithms have significantly extended read lengths
and reduced error rates. Additionally, throughput has in-
creased, and the cost per genome has decreased to levels
that may justify clinical applications ( 11–13 ). For sequenc-
ing, DNA molecules are translocated through protein pores
while measuring the electric ionic current flowing through the
pore. Different sequence compositions generate various de-
grees of current attenuation, which is then computationally
interpreted to generate the base sequence of the translocated
DNA molecules. While offering single-base resolution, ONT
provides shorter median read lengths compared to OGM.
Both methods may be applied to native DNA that still car-
ries chemical DNA modifications such as DNA methylation
or DNA damage adducts. This gives rise to another beneficial
feature: the acquisition of epigenetic information during ge-
netic analysis. In OGM, an additional color may be used to
chemically tag modifications of interest and create a hybrid
genetic / epigenetic physical map of the molecules ( 10 ,14–17 ).
Commercially-supported OGM only provides tools for ana-
lyzing genomic structure for cytogenetic applications. How-
ever, some of the BNG Saphyr systems contain three laser col-
ors, two of them are for generating the genetic barcode and
DNA backbone, and the third can be used with orthogonal
chemistries to tag genomic features of choice, including epi-
genetic marks. ONT, on the other hand, does not require any
additional preparative steps for calling epigenetic modifica-
tions as it relies solely on the electrical contrast generated
by the native chemical structure of the modified base ( 18 ).
Nevertheless, accurate modification calling requires a com-
plete training set, which is not trivial for most base modifica-
tions. The current recommended basecaller for ONT, Dorado
( https:// github.com/ nanoporetech/ dorado ), can call modified
bases, and has ready-to-use models to call 5-methyl cytosine
(5mC) and 5-hydroxymethyl cytosine (5hmC), on top of the
four canonical bases. 

Unmethylated CpG sites, complementary to methylated
(5mC) sites, can be specifically labeled by methyltransferase
enzymes for optical mapping. Our group has recently applied
engineered CpG methyltransferases to address all unmethy-
lated CpGs ( 19 ,20 ). However, the method was not yet vali-
dated for human methylome profiling and thus we selected the
previously validated reduced representation optical methyla-
tion mapping (ROM) ( 15 , 17 , 21 ). This reduced representation
of the human methylome encompasses only ∼6% of the to-
tal CpGs but coincidently captures the majority of regulatory
sites in the genome and has been shown to present a cell-type
specific pattern ( 15 ,17 ). 
5hmC, the first oxidation product of 5mC, is another im- 
portant modification that was linked to gene regulation, de- 
velopment and disease, predominantly cancer ( 22 ,23 ). Optical 
mapping of 5hmC was introduced several years ago based on 

the fluorescent labeling of 5hmC residues ( 16 ,21 ). 
Identification of modifications in ONT data relies on ma- 

chine learning techniques. This process involves training and 

validating models using reference data encompassing the mod- 
ification across diverse sequence contexts. Such reference data 
can be obtained by identifying the modification using estab- 
lished methods or in-situ approaches ( 18 ). However, obtain- 
ing high-quality, genome-wide reference data specifically for 
5hmC modifications remains a significant challenge due to its 
cost and complexity. This, in turn, limits the ability to compre- 
hensively train and assess the performance of 5hmC callers 
for ONT data, and it has not been benchmarked and peer- 
reviewed to date. 

Herein, we compared the ability of both methods to charac- 
terize the structural, copy number and epigenetic landscape of 
a clear cell renal cell carcinoma (ccRCC) tumor and a matched 

normal adjacent sample. ccRCC is the most common type of 
renal carcinoma, and its incidence has been increasing in re- 
cent years. Over 90% of ccRCC cases demonstrate distinctive 
changes to the short arm of chromosome 3 (3p), from translo- 
cations and deletions to the loss of the entire chromosomal 
arm. Most cases involve the genetic or epigenetic inactivation 

of the von Hippel–Lindau ( VHL ) gene, located on this arm 

( 24–26 ). Other frequently observed CNVs and cytogenetic ab- 
normalities in ccRCC include a gain of chromosome 5q, loss 
of 14q, trisomy of chromosome 7, loss of 8p, loss of 6q, loss 
of 9p, loss of 4p and loss of chromosome Y in men. Some 
CNVs were correlated with prognosis ( 24 , 27 , 28 ). Epigenetic 
alterations, including aberrant levels of 5mC and 5hmC, are 
also commonly observed in ccRCC tumors ( 29–31 ). In light of 
these hallmarks, this technical comparison identifies the spe- 
cific strengths and limitations of each technique, highlighting 
practical differences that should be considered when select- 
ing the appropriate method for addressing specific research 

questions. 

Materials and methods 

Patient clinically relevant information 

Tumor and normal adjacent tissue were obtained in the course 
of radical nephrectomy performed in an 82-year-old male. Tu- 
mor was diagnosed histologically as ccRCC with morphologi- 
cal features of eosinophilic variant at pT3a stage. Tissues were 
stored from the time of surgery to analysis at −80 

◦C (fresh- 
frozen sample). 

Sample collection and handling was approved by institu- 
tional review boards in accordance with the declaration of 
Helsinki. 

Extraction of high molecular weight DNA 

Ultra-high molecular weight (UHMW) DNA for 5-hmC 

OGM and ONT analyses was extracted using SP Tissue 
and Tumor DNA Isolation kit (Bionano Genomics), accord- 
ing to the manufacturer’s protocol. High molecular weight 
(HMW) DNA for OGM unmodified CpG analysis was ex- 
tracted using Animal Tissue Isolation kit (Bionano Genomics) 
according to Bionano Prep Animal Tissue DNA Isolation 

https://github.com/nanoporetech/dorado
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oft T issue / Fibrous T issue Protocol for normal tissue / tumor,
espectively. 

anopore sequencing (ONT) 

amples were prepared for sequencing using Ligation Se-
uencing Kit V14 (SQK-LSK114, ONT, UK) according to pro-
ocol with a starting DNA amount of 1 μg. Whole genome se-
uencing was performed on a ‘P2-Solo’ device using R10.4.1
low cells (FLO-PRO11, ONT). 
Basecalling of raw POD5 files was performed using the
NT proprietary software Dorado (v 0.3.2, ONT; https:

/ github.com/ nanoporetech/ dorado ) with the model: ‘dna _ r
0.4.1 _ e8.2 _ 400bps _ hac _ @v4.0.0 _ 5mCG _ 5hmCG@v2.cfg’. 
eads were then aligned to the hg38 human reference genome
sing minimap2 ( 32 ) (v.2.24). Bam output files were then
erged, sorted and indexed using samtools ( 33 ) (v1.16.1).

