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Abstract

Motivation: Cells regulate themselves via dizzyingly complex biochemical processes called signaling pathways.
These are usually depicted as a network, where nodes represent proteins and edges indicate their influence on each
other. In order to understand diseases and therapies at the cellular level, it is crucial to have an accurate understand-
ing of the signaling pathways at work. Since signaling pathways can be modified by disease, the ability to infer sig-
naling pathways from condition- or patient-specific data is highly valuable. A variety of techniques exist for inferring
signaling pathways. We build on past works that formulate signaling pathway inference as a Dynamic Bayesian
Network structure estimation problem on phosphoproteomic time course data. We take a Bayesian approach, using
Markov Chain Monte Carlo to estimate a posterior distribution over possible Dynamic Bayesian Network structures.
Our primary contributions are (i) a novel proposal distribution that efficiently samples sparse graphs and (ii) the re-
laxation of common restrictive modeling assumptions.

Results: We implement our method, named Sparse Signaling Pathway Sampling, in Julia using the Gen probabilis-
tic programming language. Probabilistic programming is a powerful methodology for building statistical models.
The resulting code is modular, extensible and legible. The Gen language, in particular, allows us to customize our in-
ference procedure for biological graphs and ensure efficient sampling. We evaluate our algorithm on simulated data
and the HPN-DREAM pathway reconstruction challenge, comparing our performance against a variety of baseline
methods. Our results demonstrate the vast potential for probabilistic programming, and Gen specifically, for bio-
logical network inference.

Availability and implementation: Find the full codebase at https://github.com/gitter-lab/ssps.

Contact: gitter@biostat.wisc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Signaling pathways enable cells to process information rapidly in re-
sponse to external environmental changes or intracellular cues. One of
the core signaling mechanisms is protein phosphorylation. Kinases add
phosphate groups to substrate proteins and phosphatases remove them.
These changes in phosphorylation state can act as switches, controlling
proteins’ activity and function. A protein’s phosphorylation status
affects its localization, stability and interaction partners (Newman
et al., 2014). Ultimately, phosphorylation changes regulate important
biological processes, such as transcription and cell growth, death and
differentiation (Hunter, 2009; Kholodenko et al., 2010).

Pathway databases characterize the signaling relationships among
groups of proteins but are not tailored to individual biological contexts.
Even for well-studied pathways, such as epidermal growth factor
receptor-mediated signaling, the proteins significantly phosphorylated
during a biological response can differ greatly from those in the curated
pathway (Köksal et al., 2018). The discrepancy can be due to context-
specific signaling (Hill et al., 2017), cell type-specific protein

abundances or signaling rewiring in disease (Pawson and Warner,
2007). Therefore, there is a need to learn context-specific signaling
pathway representations from observed phosphorylation changes. In
the clinical setting, patient-specific signaling pathway representations
may eventually be able to guide therapeutic decisions (Drake et al.,
2016; Eduati et al., 2020; Halasz et al., 2016).

Diverse classes of techniques have been developed to model and
infer signaling pathways (Kholodenko et al., 2012). They take
approaches including Granger causality (Carlin et al., 2017; Shojaie
and Michailidis, 2010), information theory (Cheong et al., 2011;
Krishnaswamy et al., 2014), logic models (Eker et al., 2002; Gjerga
et al., 2020; Guziolowski et al., 2013), differential equations
(Henriques et al., 2017; Molinelli et al., 2013; Schoeberl et al.,
2002), non-parametric statistical tests (Zhang and Song, 2013) and
probabilistic graphical models (Sachs et al., 2005) among others.
Some signaling pathway reconstruction algorithms take advantage
of perturbations, such as receptor stimulation or kinase inhibition.
Although perturbing individual pathway members can causally link
them to downstream phosphorylation changes, characterizing a
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complex pathway can require a large number of perturbation
experiments. Inferring pathway structure from temporal phosphor-
ylation data presents an attractive alternative. A single time series
phosphorylation dataset can reveal important dynamics without
perturbing individual pathway members. For instance, a kinase can-
not phosphorylate substrates before it is activated.

An alternative approach to pathway reconstruction selects a
context-specific subnetwork from a general background network.
These algorithms can use phosphorylation data to assign scores to
protein nodes in a protein–protein interaction network. They then
select edges that connect the high-scoring nodes, generating a sub-
network that may explain how the induced phosphorylation changes
arise from the source of stimulation. Extensions accommodate tem-
poral scores on the nodes (Budak et al., 2015; Köksal et al., 2018;
Norman and Cicek, 2019; Patil et al., 2013).

Our present work builds on past techniques that formulate sig-
naling pathway inference as a Dynamic Bayesian Network (DBN)
structure estimation problem. This family of techniques relies on
two core ideas: (i) we can use a DBN to model phosphorylation time
series data and (ii) the DBN’s structure translates directly to a
directed graph representing the signaling pathway. Rather than
identifying a single DBN that best fits the data, these techniques
take a Bayesian approach—they yield a posterior distribution over
possible DBN structures. Some techniques use Markov Chain
Monte Carlo (MCMC) to sample from the posterior (Gregorczyk,
2010; Werhli and Husmeier, 2007). Others use exact, enumerative
inference to compute posterior probabilities (Hill et al., 2012; Oates
et al., 2014; Spencer et al., 2015).