Vs, CNVs and methylation and hydroxymethylation lo-
ations were called by the ‘wf-human-variation’ pipeline
 https:// github.com/ epi2me-labs/ wf-human-variation ) via
PI2ME software ( 34 ) (ONT) with minimum bam coverage
et to 5. The default behavior of the pipeline is to report
ethylation and hydroxymethylation per CpG positions and
ith combined strands. Analyses were performed on a Linux
perating system (Ubuntu 22.04.3) with Nvidia’s RTX 6000
PU. 

ptical genome mapping 

amples were labeled by Direct Label and Stain (DLS) chem-
stry (DLE-1 enzyme, Bionano Genomics), creating a genetic
arcode (CTTAAG motive). To create the genetic barcode for
hmC analysis, 750 ng of UHMW DNA in two reaction tubes
ere each mixed with 5 × DLE-buffer (to a final concentra-

ion of 1 ×), 1.5 μl of 20 × DL-Green and 1.5 μl of DLE-1
nzyme (Bionano Genomics) in a total reaction volume of 30
l. The reaction was incubated for 4 h at 37 

◦C. Then, 5hmC
ites were labeled by the enzyme β-glucosyltransferase from
4 phage (T4-BGT) ( 16 ). Magnesium chloride was added to
0 μl of DLE-labeled DNA to a final concentration of 9 mM.
hen, the DNA was added to 4.5 μl of 10 × NEBuffer 4 (New
ngland Biolabs), uridine diphosphate-6-azideglucose [UDP-
-N3-Glu; ( 21 )] in a final concentration of 50 μM, 30 units
f T4 β-glucosyltransferase (New England Biolabs) and ultra-
ure water in a final volume of 45 μl. The reaction mixture
as incubated overnight at 37 

◦C. The following day, dibenzo-
yclooctyl (DBCO)-ATTO643 ( 21 ) was added to a final con-
entration of 150 μM and the reaction was incubated again at
7 

◦C overnight. The next day, the reaction tubes were added
 μl of PureGene Proteinase K (Qiagen) and incubated for ad-
itional 30 min at 50 

◦C. After the Proteinase K treatment, the
wo identical reaction tubes were merged and drop-dialyzed
s one against 20 ml of 1 × TE buffer (10 mM Tris, 1 mM
DTA, pH 8.0) with 0.1 μm dialysis membrane for a total of
 h. Finally, 300 ng recovered dual-color DNA was stained to
isualize DNA backbone, by mixing it with 4 × Flow Buffer
Bionano Genomics) to a final concentration of 1 ×, 1 M DTT
DL-Dithiothreitol; Bionano Genomics) to a final concentra-
ion of 0.1 M, Tris (pH 8) to a concentration of 25 mM, NaCl,
o a concentration of 25 mM, ethylenediaminetetraacetic acid
EDTA) to a final concentration of 0.008–0.01 M, DNA Stain
Bionano Genomics) to a final v / v ratio of 8%, and ultrapure
ater. The reaction mixture was shaken horizontally on a Hu-

aMixer for 1 h and then incubated overnight at 4 

◦C. 
To create the genetic barcode for unmethylation analysis, 1
μg of HMW DNA was mixed with 5 × DLE-buffer (to a final
concentration of 1 ×), 2 μl of 20 × DL-Green and 2 μl of DLE-
1 enzyme (Bionano Genomics) in a total reaction volume of
30 μl for 4 h at 37 

◦C, immediately followed by heat inactiva-
tion at 80 

◦C for 20 min. Heat inactivation at these conditions
degrades over 97% of the DL-Green cofactor, therefore pre-
venting it from being incorporated by M.TaqI in the following
reaction, and making the two reactions orthogonal. Then, un-
modified cytosines in the recognition sequence TCGA were
fluorescently labeled to perform reduced representation op-
tical methylation mapping [ROM ( 15 ,35 )]. Two 500 ng re-
action tubes of DLE1-labeled DNA were each mixed with 4
μl of 10 × CutSmart buffer (New England Biolabs), 60 μM
of lab-made synthetic AdoYnATTO643 ( 21 ), 1 μl of M.TaqI
(10 units / μl; New England Biolabs) and ultrapure water in a
total volume of 40 μl, and incubated for 5 h at 65 

◦C. Then,
5 μl of Puregene Proteinase K (Qiagen) were added and the
reaction tube was incubated for additional 2 h at 45 

◦C. Af-
ter the Proteinase K treatment, the two 500 ng reaction tubes
were merged and drop-dialyzed as one against 20 ml of 1 ×
TE buffer (pH 8) with 0.1 μm dialysis membrane for a to-
tal of 2 h. Finally, 300 ng recovered dual-color DNA were
stained to visualize DNA backbone by mixing it with 15 μl of
4 × Flow Buffer (Bionano Genomics), 6 μl of 1 M DTT (Bio-
nano Genomics), 3 μl of 0.5 M Tris (pH 8), 3 μl of 0.5 M
NaCl, 4.8 μl of DNA Stain (Bionano Genomics) and ultra-
pure water to a total volume of 60 μl, and incubated overnight
at 4 

◦C. 
Labeled samples were loaded on Saphyr chips (G1.2) and

run on a Saphyr instrument (Bionano Genomics) to generate
single molecule maps. Optical mapping data from several runs
were merged to a single dataset using Bionano Access (v1.6.1)
and Bionano Solve (v3.6.1) (Bionano Genomics). The assigned
channels for genetic and epigenetic labels in the molecules
(.BNX) files were swapped with Bionano Solve (v3.6.1) ac-
cording to manufacturer’s advice. De novo assemblies and
‘variant annotation pipeline’ (single sample mode) for SV an-
notation were generated from 5hmC-labeled data with de-
fault parameters for human genomes using Bionano Access
v1.7.1 and Bionano Solve v3.7.1. The in-silico digested human
genome GRCh38 ( hg38_DLE1_0kb_0labels.cmap ) was used
as the reference. For epigenetic data processing, molecules
spanning over 150 kb were aligned to the in silico hu-
man genome reference GRCh38, based on DLE-1 recogni-
tion sites (hg38_DLE1_0kb_0labels.cmap) using Bionano Ac-
cess (v1.6.1) and Bionano Solve (v3.6.1), with default param-
eters according to the following combination of arguments:
haplotype, human, DLE-1, Saphyr. Only molecules with an
alignment confidence equal to or higher than 15 ( P ≤ 10 

–15 )
that at least 60% of their length was aligned to the refer-
ence were used for downstream analysis. Alignment outputs
were converted to global epigenetic profiles (bedgraph files)
according to the pipeline described by Gabrieli et al . ( 16 ) and
Sharim et al . ( 15 ) and in ebensteinLab / Irys-data-analysis on
Github. Only regions covered by at least 20 molecules were
considered. 

CNV analysis 

In order to generate CNV plots of OGM data, the cover-
age of DLE-1 labeling sites was extracted from raw output
of CNV analysis ( cnv_rcmap_exp.txt ). Genomic regions with

https://github.com/nanoporetech/dorado
https://github.com/epi2me-labs/wf-human-variation
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very high variance in coverage across Bionano Genomics’ con-
trol datasets compared to typical loci (hg38_cnv_masks.bed)
were subtracted from analysis. Then, the mean coverage of
such sites in 500 000 bp bins was calculated using Bedtools
( 36 ) map (v2.26.0). Then, for each bin, the log 2 of the copy
ratio (in a diploid organism, copy number / 2) was calculated
and plotted along the chromosomes. log 2 of the copy ratio in
500 000 bp bins along ONT data was inferred by employ-
ing the EPI2ME workflow ‘wf-human-variation’ to each sam-
ple. A running median over 10 bins was calculated to plot a
smooth red line across the log 2 of the copy ratio dots of both
methods. 

SV analysis 

Genomic coordinates, SV type and size of annotated OGM
SVs from ‘variant annotation Pipeline’ with confidence score
meeting or exceeding the SV-specific BNG thresholds (0 for
insertions and deletions, 0.7 for inversions, 0.3 for intra
chromosomal translocations and 0.65 for inter chromoso-
mal translocations. All duplications were considered, as they
have undefined confidence scores), were extracted from out-
put smap file and converted to bed format for downstream
analysis. In case no end coordinate was supplied, it was taken
as start + 1. Both translocation breakpoints were considered
for overlap with ONT SVs, but were counted as one event of
a large SV ( > 10 kb). Only unique SVs were kept. SVs over-
lapping BNG’s list of N-base gaps in the reference or puta-
tive false positive translocation breakpoints (for ‘ de novo as-
sembly’, Solve 3.6.1) were masked from analysis [Bedtools
intersect -v (v2.26.0)]. Coordinates of OGM-detected SVs
were extended by 500 bp up and downstream [Bedtools slop
(v2.26.0)] to account for possible differences in SV resolution
between OGM and ONT. This extension was not considered
to determine SV size. 

Genomic coordinates, SV type and size of ‘passed’ ONT SVs
called by the EPI2ME workflow ‘wf-human-variation’, with
minimum five reads supporting them, residing on canonical
chromosomes, were extracted from the Sniffles2 VCF output
file and converted to bed format for downstream analysis. End
coordinate was taken as end + 1 to avoid cases of 0 difference.
Only unique SVs were kept. SVs overlapping BNG’s list of N-
base gaps in the reference or putative false positive translo-
cation breakpoints (for ‘ de novo assembly’, Solve 3.6.1) were
masked from analysis [Bedtools intersect -v (v2.26.0)]. 

Overlap between SVs of the same type detected by OGM
and ONT was calculated with Bedtools intersect (v2.26.0).
The number and sizes of overlapping SVs is reported based
on the ONT calls. Overlapping and non-overlapping SVs were
then divided based on their size (absolute value). 

AnnotSV ( 37 ,38 ) was used to annotate and interpret the
clinical significance of ONT SVs. 

Alternative ONT SV callers 

S V calling with S VIM ( 39 ) ( https:// github.com/ eldariont/ svim )
was conducted with parameter: –min_sv_size 50. 

S V calling with CuteS V ( 40 ) ( https://github.com/
tjiangHIT/cuteSV ) was conducted with parameters rec-
ommended for ONT data: –max_cluster_bias_INS 100;
–max_cluster_bias_DEL 100; –diff_ratio_merging_INS 0.3;
–diff_ratio_merging_DEL 0.3; and additional parameters: -l
50; –min_support 5. 
SV calling with NanoVar ( 41 ) ( https://github.com/ 
benoukraflab/NanoVar ) was conducted with parameters: 
–mincov 5; –minlen 50. 

The output VCF files of all callers were processed as de- 
scribed for the EPI2ME (Sniffles2) VCF. Only SVs of at least 
500 bp were considered for analysis. 

Overlap between SVs detected by the different ONT callers 
was calculated as follows: 

To assess the concordance of ONT SV callers, SVs of the 
same type called by any SV caller were combined. Overlapping 
SVs were merged [Bedtools merge (v2.26.0)], and the merged 

SVs were intersected with the individual caller’s results [Bed- 
tools intersect –wa –wb –names (v2.26.0)]. Results of all SV 

types were then combined and an UpSet plot was generated to 

visualize overlaps. The merged SVs were also intersected with 

the OGM SVs, by SV type. 

Manual inspection of ONT inter-chromosomal 
translocation detected by OGM 

To find ONT reads that support an inter-chromosomal 
translocation discovered by OGM, we listed all ONT reads 
aligned to extended regions around each of the OGM break- 
points (chr3:84 351 000–84 362 000; chr5:53 644 000–
53 663 000). Then, we looked for read IDs that aligned to 

both regions. 

Global epigenetic levels 

Due to resolution differences between OGM and ONT,
the mean epigenetic levels in non-overlapping 1000 bp 

genomic windows (generated using Bedtools makewindow 

(v2.26.0) was calculated. Only windows on canonical chro- 
mosomes that contain at least one relevant recognition site 
were considered (CpG for 5hmC and ONT mC, TCGA 

for OGM unmethylation; sites loci were extracted using 
the R package BSgenome ( https:// bioconductor.org/ packages/ 
release/ bioc/ html/ BSgenome.html ). To match the reported 

measure between OGM and ONT in methylation calling,
the unmethylation level (1 – methylation level) was calcu- 
lated from ONT methylation level. The weighted mean of all 
ONT epigenetic signals and ONT unmethylation signals in 

TCGA sites only [crossed with Bedtools intersect (v2.26.0)] in 

these genomic windows was calculated using Bedops bedmap 

( 42 ) (v2.4.41). The number of OGM epigenetic labels and 

molecules covering each genomic window were counted using 
Bedtools intersect (v2.30.0). The average labels-to-molecules 
ratio across all windows was reported as the global epigenetic 
level for OGM. 