We present a new Bayesian DBN-based technique, Sparse
Signaling Pathway Sampling (SSPS). It improves on past MCMC
methods by using a novel proposal distribution specially tailored for
the large, sparse graphs prevalent in biological applications.
Furthermore, SSPS makes weaker modeling assumptions than other
DBN approaches. As a result, SSPS scales to larger problem sizes and
yields superior predictions in comparison to other DBN techniques.

We implement SSPS using the Gen probabilistic programming
language (PPL). Probabilistic programming is a powerful method-
ology for building statistical models. It enables the programmer to
build models in a legible, modular, reusable fashion. This flexibility
was important for prototyping and developing the current form of
SSPS and readily supports future improvements or extensions.

2 Materials and methods

2.1 Model formulation
SSPS makes specific modeling assumptions. We start with the DBN
model of Hill et al. (2012), relax some assumptions and modify it in
other ways to be better-suited for MCMC inference.

2.1.1 Preliminary definitions

We first define some notation for clarity’s sake. Let G denote a
directed graph with vertices V and edges E(G). Graph G will repre-
sent a signaling pathway, with vertices V corresponding to proteins
and edges E(G) indicating their influence relationships. We use
paGðiÞ to denote the parents of vertex i in G.

Let X denote our time series data, consisting of jVj variables
measured at T timepoints. X is a T � jVj matrix where the jth col-
umn corresponds to the jth variable and the jth graph vertex. As a
convenient shorthand, let Xþ denote the latest T � 1 timepoints in
X, and let X� denote the earliest T � 1 timepoints in X. Lastly, de-
fine Bj � X�;paGðjÞ. In other words, Bj contains the values of variable
j’s parents at the T � 1 earliest timepoints. In general, Bj may also
include columns of non-linear interactions between the parents. We
will only include linear terms, unless stated otherwise.

2.1.2 Model derivation

In our setting, we aim to infer G from X. In particular, Bayesian
approaches seek a posterior distribution PðGjXÞ over possible
graphs. From Bayes’ rule, we know PðGjXÞ / PðXjGÞ � PðGÞ: That

is, a Bayesian model is fully specified by its choice of prior distribu-
tion P(G) and likelihood function PðXjGÞ.

We derive our model from the one used by Hill et al. (2012).
They choose a prior distribution of the form:

PðG j G0; kÞ / exp ð�kjEðGÞnEðG0ÞjÞ; (1)

parameterized by a reference graph G0 and inverse temperature k.
This prior gives uniform probability to all subgraphs of G0 and
‘penalizes’ edges not contained in EðG0Þ. k controls the ‘importance’
given to the reference graph.

Hill et al. choose a Gaussian DBN for their likelihood function.
Intuitively, they assume linear relationships between variables and
their parents:

Xþ;j � NðBjbj; r
2
j Þ 8j 2 f1 . . . jVjg:

A suitable prior over the regression coefficients bj and noise
parameters r2

j (Fig. 1) allows us to integrate them out, yielding this
marginal likelihood function:

PðXjGÞ /
YjVj
j¼1

T�
jpaG ðjÞj

2 X>þ;jXþ;j �
T � 1

T
X>þ;jðBjb̂olsÞ

� ��T�1
2

; (2)

where b̂ols ¼ ðB>j BjÞ�1B>j Xþ;j is the ordinary least squares estimate
of bj. For notational simplicity, Equation (2) assumes we have a sin-
gle time course of length T. In general, there may be multiple time
course replicates with differing lengths. The marginal likelihood
generalizes to that case in a straightforward way.

In SSPS, we use the same marginal likelihood function [Equation
(2)], but a different prior distribution P(G). We obtain our prior dis-
tribution by decomposing Equation (1) into a product of independ-
ent Bernoulli trials over graph edges. This decomposition in turn
allows us to make some useful generalizations. Define edge existence
variables zij � 1½ði; jÞ 2 EðGÞ�. Let Z be the jVj � jVj matrix of all
zij. Then, we can rewrite Equation (1) as follows:

PðGjG0; kÞ � PðZjG0; kÞ /
Y

ði;jÞ62EðG0 Þ
e�zijk

¼
Y

ði;jÞ2EðG0 Þ

1

2

� �zij 1

2

� �1�zij Y
ði;jÞ62EðG0Þ

e�k

1þ e�k

� �zij
1

1þ e�k

� �1�zij

;

where the last line is a true equality—it gives a normalized probabil-
ity measure. We see that the original prior is simply a product of

kj � Uniform ðkmin; kmaxÞ 8j 2 f1 . . . jVjg

zij j cij ; kj � Bernoulli e
�kj

e
�cij kj þe

�kj

� �
8i ; j 2 1 . . . jV jf g

r2
j / 1

r2
j

8j 2 1 . . . jV jf g

bj j r2
j � Nð0;T r2

j ðB>j Bj Þ�1Þ 8j 2 f1 . . . jV jg

Xþ;j j Bj ; bj ; r
2
j � NðBj bj ; r

2
j IÞ 8j 2 f1 . . . jV jg

Fig. 1. Our generative model. (Top) Plate notation. DBN parameters bj and r2
j

have been marginalized out. (Bottom) Full probabilistic specification. We usu-

ally set kmin ’ 3 and kmax ¼ 15. If kmin > 0 is too small, Markov chains will oc-

casionally be initialized with very large numbers of edges, causing

computational issues. The method is insensitive to kmax as long as it is suffi-

ciently large. Notice the improper prior 1=r2
j . In this specification, Bj denotes

X�;paZ ðjÞ; i.e. the parents of vertex j depend on edge existence variables Z
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Bernoulli variables parameterized by a shared inverse temperature,
k. See Appendix A for a more detailed derivation.

Rewriting the prior in this form opens the door to generaliza-
tions. First, we address a shortcoming in the way reference graph G0

expresses prior knowledge. The original prior assigns equal prob-
ability to every edge of G0. However, in practice, we may have dif-
fering levels of prior confidence in the edges. We address this by
allowing a real-valued prior confidence cij for each edge:

PðZjC; kÞ ¼
Y
ði;jÞ

e�k

e�cijk þ e�k

� �zij
e�cijk

e�cijk þ e�k

� �1�zij

; (3)

where C is the matrix of all prior confidences cij, replacing G0.
Notice that if every cij 2 f0;1g, then Equation (3) is equivalent to
the original prior. In effect, Equation (3) interpolates the original
prior, permitting a continuum of confidences on the interval ½0; 1�.

We make one additional change to the prior by replacing the
shared k inverse temperature variable with a collection of variables,
K ¼ fkj j j ¼ 1; . . . ; jVjg, one for each vertex of the graph. Recall
that the original k variable determined the importance of the refer-
ence graph. In the new formulation, each kj controls the importance
of the prior knowledge for vertex j and its parents:

PðZjC;KÞ ¼
Y
ði;jÞ

e�kj

e�cijkj þ e�kj

� �zij
e�cijkj

e�cijkj þ e�kj

� �1�zij

: (4)

We introduced K primarily to help MCMC converge more effi-
ciently. Experiments with the shared k revealed a multimodal poster-
ior that tended to trap k in high or low values. The introduction of
vertex-specific kj variables yielded faster convergence with weaker
modeling assumptions—an improvement in both respects.

We implicitly relax the model assumptions further via our infer-
ence procedure. For sake of tractability, the original exact method
of Hill et al. (2012) imposes a hard constraint on the in-degree of
each vertex. In contrast, we use a MCMC inference strategy with no
in-degree constraints.

In summary, our model departs from that of Hill et al. (2012) in
three important respects. It permits real-valued prior confidences C,
introduces vertex-specific inverse temperature variables K and places
no constraints on vertices’ in-degrees. See the full model in Figure 1
and Appendix A for additional details.

2.2 Inference procedure
Our method uses MCMC to infer posterior edge existence probabil-
ities. As described in Section 2.1, our model contains two classes of
unobserved random variables: (i) the edge existence variables Z and
(ii) the inverse temperature variables K. For each step of MCMC,
we loop through these variables and update them in a Metropolis–
Hastings fashion.

2.2.1 Main loop

At a high level, our MCMC procedure consists of a loop over the
graph vertices, V. For each vertex j, we update its inverse tempera-
ture variable kj and then update its parent set paGðjÞ. All of these
updates are Metropolis–Hastings steps; the proposal distributions
are described below. Each completion of this loop yields one iter-
ation of the Markov chain.

2.2.2 Proposal distributions

For the inverse temperature variables, we use a symmetric Gaussian
proposal: k0j � Nðkj; n

2Þ. In practice, the method is insensitive to n;
we typically set n ¼ 3.

The parent set proposal distribution is more complicated. There
are two principles at work when we design a graph proposal distri-
bution: (i) the proposal should efficiently traverse the space of
directed graphs and (ii) it should favor graphs with higher posterior
probability. The most widely used graph proposal distribution
selects a neighboring graph uniformly from the set of possible ‘add-
edge,’ ‘remove-edge’ and ‘reverse-edge’ actions (Gregorczyk, 2010;

Werhli and Husmeier, 2007). We will refer to this traditional pro-
posal distribution as the uniform graph proposal. In our setting, we
expect sparse graphs to be much more probable than dense ones—
notice how the marginal likelihood function [Equation (2)] strongly
penalizes jpaGðjÞj. However, the uniform graph proposal exhibits a
preference toward dense graphs. It proposes ‘add-edge’ actions too
often. This motivates us to design a new proposal distribution tail-
ored for sparse graphs—one that operates on our sparse parent set
graph representation.

For a given graph vertex j 2 V, the parent set proposal distribu-
tion updates paGðjÞ by choosing from the following actions:

• add-parent. Select one of vertex j’s non-parents uniformly at

random, and add it to paGðjÞ.
• remove-parent. Select one of vertex j’s parents uniformly at

random, and remove it from paGðjÞ.
• swap-parent. A simultaneous application of add-parent

and remove-parent. Perhaps surprisingly, this action is not

made redundant by the other two. It plays an important role by

yielding updates that maintain the size of the parent set. Because

the marginal likelihood [Equation (2)] changes steeply with

jpaGðjÞj, Metropolis–Hastings acceptance probabilities will be

higher for actions that keep jpaGðjÞj constant.

These three actions are sufficient to explore the space of directed
graphs, but we need another mechanism to bias the exploration to-
ward sparse graphs. We introduce this preference via the probability
assigned to each action. Intuitively, we craft the action probabilities
so that when jpaGðjÞj is too small, add-parent moves are most
probable. When jpaGðjÞj is too big, remove-parent moves are
most probable. When jpaGðjÞj is about right, all moves are equally
probable.