To create bedgraphs of OGM signals, epigenetic labels and 

molecules were extended by 500 bp upstream and down- 
stream to account for optical resolution [(Bedtools slop 

(v2.26.0)], prior to calculating the labels to molecules ratio 

in each genomic location. To reduce the resolution of OGM 

and ONT bedgraphs to 1 kb windows, the weighted mean of 
signal in these windows was calculated with Bedops bedmap 

(v2.4.41). 

Gene aggregation according to gene expression 

data 

Publicly available RNA-seq data (RPKM scores) of ccRCC tu- 
mors ( N = 419) and normal adjacent tissues ( N = 31) were 
adapted from The Cancer Genome Atlas Research Network 

( 43 ). Entrez gene_id and hgnc gene symbol were used to as- 

https://github.com/eldariont/svim
https://github.com/tjiangHIT/cuteSV
https://github.com/benoukraflab/NanoVar
https://bioconductor.org/packages/release/bioc/html/BSgenome.html
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Figure 1. Experimental w orkflo w. U / HMW DNA was extracted from a ccRCC tumor and a normal adjacent kidney tissue. Samples were analyzed by 
OGM and ONT to detect SVs and CNVs, and epigenetic modifications. Results from both methods were compared. 
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ign gene attributes for hg38 using the R package biomaRt
 44 ). Only genes on canonical chromosomes were taken. The
ean RPKM level of each gene in the two groups was cal-

ulated and the genes were divided into three equal quantiles
ased on the mean. Mean 5-hmC and unmethylation signals
long aggregated genes were calculated using DeepTools ( 45 )
omputeMatrix (v3.5.4) in scale-regions mode, where each
ene [from transcription start site (TSS) to end site (TES)]
as scaled to 15 kb and divided into 300 bp bins. Com-
ressed matrix output was summarized by DeepTools plot-
rofile . The average signal intensities for both markers were

hen plotted as a function of the scaled distance relative to
he TSS. 

esults 

e began by analyzing the genetic makeup of a stage 3 ccRCC
umor, a common type of kidney cancer known for character-
stic structural abnormalities ( 24 ,27 ), and its normal adjacent
issue. Our workflow consisted of extracting U / HMW DNA,
ollowed by per-protocol OGM and ONT analyses (Figure 1 ).

By generating long reads, both methods unlock access to in-
ricate areas of the genome, enabling the study of diverse SVs,
NVs and repetitive elements. Additionally, as both methods

ead native, unamplified DNA, they are able to detect epige-
etic modifications. The different attributes of each technique
ffect their performance in the aforementioned analyses. 

Table 1 is based on public company material and summa-
izes some of the performance specifications, pointing to ad-
antages and limitations of the two methods and indicating
their compatibility of use, depending on research goals and
budget. 

To compare the efficacy of the structural profiling and data
analysis processes offered by each method, we applied CNV
and SV analyses on data generated by both methods, adhering
to the manufacturer’s recommended pipelines unless specified
otherwise (see methods section). Herein, DNA from a ccRCC
tumor and a normal adjacent tissue was analyzed using both
ONT and BNG platforms. Table 2 summarizes the resulting
N50 and average coverage. Supplementary Figure S1 shows
read length histograms. 

Strong agreement in CNV landscapes detected by 

OGM and ONT 

First, genome-wide copy number, calculated in 500 kb bins,
was compared. Tumor plots are shown in Figure 2 and normal
adjacent tissue plots are shown in Supplementary Figure S2 . A
running median over 10 bins was calculated to plot a smooth
red line across the copy number dots. As expected, both meth-
ods produced highly similar CNV plots, identifying the loss of
one copy of the entire 3p chromosomal arm, as well as a large
DNA gain in 5q, and a smaller DNA loss in the same arm. Ane-
uploidies were found by both methods on chromosomes 7 and
12. OGM spotted a small DNA loss on chromosome 9 not re-
ported by ONT. The normal adjacent sample did not exhibit
any large CNV in both methods, suggesting somatic aberra-
tions. The loss of 3p, gain in 5q and trisomy of chromosome 7
are well-documented genetic characteristics of ccRCC ( 27 ,28 ).
The number of data points sampled in each bin in OGM is de-
termined by the label density of the DLE motif (14–17 labels

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae190#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae190#supplementary-data
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Table 1. ONT and OGM specifications 

Bionano Genomics Saphyr ONT PromethION 

Resolution Optical resolution: 500–1500 bp ( 10 ) 
SV detection resolution: starting from 500 
bp for diploid genomes’ insertions and 
deletions. 
inversions / duplications: > 30 kb. 
translocations: > 50 kb ( 46 ). 

Single bp 

Molecules N50* 250–400 kb, when including only 
molecules exceeding 150 kb ( 47 ) 

10–50 kb for high throughput ( 48 ), and up 
to 150 kb with ultra-long sequencing ( 49 ) 

Average human genome coverage 
per cell 

80–300 × (effective coverage of filtered 
( ≥150 kb) and aligned molecules) ( 47 ) 

16–66 × (raw coverage) ( 48 ) 

Price per sample (including cell, 
reagents and device rental) 

550$ (450$), when buying a package for 
120 (240) experiments ( 50 ) 

1010$ (720$), when buying ‘project pack’ 
for 96 experiments with PromethION 2 
Integrated (‘project pack’ for 1024 
experiments with PromethION 24) ( 48 ) 

Price per 1 × human genome 
co ver age 

1.5$–7$ 11$–65$ 

Methylation calling Labeling of unmodified cytosines in CpG 

( 19 ,20 ) or TCGA ( 15 ) sites can be added 
(unsupported) 

Integrated 
( https:// github.com/ nanoporetech/ dorado ) 

5hmC calling Direct labeling of 5hmC can be added 
(unsupported) ( 16 ) 

Integrated 
( https:// github.com/ nanoporetech/ dorado ) 

*Molecules N50 is a measure of reads length indicating that half of the genetic data recorded came from reads longer or equal to this value. 