We formulate the action probabilities for vertex j as follows. As
a shorthand, let sj ¼ jpaGðjÞj and define the reference size
ŝj ¼

PjVj
i¼1 cij. That is, ŝ j uses the prior edge confidences C to esti-

mate an appropriate reference size for the parent set. Then, the ac-
tion probabilities are

pðadd-parentjsj; ŝ jÞ / 1� sj

jVj

� �cðŝ jÞ

pðremove-parentjsj; ŝ jÞ / sj

jVj

� �cðŝ jÞ

pðswap-parentjsj; ŝ jÞ / 2
sj

jVj

� �cðŝ jÞ � 1� sj

jVj

� �cðŝ jÞ
� � ;

where cðŝ jÞ ¼ 1= log2ðjVj=ŝ jÞ. We use these functional forms only
because they have certain useful properties: (i) when sj ¼ 0, the
probability of add-parent is 1; (ii) when sj ¼ jVj, the probability
of remove-parent is 1 and (iii) when sj ¼ ŝ j, all actions have equal
probability (Fig. 2). Beyond that, these probabilities have no

Fig. 2. Action probabilities as a function of parent set size. The reference size ŝ is

determined from prior knowledge. It approximates the size of a ‘typical’ parent set.

When s < ŝ, add-parent is most probable; when s > ŝ, remove-parent is most

probable; and when s ¼ ŝ, all actions have equal probability
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particular justification. We provide additional information about
the parent set proposal in Appendix B.

Recall that Metropolis–Hastings requires us to compute the re-
verse transition probability for any proposal we make. This could
pose a challenge given our relatively complicated parent set proposal
distribution. However, Gen provides a helpful interface for comput-
ing reverse probabilities. The user can provide an involution func-
tion that returns the reverse of a given action. Gen then manages the
reverse probabilities without further intervention. This makes it
relatively easy to implement Metropolis–Hastings updates with un-
usual proposal distributions.

2.2.3 Termination, convergence and inference

We follow the basic MCMC protocols described by Gelman et al.
(2014). This entails running multiple (i.e. 4) Markov chains and dis-
carding the first half of each chain as burnin. In all of our analyses,
we terminate each Markov chain when it either (i) reaches a length
of 100 000 iterations or (ii) the execution time exceeds 12 h. These
termination conditions are arbitrary but emulate a real-world setting
where it may be acceptable to let the method run overnight.

Upon termination, we assess convergence with two diagnostics:
Potential Scale Reduction Factor (PSRF) and effective number of
samples (Neff). PSRF identifies cases where the Markov chains fail
to mix or achieve stationarity. Neff provides a sense of ‘sample size’
for our inferred quantities. It adjusts the number of MCMC samples
by accounting for autocorrelation in each chain. For our purposes,
we say a quantity has failed to converge if its PSRF � 1:01 or
Neff < 10. Note that satisfying these criteria does not guarantee
convergence. However, failure to satisfy them is a reliable flag for
non-convergence.

Assuming a quantity has not failed to converge, we estimate it by
simply taking its sample mean from all samples remaining after bur-
nin. In our setting, we are primarily interested in edge existence
probabilities; i.e. we compute the fraction of samples containing
each edge.

2.3 Probabilistic programming implementation
We implemented SSPS using the Gen PPL. We briefly describe the
probabilistic programming methodology and its advantages in our
setting.

2.3.1 Probabilistic programming

Probabilistic programming is a methodology for building statistical
models. It is based on the idea that statistical models are generative
processes—sequences of operations on random variables. In prob-
abilistic programming, we express the generative process as a pro-
gram written in a PPL. This program is then compiled to produce a
log-probability function, which can be used in inference tasks.
Probabilistic programming systems typically provide a set of generic
inference methods for performing those tasks—e.g. MCMC or
Variational Bayes.

Compare this with a more traditional approach, where the user
must (i) derive and implement the log-probability function and (ii)
implement an inference method that operates on the log-probability
function. This process of manual derivation and implementation is
error-prone and requires a high degree of expertise from the user. In
contrast, probabilistic programming only requires the user to ex-
press their model in a PPL. The probabilistic programming system
manages other details. Probabilistic programming also tends to pro-
mote good software engineering principles, such as abstraction,
modularity and legibility. Most PPLs organize code into functions,
which can be reused by multiple statistical models.

Several PPLs have emerged in recent years (see Appendix C and
Supplementary Table S1). Examples include Stan (Carpenter et al.,
2017), Edward2 (Dillon et al., 2017), Pyro (Bingham et al., 2019),
PyMC3 (Salvatier et al., 2016) and Gen (Cusumano-Towner et al.,
2019). PPLs differ in how they balance expressive power and ease of
use. For example, Stan makes it easy to build hierarchical statistical
models with continuous variables but caters poorly to other model
classes. At the other extreme, Gen can readily express a large class

of models—discrete and continuous variables with complex rela-
tionships—but requires the user to design a customized inference
procedure.

2.3.2 Implementation in Gen
We chose the Gen PPL (Cusumano-Towner et al., 2019) for its ex-
pressive power and customizable inference. While implementing
SSPS, the customizability of Gen allowed us to begin with simple
prototypes and then makes successive improvements. For example,
our model initially used a dense adjacency matrix representation for
G, but subsequent optimizations led us to use a sparse parent set
representation instead. Similarly, our MCMC method started with a
naı̈ve ‘add or remove edge’ proposal distribution; we arrived at our
sparse proposal distribution (Section 2.2) after multiple refinements.
Other PPLs do not allow this level of control.

2.4 Simulation study evaluation
We use a simulation study to answer important questions about
SSPS: how does its computational expense grow with problem size?
Is it able to correctly identify true edges? What is its sensitivity to
errors in the prior knowledge? Simulations allow us to answer these
questions in a controlled setting where we have access to ground
truth.

2.4.1 Data simulation process

We generate each simulated dataset as follows:

1. Sample a random adjacency matrix A 2 f0;1gjVj�jVj, where each

entry is the outcome of a BernoulliðpÞ trial. A specifies the struc-

ture of a DBN. We choose p ¼ 5=jVj so that each vertex has an

average of five parents. This approximates the sparsity we might

see in signaling pathways. We denote the size of the original

edge set as jE0j.
2. Let the weights b for this DBN be drawn from a normal distribu-

tion Nð0;1=
ffiffiffiffiffiffiffi
jVj

p
Þ. We noticed empirically that the 1=

ffiffiffiffiffiffiffi
jVj

p
scale prevented the simulated time series from diverging to

infinity.

3. Use the DBN defined by A; b to simulate M time courses of

length T. We imitate the real datasets in Section 2.5 by generat-

ing M ¼ 4 time courses, each of length T ¼ 8.

4. Corrupt the adjacency matrix A in two steps: (i) remove r � jE0j
of the edges from A and (ii) add a � jE0j spurious edges to the ad-

jacency matrix. This corrupted graph simulates the imperfect

prior knowledge encountered in reality. The parameters r and a

control the ‘false negatives’ and ‘false positives’ in the prior

knowledge, respectively.

We use a range of values for parameters jVj; r and a, yielding a
grid of simulations summarized in Table 1. See Appendix D and
Supplementary Figure S1 for additional details.

Table 1. Parameters that define the grid of simulated datasets in

our simulation study

Parameter Meaning Values

jVj Number of variables 40, 100, 200

T Time course length 8

M Number of time courses 4

r Fraction of original edges removed 0.1, 0.5, 0.75, 1.0

a Fraction of spurious edges added 0.1, 0.5, 0.75, 1.0

Note: There are 3� 4� 4 ¼ 48 distinct grid points. For each one, we gen-

erate K ¼ 5 replicates for a total of 240 simulated datasets. The graph corrup-

tion parameters, r and a, range from very little error (0.1) to total corruption

(1.0).

Inferring signaling pathways with probabilistic programming i825

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa861#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa861#supplementary-data


2.4.2 Performance metrics

We are primarily interested in SSPS’s ability to correctly recover the
structure of the underlying signaling pathway. The simulation study
allows us to measure this in a setting where we have access to
ground truth. We treat this as a probabilistic binary classification
task, where the method assigns an existence confidence to each pos-
sible edge. We measure classification performance using area under
the precision-recall curve (AUCPR). We use average precision to es-
timate AUCPR, as opposed to the trapezoidal rule [which tends to
be overly-optimistic, see Davis and Goadrich (2006) and Flach and
Kull (2015)].

Our decision to use AUCPR is motivated by the sparseness of the
graphs. For sparse graphs the number of edges grows linearly with
jVj while the number of possible edges grows quadratically. Hence,
as jVj grows, the proportion of positive instances decreases and the
classification task increasingly becomes a ‘needle-in-haystack’
scenario.

Performance measurements on simulated data come with many
caveats. It is most instructive to think of simulated performance as a
sanity check. Since our data simulator closely follows our modeling
assumptions, poor performance would suggest serious shortcomings
in our method.

2.5 HPN-DREAM network inference challenge

evaluation
We measure SSPS’s performance on experimental data by following
the evaluation outlined by the HPN-DREAM Breast Cancer
Network Inference Challenge (Hill et al., 2016). Signaling pathways
differ across contexts—e.g. cell type and environmental conditions.
The challenge is to infer these context-specific signaling pathways
from time course data.

2.5.1 Dataset

The HPN-DREAM challenge provides phosphorylation time course
data from 32 biological contexts. These contexts arise from expos-
ing four cell lines (BT20, BT549, MCF7 and UACC812) to eight
stimuli. For each context, there are approximately M ¼ 4 time
courses, each about T ¼ 7 time points in length. Cell lines have dif-
fering numbers of phosphosite measurements (i.e. differing jVj),
ranging from 39 (MCF7) to 46 (BT20).

2.5.2 Prior knowledge

Participants in the original challenge were free to extract prior
knowledge from any existing data sources. As part of their analysis,
the challenge organizers combined participants’ prior graphs into a
set of edge probabilities. These aggregate priors summarize the par-
ticipants’ collective knowledge. They were not available to partici-
pants in the original challenge, but we use them in our analyses of
HPN-DREAM data. We provide them to each of the baseline meth-
ods (see Section 2.6), so the resulting performance comparisons are
fair. We do not compare any of our scores to those listed by Hill
et al. (2016) in the original challenge results.

2.5.3 Performance metrics

The HPN-DREAM challenge aims to score methods by their ability
to capture causal relationships between pairs of variables. It esti-
mates this by comparing predicted descendant sets against experi-
mentally generated descendant sets. More specifically, the challenge
organizers exposed cells to AZD8055, an mTOR inhibitor, and
observed the effects on other phosphosites. From this they deter-
mined a set of phosphosites downstream of mTOR in the signaling
pathway. These include direct substrates of the mTOR kinase as
well as indirect targets.