Table 2. Co v erage and N50 of OGM and ONT genetic experiments 

Effective genome co ver age of 
aligned molecules N50 of aligned molecules 

OGM Tumor sample: 133 ×
Normal adjacent sample: 
123 ×

Tumor sample: 291 kb 
Normal adjacent sample: 
233 kb 

ONT Tumor sample: 36 ×
Normal adjacent sample: 
19 ×

Tumor sample: 18 kb 
Normal adjacent sample: 
15 kb 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

per 100 kb on average, for human genomes), which is lower
than the number of points in ONT (single bp resolution). Con-
sequently, the OGM plot exhibits higher noise. 

SV concordance depends on size and type 

Clearly, both methods are adequate for basic Karyotyping;
however, SV detection exhibited less congruence between
the two methods. To facilitate a comprehensive comparison,
we categorized detected SVs based on their size (in the tu-
mor sample in Figure 3 A and the normal adjacent tissue in
Supplementary Figure S3 A). The results reveal a clear trend:
ONT detected smaller SVs, while OGM was more effective
at detecting larger SVs. Specifically, in the tumor sample, only
ONT reported SVs between 50 and 500 bp, with ∼11% of
these overlapping with larger SVs detected by OGM. In the
next size group (500–1000 bp), both technologies detected
SVs, with a significant overlap: 60% (1143 SVs) were iden-
tified by both methods. However, ONT detected more unique
SVs (565) compared to OGM (202). For SVs sized 1–5 kb, the
overlap increased to 74% (1487 SVs), with ONT still detect-
ing more unique SVs (334) than OGM (192). The larger SV
groups contained fewer SVs overall. For SVs sized 5–10 kb, the
overlap remained substantial at 65% (251 SVs), but OGM de-
tected more unique SVs (97) compared to ONT (37). For SVs
larger than 10 kb, OGM was the dominant technology, de-
tecting 192 unique SVs compared to only 8 by ONT, with 40
SVs (17%) detected by both. The observed differences in SV
detection can be attributed to the inherent strengths of each 

technology. OGM’s larger N50 and higher coverage make it 
more effective for detecting larger SVs, while ONT’s higher 
resolution allows it to better characterize smaller SVs. 

Out of the OGM-detected SVs, 54 are not present in BNG’s 
database of healthy controls, indicating possibly pathogenic 
S Vs: 9 S Vs between 500 bp and 1 kb, 19 SVs between 1 and 5
kb, 8 SVs between 5 and 10 kb and 18 SVs larger than 10 kb.
A total of 25 of these rare SVs are not present in the normal 
adjacent tissue. Out of the ONT-detected SVs, 6 were classi- 
fied as possibly pathogenic by the ACMG classification [using 
AnnotSV ( 37 ,38 )]: one between 500 bp and 1 kb, and five are 
shorter, between 50 and 500 bp. The reported phenotype for 
these SVs is unrelated to ccRCC. These SVs are also present 
in the normal adjacent tissue. Five other SVs, sized between 

50 and 500 bp and classified as ‘variant of unknown signif- 
icance’ or ‘NA’ were annotated with a renal cell carcinoma 
OMIM phenotype. These SVs, or similar SVs within 100 bp 

proximity, are also present in the normal adjacent tissue. 
Our analysis revealed differences in the types of SVs de- 

tected by the ONT pipeline and the OGM method (Figure 3 B 

– in the tumor sample, Supplementary Figure S3 B – in the nor- 
mal adjacent sample). While the ONT pipeline, using Sniffles2 

( 51 ), only identified deletions (1364) and insertions (2501) in 

the tumor sample, OGM detected additional SV types, translo- 
cations (4) inversions (48) and duplications (35), alongside 
deletions (1221) and insertions (3229). This observation sug- 
gests potential limitations of Sniffles2 for certain SV types.
Recent publications evaluating various SV callers within the 
ONT framework ( 52 ,53 ), suggest that alternative SV callers 
like S VIM ( 39 ), CuteS V ( 40 ) or NanoVar ( 41 ) may outperform
Sniffles2 in detecting such SV types, when used after the same 
aligner (minimap2). Based on these findings, we employed 

S VIM, CuteS V and NanoVar for SV detection in the tumor 
sample and compared the results of all four ONT callers to the 
OGM results (Figure 3 B and Supplementary Figure S4 ). No- 
tably, NanoVar was the only SV caller that revealed translo- 
cations, inversions and duplications, as well as transposi- 
tions, not reported by OGM. Figure 3 C shows the overlap 

https://github.com/nanoporetech/dorado
https://github.com/nanoporetech/dorado
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae190#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae190#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae190#supplementary-data
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Figure 2. Comparative analysis of CNV in a ccRCC tumor, as detected by ONT and OGM. The plots show log 2 of the copy ratio generated from ONT 
(top) and OGM (bottom) dat a. Dat a illustrate highly similar findings, pinpointing a significant DNA loss on chromosome 3 and various losses and gains on 
chromosomes 5, 7 and 12. 

Figure 3. Comparative analysis of SVs in a ccRCC tumor, as detected by ONT and OGM. ( A ) Venn diagrams displaying common and unique SVs to OGM 

and ONT (Sniffles2), in five size ranges: 50–500 bp, 500 bp–1 kb, 1–5 kb, 5–10 kb and abo v e 10 kb. ( B ) Comparison of number of SVs ( ≥500 bp) by type, 
detected by OGM and four SV callers for ONT – Sniffles2, SVIM, CuteSV and NanoVar. ( C ) UpSet plot displaying the overlap between SVs called by the 
different ONT SV callers. 
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etween the SVs called by the different ONT callers. A to-
al of 27% of the SVs were detected by all the four callers,
nd Sniffles2 detected less unique SVs than the other callers.
upplementary Figure S4 shows the overlap between OGM
Vs and ONT SVs called by any of the SV callers in the tumor
ample, by SV type. 

Chromosomes 3 and 5 are frequently disrupted in ccRCC.
igure 4 A illustrates these two chromosomes with marks in-
icating the relative positions of SVs and CNVs larger than
 kb identified by ONT and OGM. SVs overlapping BNG’s
ist of N-base gaps in the reference or putative false positive
ranslocation breakpoints (for de novo assembly, Solve 3.6.1)
ere masked for both methods. Out of the OGM-detected
 Vs, uncommon S Vs not present in BNG’s database of healthy
ontrols are separately plotted on the bottom. As seen also
n Figure 2 , the two methods detected DNA gain / loss events
in these chromosomes and exhibited a high degree of concor-
dance for insertions and deletions. OGM detected six possible
inversions (similar locus), two duplications, three intrachro-
mosomal and one inter-chromosomal (Figure 4 B) transloca-
tion events. Notably, only 13 SVs identified by OGM in these
chromosomes did not appear in BNG’s database of mapped
healthy controls, indicating possible pathogenic SVs. Two of
them were also found by ONT, and 11 of them are poten-
tial somatic variants not found in the normal sample adjacent
to the tumor (of these, none were found by ONT). ONT SVs
found in all chromosomes in the ccRCC tumor and the normal
adjacent tissue are shown in Supplementary Figure S5 (raw,
unfiltered karyogram) and S6 (processed circos plots, includ-
ing somatic SVs present in the tumor sample and not in the
normal adjacent tissue). OGM SVs found in all chromosomes
in the ccRCC tumor and the normal adjacent tissue are shown

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae190#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae190#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae190#supplementary-data
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Figure 4. SVs detected by ONT and OGM. ( A ) Illustration of SVs larger than 5 kb on chromosomes 3 and 5, as detected by ONT (top panel) and OGM 

(middle panel). Bottom panel shows OGM SVs that do not appear in BNG’s dataset of healthy controls, hence potentially pathogenic. ( B ) 
Inter-chromosomal translocation detected by OGM, and not reported by any of the tested ONT SV callers. The light blue strips at the top and bottom 

represent the reference chromosomes 3 (top) and 5 (bottom), and the middle strip is a de no v o assembled contig, composed of fragments mapped to 
chromosome 3 and in v erted chromosome 5. Pink lines indicate CTTAAG barcode labels in the contig and reference. Bold black lines indicate 
translocation breakpoints (gap is due to the method’s resolution). ( C ) Manual in v estigation of ONT reads re v ealed fiv e reads supporting the 
OGM-detected translocation, and identified the true breakpoints. The panel shows the breakpoint loci on chromosome 3 and on in v erted chromosome 5, 
with five reads that aligned to both. Each read is shown twice in the same row, under each chromosome. The part of the read that aligns to the above 
chromosome is colored according to strand (blue or red) and displa y s only sparse mismatches labels (colorful lines). The arc below marks the 
translocation breakpoint re v ealed b y these reads. R eads w ere visualiz ed in Jbro wse2 ( 54 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

in Supplementary Figure S7 (processed circos plots of all SVs,
including somatic SVs present in the tumor sample and not in
the normal adjacent tissue), S8 (processed circos plots of SVs
not present in BNG’s database of healthy controls, including
somatic SVs present in the tumor sample and not in the nor-
mal adjacent tissue), and S9 (BNG default display summariz-
ing all results. SVs plotted are not present in BNG’s database
of healthy controls). 

The inter-chromosomal translocation discovered by OGM,
depicted in Figure 4 B, connects chromosome 3 and inverted
chromosome 5. In OGM, it was supported by multiple
molecules spanning the breakpoint (at least 20) and received
a high confidence score (at least 0.98). The reported variant
allele frequency for it is 0.28. However, none of the four in-
spected ONT SV callers confirmed it. Manual investigation 

of the ONT reads revealed five reads spanning the break- 
point and supporting it (Figure 4 C). We note that a minimum 

threshold of five reads was selected for the SV callers’ analy- 
sis, which means this SV could have been detected. These ONT 

reads, all sharing the same breakpoint, refine the 7.8 kb res- 
olution gap around the OGM translocation breakpoint (seen 

between the two black lines in Figure 4 B) to a bp level break- 
point at chr3:84 354 973; chr5:53 647 008. The calculated 

translocation frequency is 0.07 (five reads divided by the to- 
tal number of reads aligned to the two breakpoint loci). The 
higher frequency reported by OGM can be attributed to the 
larger portion of long molecules in OGM (higher N50 and 

higher coverage). 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae190#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae190#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae190#supplementary-data
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pigenetic analyses 

omparati ve anal ysis of methylation calls shows superior per-
ormance of ONT over OGM 

hile ONT can directly call methylation signals from na-
ive sequences using the appropriate Dorado basecalling
odel, OGM requires enzymatic attachment of a fluorophore

o specific sites for detection. We employed reduced ROM
 15 , 17 , 21 ) to tag unmodified CpG sites within specific se-
uence contexts. This method uses the methyltransferase
.TaqI, which directly transfers a fluorescent tag from a syn-

hetic cofactor to an adenine base in the enzyme’s recogni-
ion sequence TCGA. However, if the CpG nested in this se-
uence motif is methylated or modified, the labeling reaction
s blocked (Figure 5 A). Consequently, the DNA is labeled in
ll unmodified CpGs within TCGA sites. 

To facilitate a direct comparison of methylation signals
etween ONT’s direct methylation calling and ROM, we
ransformed the ONT methylation values into unmethyla-
ion signals by presenting the complement to 1 of the cal-
ulated methylation level. We applied a minimum coverage
hreshold per site, requiring at least five reads for ONT
 Supplementary Figure S10 A) and 20 reads for OGM. In or-
er to account for the lower resolution of OGM, we calcu-
ated the average unmethylation signals in non-overlapping 1
b genomic windows. We compared the entire ONT methy-
ome (all CpG sites) as well as a reduced ONT methylome
TCGA motif) to the reduced representation OGM signals
Figure 5 B). Our analysis revealed a higher unmethylation sig-
al in ONT compared to OGM. Interestingly, the difference
ersisted, and even slightly increased when we specifically an-
lyzed TCGA-embedded CpG sites in ONT data. This sug-
ests a potential underestimation of unmethylation by OGM,
ikely attributable to its lower optical resolution, rather than
o the reduced representation approach. Consequently, multi-
le closely spaced TCGA sites might be erroneously merged
nto a single unit by OGM, leading to an underestimation of
he overall unmethylation signal. Plots showing distances be-
ween adjacent TCGA sites, the number of TCGA sites in 1 kb
indows, and this number versus the number of CpG sites in