Comparing predicted descendants of mTOR against experimen-
tally generated descendants of mTOR gives us a notion of false posi-
tives and false negatives. As we vary a threshold on edge
probabilities, the predicted mTOR descendants change, which
allows us to make a receiver operating characteristic (ROC) curve.
We calculate the resulting area under the ROC curve (AUCROC)

with the trapezoidal rule to score methods’ performance on the
HPN-DREAM challenge. Hill et al. (2016) provide more details for
this descendant set AUCROC scoring metric. AUCROC is sensible
for this setting since each descendant set contains a large fraction of
the variables. Sparsity is not an issue.

Because SSPS is stochastic we run it K ¼ 5 times per context,
yielding five AUCROC scores per context. Meanwhile the baseline
methods are all deterministic, requiring only one execution per con-
text. We use a simple terminology to compare SSPS’s scores against
those of other methods. In a given context, we say SSPS dominates
another method if its minimum score exceeds that of the other
method. Conversely, we say the other method dominates SSPS if its
score exceeds SSPS’s maximum score. This dominance comparison
has flaws—e.g. its results depend on the sample size K. However, it
errs on the side of strictness and suffices as an aid for summarizing
the HPN-DREAM evaluation results.

2.6 Baseline pathway inference algorithms
Our evaluations compare SSPS against a diverse set of baseline
methods.

2.6.1 Exact DBN (Hill et al., 2012)

This method was an early inspiration for SSPS and is most similar to
SSPS. However, the exact DBN method encounters unique practical
issues when we run it on real or simulated data. The method’s com-
putational expense increases rapidly with problem size jVj and
becomes intractable unless the ‘max-indegree’ parameter is set to a
small value. For example, we found that the method used more than
32 GB of RAM on problems of size jVj ¼ 100, unless max-indegree
was set 	 3. Furthermore, the exact DBN method only admits prior
knowledge in the form of Boolean reference edges, rather than
continuous-valued edge confidences. We overcame this by using a
threshold to map edge confidences to 1 or 0. We chose a threshold
of 0.25 for the HPN-DREAM challenge evaluation because it
yielded a reasonable number of prior edges. We ran Hill et al.’s im-
plementation using MATLAB 2018a.

2.6.2 FunChisq (Zhang and Song, 2013)

This method is based on the notion that two variables X, Y have a
causal relationship if there exists a functional dependence Y ¼ f ðXÞ
between them. It detects these dependencies using a v2 test against
the ‘no functional dependence’ null hypothesis. FunChisq was a
strong competitor in the HPN-DREAM challenge, despite the fact
that it uses no prior knowledge. In order to use FunChisq, one
must first discretize their time course data. We followed Zhang
and Song’s recommendation to use 1D k-means clustering for
discretization. Detailed instructions are given in the HPN-DREAM
challenge Supplementary Materials (Hill et al., 2016). We used
the FunChisq (v2.4.9.1) and Ckmeans.1d.dp (v4.3.0)
R packages.

2.6.3 LASSO

We included a variant of LASSO regression as a simple baseline. It
incorporates prior knowledge into the typical primal formulation:

b̂j ¼ argminbfjjXþ;j � Bjbjj22 þ a
XV
i¼1

e�cij jbijg;

where cij is the prior confidence (either Boolean or real-valued) for
edge (i, j). That is, the method uses penalty factors e�cij to discour-
age edges with low prior confidence. The method selects LASSO
parameters, a, using the Bayesian Information Criterion described
by Zou et al. (2007). We use GLMNet (Friedman et al., 2010) via the
GLMNet.jl Julia wrapper (v0.4.2).

2.6.4 Prior knowledge baseline

Our most straightforward baseline simply reports the prior edge
probabilities, performing no inference at all. Ideally, a Bayesian
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method should do no worse than the prior—new time course data
should only improve our knowledge of the true graph. In reality,
this improvement is subject to caveats about data quality and model
fit.

2.7 SSPS software availability
We provide the SSPS code, distributed under a MIT license, via
GitHub (https://github.com/gitter-lab/ssps) and archive it on
Zenodo (https://doi.org/10.5281/zenodo.3939287). It includes a
Snakemake workflow (Koster and Rahmann, 2012) for our full
evaluation pipeline, enabling the reader to reproduce our results.
The code used in this manuscript corresponds to SSPS v0.1.1.

3 Results

We describe evaluation results from the simulation study and HPN-
DREAM network inference challenge. SSPS competes well against
the baselines, with superior scalability to other DBN-based
approaches.

3.1 Simulation study results
We compare our method to the baselines listed in Section 2.6. We
focus especially on the exact DBN method of Hill et al. (2012), as
SSPS shares many modeling assumptions with it.

3.1.1 Computational expense

Because SSPS uses MCMC, the user may allow it to run for an arbi-
trary amount of time. With this in mind, we summarize SSPS’s tim-
ing with two numbers: (i) N=cpu-hr, the number of MCMC samples
per CPU-hour and (ii) Neff=cpu-hr, the effective number of samples
per CPU-hour. We also measure the memory footprint per Markov
chain, subject to our termination conditions. We measured these
numbers for each simulation in our grid (see Table 1).