he same bins, are presented in Supplementary Figure S10 B–
. Figure 5 C shows that despite absolute intensity differences,

imilar trends are seen in the normalized unmethylation pro-
le generated along genes when grouped by their gene ex-
ression score in ccRCC tumors ( 55 ). Both methods display
he higher unmethylation signal around the TSS, which in-
reases with gene expression. In contrast, the level in gene
odies is much lower and more similar among all expression
evels, indicating highly modified gene bodies regardless of ex-
ression level. Un-normalized OGM and ONT levels of the
umor and normal adjacent tissue along genes are presented
n Supplementary Figure S11 . The relationship between the
umor-to-normal fold-change in genes unmethylation signal
nd the corresponding changes in gene expression is presented
n Supplementary Figure S12 . The resolution and methyla-
ion representation differences become more apparent when
ooming in to smaller regions of the genome. Figure 5 D shows
he unmethylation profile of a ∼400 kb region on chromo-
ome 22q11.21. Three representative examples for methyla-
ion comparison are marked in red boxes that contain variable
CGA content (shown in blue in the lower panel). The left-
ost box showcases a region lacking any TCGA sites in the

eference genome. Consequently, the ONT plot exhibits a high
nmethylation signal (indicating unmethylated CpGs), while
the OGM profile shows no signal. The middle box highlights
two adjacent bins with relatively high TCGA density, resulting
in signal peaks by both methods. The rightmost box depicts a
region lacking a reference TCGA site, yet the OGM profile dis-
plays a peak. Intriguingly, investigation of the corresponding
ONT sequence revealed an A-to-G SNP, creating a new TCGA
site recognizable by the M.TaqI enzyme, thus explaining the
observed OGM signal. 

Hydroxymethylation profiling: similar trends, lower 
absolute levels in ONT compared to OGM 

Optical mapping of 5hmC was compared to ONT 5hmC calls
made using the appropriate Dorado basecalling model. For
optical mapping, 5hmC is labeled through a process involving
the enzymatic attachment of an azide-modified glucose moiety
from a synthetic cofactor ( 56 ,57 ) (UDP-6-N3-Glu) to the hy-
droxyl group of 5-hmC, followed by a click reaction that con-
nects a fluorophore-bound alkyne to the azide-labeled 5-hmC
( 58 ,59 ) (Figure 6 A). Figure 6 B shows the average genome-
wide 5hmC signal in the ccRCC tumor sample and the nor-
mal adjacent tissue, as was detected by both methods. Con-
sistent with published reports indicating a global reduction of
5hmC in various cancers ( 23 , 60 , 61 ), both methods revealed
a ∼3-fold decrease in 5hmC levels in the tumor compared to
the adjacent normal tissue. This time, OGM detected higher
absolute levels of 5hmC compared to ONT. As the label-
ing scheme used to tag 5hmC residues in the OGM exper-
iment has no false positives, and was validated with liquid
chromatography-tandem mass spectrometry (LC-MS / MS) in
previous work ( 16 ), we hypothesize that there is an under-
estimation of 5hmC calls by the ONT model due to incom-
plete training sets and challenging sequence contexts. Albeit
showing different absolute levels of 5hmC, the modulation of
5hmC level along gene bodies, as well as the increase in signal
as a function of gene expression, can be seen by both meth-
ods (Figure 6 C and Supplementary Figure S13 ). The relation-
ship between the tumor-to-normal 5hmC signal fold-change
in genes and the corresponding changes in gene expression
is presented in Supplementary Figure S14 . The 5hmC profile
generated by both methods and displayed in Figure 6 D reveals
a broadly correlated profile, but with distinct amplitude vari-
ations between the different datasets, in line with the average
global levels. Figure 6 E shows an example of a large repetitive
element containing a group of genes from the GAGE fam-
ily, poorly represented in the hg38 reference (the entire array
spans ∼190 kb in the reference, with a gap within these co-
ordinates) ( 62 ). Long molecules spanning the entire unchar-
acterized region in OGM aided in assembling a contig of the
full repetitive element, and the 5hmC tags on these molecules
provided the 5hmC profile along the unknown region. The
panel also depicts a 5hmC-containing single molecule (digi-
tized) and the average 5hmC signal along the contig. Epige-
netic characterization of this region by ONT was not possible
due to the shorter molecules that could only penetrate several
thousand bases into the ENCODE blacklist-masked GAGE12
region ( 63 ). 

Discussion 

BNG and ONT now offer tools that aim to unveil the com-
plexity of aberrant genomes and replace many cytogenetic
workflows. Both companies have developed dedicated toolk-
its for variant calling. To navigate this evolving landscape, this

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae190#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae190#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae190#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae190#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae190#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae190#supplementary-data
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Figure 5. Unmethylation analysis. ( A ) Fluorescent labeling scheme for unmodified CpGs embedded in TCGA motifs for ROM. ( B ) Average global 
unmeth ylation le v els of a ccR CC tumor, as detected b y ONT in all CpG sites, b y ONT when restricted to TCG A-embedded CpG sites only, and b y O GM 

(inherently marking only TCGA sites). ( C ) ONT and OGM unmethylation signal, each normalized between 0 and 1, of the ccRCC tumor along aggregated 
genes. Genes were grouped based on their expression in ccRCC tumors. ( D ) Unmethylation profiles of the ccRCC tumor by ONT and OGM along a 
region on chromosome 22, and the corresponding density of TCGA motifs in the hg38 reference. Three boxes mark three regions that differ in TCGA 

content (all regions contain CpG sites): 1: no TCGAs, there is a peak in ONT signal and not in OGM. 2: TCGAs are present, peaks in both methods. 3: no 
TCGAs in the reference, peaks in both methods due to a single nucleotide polymorphism (SNP). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

report joins earlier research comparing SV identification by
OGM to ONT ( 64 ,65 ) and serves as one of the first bench-
marks for real data comparisons between these methods. We
expand the scope by considering different size ranges, testing
multiple SV callers for ONT, and examining two key epige-
netic marks, 5mC and 5hmC, for the first time. This thorough
evaluation of the two methods offers an objective compari-
son, delving into the data types accessible with each technol-
ogy, and the capabilities of their respective analytical tools.
We recognize these tools as crucial for generating reports with
clear clinical relevance. In this respect, BNG is more clinically
oriented in the cytogenetic space, with pipelines and reports
that are aligned with clinical needs. BNG additionally com-
piled a substantial reference database of healthy controls. This
enables the filtering of non-pathogenic findings. 