Table 2 reports average values of N=cpu-hr; Neff=cpu-hr, and
memory footprint for each problem size. As we expect, N=cpu-hr
and Neff=cpu-hr both decrease approximately with the inverse of
jVj. In contrast, the non-monotonic memory usage requires more ex-
planation. It results from two causes: (i) our termination condition
and (ii) the sparse data structures we use to store samples. On small
problems (jVj ¼ 40), the Markov chain terminates at a length of
100 000—well within the 12 h limit. On larger problems (jVj ¼ 100
or 200), the Markov chain terminates at the 12 h timeout. This
accounts for the 500 MB gap between small and large problems.
The decrease in memory usage between jVj ¼ 100 and 200 results
from our sparse representations for samples. Roughly speaking, the
sparse format only stores changes in the variables. So the memory
consumption of a Markov chain depends not only on jVj, but also
on the acceptance rate of the Metropolis–Hastings proposals. The
acceptance rate is smaller for jVj ¼ 200, yielding a net decrease in
memory usage.

Recall that SSPS differs from more traditional MCMC
approaches by nature of its parent set proposal distribution, which
is specially designed for sparse graphs (see Section 2.2). When we
modify SSPS to instead use a naı̈ve uniform graph proposal, we see a

striking difference in sampling efficiency. The uniform graph pro-
posal distribution attains Neff=cpu-hr of 100, 10 and 0.2 for jVj ¼
40; 100 and 200, respectively—drastically smaller than those listed
in Table 2 for the parent set proposal. It is possible that the trad-
itional proposal could achieve higher Neff=cpu-hr by simply running
faster. However, the more important consideration is how
Neff=cpu-hr changes with jVj. Our parent set proposal distribution’s
Neff=cpu-hr decays approximately like Oð1=jVjÞ. This is better than
what we might expect from a simple analysis (Appendix B).
Meanwhile, the traditional proposal distribution’s Neff=cpu-hr
decays faster than Oð1=jVj4Þ. This gap between Oð1=jVjÞ and
Oð1=jVj4Þ sampling efficiencies makes an enormous difference on
large problems.

Table 3 summarizes the computational expense of the exact
DBN method (Hill et al., 2012). The method quickly becomes im-
practical as the problem size grows, unless we enforce increasingly
strict in-degree restrictions. In particular, the exact DBN method’s
memory cost grows exponentially with its ‘max in-degree’ param-
eter. The growth becomes increasingly sharp with problem size.
When jVj ¼ 200, increasing the maximum in-degree from 2 to 3
makes the difference between terminating in < 1 min and exceeding
32 GB of memory. Such low bounds on in-degree are unrealistic,
and will likely result in poor inference quality. In comparison, SSPS
makes no constraints on in-degree, and its memory usage scales well
with problem size.

The other baseline methods—FunChisq and LASSO—are much
less computationally expensive. Both finish in seconds and require
< 100 MB of memory for each simulated task. This highlights the
computationally intense nature of Bayesian approaches. Not every
scenario calls for Bayesian inference. However, Bayesian inference is
valuable in scientific settings where we are concerned with uncer-
tainty quantification.

3.1.2 Predictive performance

The simulation study provides a setting where we have access to
‘ground truth’—the true simulated graph. We use AUCPR to score
each method’s ability to recover the true graph’s edges.

Figure 3 shows the AUCPR scores for our grid of simulations.
Each heat map shows AUCPR as a function of graph corruption
parameters, r and a. The heat maps are arranged by method and
problem size jVj. Each AUCPR value is an average over five repli-
cates. SSPS maintains fairly consistent performance across problem
sizes. In contrast, the other methods’ scores decrease with problem
size. For the exact DBN method, this is partially due to the small in-
degree constraints imposed on the large problems. It is forced to
trade model accuracy for tractability.

Figure 4 reveals further insights into these results. It plots differ-
ential performance with respect to the prior knowledge, in a layout

Table 2. Computational expense of SSPS as a function of problem

size jV j

jVj N=cpu-hr Neff=cpu-hr MB per chain

40 70 000 400 500

100 9000 140 1200

200 3000 60 1000

Note: N is the number of iterations completed by a Markov chain. Neff

accounts for burnin and autocorrelation in the Markov chains, giving a more

accurate sense of the method’s progress. The last column gives the approxi-

mate memory footprint of each chain. The non-monotonic memory usage is

an artifact of the chain termination conditions (N >100 000 or time > 12 h).

Table 3. Computational expense of the exact DBN method of Hill

et al. (2012) measured in CPU-seconds, as a function of problem

size jV j and various parameter settings

jVj max indeg ‘linear’ ‘full’

40 4 66 s 210 s

5 770 s 3900 s

6 6700 s TIMEOUT

7 OOM OOM

100 3 250 s 520 s

4 OOM OOM

200 2 53 s 140 s

3 OOM OOM

Note: The method imposes an in-degree constraint on each vertex, shown

in the ‘max indeg’ column. The columns ‘linear’ and ‘full’ correspond to dif-

ferent regression modes, i.e. which interaction terms are included in the

DBN’s conditional probability distributions. Out Of Memory (‘OOM’) indi-

cates that the method exceeded a 32 GB memory limit. ‘TIMEOUT’ indicates

that the method failed to complete within 12 h.
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analogous to Figure 3. Specifically, it plots the t-statistic of each
method’s AUCPR, paired with the prior baseline’s AUCPR.
Whenever the prior graph has some informative edges, SSPS outper-
forms the prior. On the other hand, SSPS’s performance deteriorates
whenever the prior contains no true edges (i.e. r ¼ 1). Under those
circumstances FunChisq may be a better choice. Since it does not
rely on prior knowledge at all, it outperforms the other methods
when the prior is totally corrupted. However, we expect that in
most realistic settings there exists partially-accurate prior know-
ledge, in which case we expect FunChisq to perform worse than
SSPS.

These results confirm SSPS’s ability to identify the true network,
given partially-accurate prior knowledge and time series data con-
sistent with the modeling assumptions. SSPS is fairly robust with re-
spect to the prior’s quality and has consistent performance across
different problem sizes.

3.2 HPN-DREAM challenge results
We evaluated SSPS on experimental data from the HPN-DREAM
challenge. The challenge includes time series phosphorylation data
from 32 biological contexts: 8 stimuli applied to 4 breast cancer cell
lines. Methods are scored on their ability to correctly identify the ex-
perimentally derived descendants of mTOR. Figure 5 shows bar

charts comparing the methods’ AUCROC scores in each context.
Appendix E provides additional details.

SSPS performs satisfactorily on this task overall. Employing ter-
minology from Section 2.5, SSPS dominates the exact DBN method
in 18 of the 32 contexts, whereas the exact DBN method dominates
SSPS in only 9 contexts. Meanwhile, SSPS dominates FunChisq in
11 contexts and is dominated by FunChisq in 15. This is not sur-
prising because FunChisq was among the top competitors in the
original challenge. LASSO, on the other hand, performs poorly.
SSPS dominates LASSO in 18 contexts and is dominated in only 6.

More puzzling is the strong performance of the prior knowledge
baseline. SSPS dominates the aggregate prior in only 9 contexts and
is dominated in 21. This is not isolated to our method. FunChisq
outperforms and is outperformed by the prior knowledge in 11 and
21 contexts, respectively. The aggregate prior’s strong performance
is consistent with the results from the original HPN-DREAM chal-
lenge; this prior outperformed all individual challenge submissions
(Hill et al., 2016). Even though the aggregate prior gives identical
predictions for each context and totally ignores the time course
data, it still attains better performance than the other methods. This
suggests either (i) the data are relatively uninformative or (ii) the
evaluation metric based on mTOR’s descendants is not sufficiently
precise to measure context-specific performance. We suspect the lat-
ter, because FunChisq uses no prior knowledge but was the top
performer in the HPN-DREAM challenge’s in silico tasks.

4 Discussion

We presented SSPS, a signaling pathway reconstruction technique
based on DBN structure estimation. It uses MCMC to estimate the
posterior probabilities of directed edges, employing a parent set pro-
posal distribution specially designed for sparse graphs. SSPS is a
Bayesian approach. It takes advantage of prior knowledge with
edge-specific confidence scores and can provide uncertainty

Fig. 4. Heatmap of differential performance against the prior knowledge, measured

by AUCPR paired t-statistics. SSPS consistently outperforms the prior knowledge

across problem sizes and shows robustness to errors in the prior knowledge

Fig. 3. Heatmap of AUCPR values from the simulation study. Both DBN-based

techniques (SSPS and the exact method) score well on this, since the data are gener-

ated by a DBN. On large problems the exact DBN method needs strict in-degree

constraints, leading to poor prediction quality. LASSO and FunChisq both per-

form relatively weakly. See Supplementary Figure S2 for representative ROC and

precision-recall curves
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estimates on the predicted pathway relationships, which are valu-
able for prioritizing experimental validation.

SSPS scales to large problems more efficiently than past DBN-
based techniques. On simulated data, SSPS yields superior edge pre-
dictions with robustness to flaws in the prior knowledge. Our HPN-
DREAM evaluation shows SSPS performs comparably to established
techniques on a community standard task. It is difficult to make
stronger statements in the HPN-DREAM setting because the prior
knowledge baseline performs so well and we can only evaluate the
predicted mTOR descendants, not the entire pathway. However,
SSPS’s scalability among Bayesian methods, strong results in the
simulation, and competitive performance in the HPN-DREAM chal-
lenge make it an attractive option for further investigation of real
phosphorylation datasets.

There are several potential limitations of SSPS relative to alterna-
tive pathway signaling models. Prior knowledge is not available in
some organisms or biological conditions, reducing one advantage of
our Bayesian approach. Although SSPS is more scalable than related
DBN techniques, it would struggle to scale to proteome-wide phos-
phoproteomic data measuring thousands of phosphosites. For large
datasets, we recommend running SSPS on a pruned version that
includes only the highest intensity or most variable phosphosites.
SSPS, like most DBN techniques, models only observed variables. It
will erroneously exclude important pathway members, such as scaf-
fold proteins, that are not phosphorylated. Latent variable models
or background network-based algorithms are better-suited for
including unphosphorylated proteins in the pathway. Background
network methods can also impose global constraints on the pre-
dicted pathway structure, such as controlling the number of con-
nected components or proteins’ reachability from relevant receptors
(Köksal et al., 2018).

There are many possible ways to improve SSPS. For example, it
could be extended to jointly model related pathways in a hierarchic-
al fashion, similar to Oates et al. (2014) and Hill et al. (2017).
Alternatively, SSPS could be modified to accommodate causal
assumptions via Pearl’s intervention operators; see the model of
Spencer et al. (2015) for a relevant example. Combining temporal
and interventional data (Cardner et al., 2019) is another rich area
for future work. On the algorithmic side, we could improve our
MCMC procedure by adaptively tuning the parameters of its

proposal distributions, as described by Gelman et al. (2014).
Because SSPS is a probabilistic program, it is naturally extensible.
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