At the karyotype level, the methods conform, and both are
capable of providing reliable copy number evaluations. Nev-
ertheless, slight differences in copy number can be observed
and are attributed to the higher resolution of ONT. 

A trade-off between resolution, read-length and coverage
was observed in detecting structural variants of varying sizes.
ONT’s single bp resolution gives access to short insertions and
deletions that OGM is blind to. Additionally, the high resolu- 
tion also enables more accurate reporting of the SVs’ break- 
points. On the other hand, large or complex SVs are challeng- 
ing for ONT under the experimental N50 and coverage. ONT 

excelled in detecting small SVs, uniquely identifying ∼89% 

of SVs in the 50–500 bp range. This percentage gradually de- 
clines with increasing SV size, down to only 3% for SVs above 
10 kb. Conversely, OGM demonstrated a clear advantage in 

detecting large SVs, uniquely identifying 80% of SVs above 10 

kb, with this percentage decreasing for smaller SV sizes. Both 

methods detected high percentages (60–74%) of common SVs 
in the 500 bp–10 kb range. 

Regarding SV types, both insertions and deletions were de- 
tected by OGM and all four evaluated ONT SV callers: Snif- 
fles2, S VIM, CuteS V, and NanoVar . However , translocations,
inversions and duplications were identified only by NanoVar 
and OGM, with minimal overlap between their findings. No- 
tably, an inter-chromosomal translocation detected by OGM 

was manually identified in ONT reads but was missed by all 
SV callers. This highlights the potency of the technology and 

suggests that analysis pipelines can be further optimized to 

fully leverage its capabilities. 
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Figure 6. 5hmC analysis. ( A ) Direct fluorescent labeling of 5hmC for OGM. ( B ) Global 5hmC levels of a ccRCC tumor and a normal adjacent tissue, as 
detected in OGM and ONT. ( C ) OGM and ONT 5hmC signal of a normal kidney tissue adjacent to a ccRCC tumor along aggregated genes. Genes are 
grouped based on their expression in kidney tissues adjacent to ccRCC tumors. ( D ) 5hmC profiles of a ccRCC tumor and a normal adjacent tissue 
generated by OGM and ONT along a ∼25 Mb region on chromosome 3. ( E ) A repetitive sequence element on chromosome X, poorly characterized in 
the hg38 reference (green strip; Blue lines on it indicate the genetic barcode labels). Abo v e it, a de no v o assembled OGM contig (gray) spanning the 
entire repeat array, indicating a deletion compared to hg38. The region spans genes from the GAGE family, and the gapped region contains the gene 
G AGE12B . Abo v e it, a digitiz ed single O GM molecule, with genetic barcode labels (blue circles) and 5hmC labels (red squares). Abo v e it, is the a v erage 
5hmC signal along the contig. 
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Per dollar, the genomic coverage generated by OGM is
igher than that of ONT, opening a window to detect low-
requency variants and more resilience to sample heterogene-
ty. However, in this experiment, we did not meet the recom-
ended coverage for running Bionano Genomics’s ‘rare vari-

nt pipeline ’ [300 × is recommended for high sensitivity to low
requency variants ( 66 )], therefore we performed the pipelines
f ‘ de novo assembly’ and ‘variant annotation pipeline ’ , in-
tead. The choice of analytical tools significantly influences
he insights extracted from data generated by both methods.

hile we employed recommended tools optimized for our
ata type and coverage, we note that these tools have inherent
imitations that potentially extend beyond purely technologi-
al constraints ( 52 , 53 , 64 ). 
As for epigenetics, ONT can now call methylated CpGs
from native DNA, together with generation of genetic data,
an obvious advantage compared to OGM. OGM users that
seek methylation information have to fluorescently tag the
epigenetic modifications prior to data acquisition. These ad-
ditional labeling steps are not commercialized by BNG and
are not supported by the company. Methylation mapping ex-
tent is confined by the ability of the methyltransferase enzyme
selected for this procedure and the density of its recognition
sites. The enzyme M.TaqI, described here, efficiently labels
CpG sites nested within the TCGA motif ( 15 ). This provides
a reduced representation of the unmethylome. These recogni-
tion sites make up ∼6% of the CpG sites in the human refer-
ence, with correlating methylation states in many important
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regions of the genome ( 15 ), but inherent reduced represen-
tation limitations apply, in addition to constrains added by
the difficulty to resolve adjacent labels due to optical resolu-
tion (diffraction limit). Additionally, the indirect labeling done
by methyltransferase enzymes, pointing unmodified sites, can
not distinguish methylation from other cytosine modifications
and is subjected to labeling efficiency, thus is inferior to direct
methylation calling. Our analysis showed that global trends,
such as correlation of signal with gene expression group, per-
sisted, while locus specific signals depend on TCGA repre-
sentation. This comparison highlights OGM’s limitations in
methylation calling compared to ONT . However , to date, the
picture for 5hmC presents a different scenario. In this case,
the fluorescent labeling added to OGM, while also external
and not supported by BNG, directly labels 5hmC residues and
not complementary sites ( 16 ). Similarly to methylation calling,
ONT enables 5hmC identification together with canonical
basecalling without additional experimental steps, but some
differences have to be considered. As the process of modifi-
cation calling relies on machine learning, model training is
a crucial step for accurate identification of 5hmC. This step
requires comprehensive reference data covering the modifi-
cation in all possible sequence contexts and distinguishing
it from other cytosine modifications to assure accurate calls.
Unfortunately, unlike for methylation, obtaining high-quality
genome-wide reference data for 5hmC is still challenging and
expensive, and might limit the comprehensiveness of the train-
ing data, thus affecting the performance of 5hmC calling mod-
els. This may explain the lower 5hmC levels called by ONT
compared to OGM, seen in our comparison, and suggest that
the ONT model currently underestimates the density of 5hmC
and misses many of the modified bases. 

To conclude, selecting the most suitable platform hinges on
a clear understanding of the data requirements dictated by the
clinical or research question. To this end, and for optimal uti-
lization of resources, a thorough understanding of the data
generated by each platform, alongside the strengths and limi-
tations of their respective analytical toolkits is needed. 
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