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A nonlinear rotation‑free shell 
formulation with prestressing 
for vascular biomechanics
Nitesh Nama1*, Miquel Aguirre2, Jay D. Humphrey3 & C. Alberto Figueroa1,4

We implement a nonlinear rotation-free shell formulation capable of handling large deformations 
for applications in vascular biomechanics. The formulation employs a previously reported shell 
element that calculates both the membrane and bending behavior via displacement degrees of 
freedom for a triangular element. The thickness stretch is statically condensed to enforce vessel wall 
incompressibility via a plane stress condition. Consequently, the formulation allows incorporation 
of appropriate 3D constitutive material models. We also incorporate external tissue support 
conditions to model the effect of surrounding tissue. We present theoretical and variational details 
of the formulation and verify our implementation against axisymmetric results and literature data. 
We also adapt a previously reported prestress methodology to identify the unloaded configuration 
corresponding to the medically imaged in vivo vessel geometry. We verify the prestress methodology 
in an idealized bifurcation model and demonstrate the significance of including prestress. Lastly, we 
demonstrate the robustness of our formulation via its application to mouse-specific models of arterial 
mechanics using an experimentally informed four-fiber constitutive model.

Computational approaches to simulate cardiovascular mechanics in patient-specific anatomies have attracted 
significant interest owing to their applications in disease research, medical device design, and surgical planning1–5. 
To model blood flow in compliant arteries, various fluid-structure interaction (FSI) techniques including Arbi-
trary Lagrangian-Eulerian and immersed methods have emerged6–8. Modeling both the fluid and solid domain 
using three-dimensional elements has resulted in high computational costs for complex, patient-specific geom-
etries, posing a significant challenge to achieve results in a clinically relevant time-frame, thus limiting broad 
adoption in clinical practices. The computational cost of these methods can be greatly reduced by recognizing that 
most arteries and veins are characterized by a low wall thickness to radius ratio and can therefore be modeled as 
a thin structure, an assumption supported further by the existence of residual stresses that tend to homogenize 
the stress distribution across the wall. The Coupled Momentum Method (CMM)9 utilizes this simplification by 
employing a 2D representation of the vessel wall for modeling blood flow in compliant arteries. Specifically, the 
CMM employs a linear membrane formulation, resulting in minimal additional computational costs compared 
to methods with rigid wall approximation. The CMM has been implemented within open-source cardiovascular 
modeling environments, SimVascular10 and CRIMSON11, and has been utilized in numerous cardiovascular 
studies12–15. Nevertheless, the CMM is limited due to the use of fixed computational grids and the assumption 
of geometric and material linearity for the vessel wall behavior. To better capture large deformations and fully 
nonlinear anisotropic material behaviors, such as in highly compliant regions (e.g., ascending thoracic aorta), the 
CMM needs to be extended to a fully nonlinear formulation that accounts for both the geometric and material 
nonlinearities of the vessel wall.

The first essential step towards such a nonlinear FSI framework is development of a robust and computation-
ally efficient nonlinear solid mechanics formulation for the vessel wall. A direct extension of the CMM solid 
kinematics to a nonlinear membrane model represents the simplest and most computationally efficient option. 
Yet, a nonlinear membrane model is limited due to the lack of bending stiffness, thereby rendering it inapplicable 
in regions of high curvature such as branches and bifurcations. Therefore, a nonlinear shell formulation that is 
capable of handling large deformations, including both membrane and bending modes, is preferred for modeling 
complex, patient-specific anatomies.
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The Kirchhoff-Love theory, which assumes negligible transverse shear deformations, applies to thin pres-
surized structures characterized by a low thickness to radius ratio. However, given the widespread use of linear 
elements in solid mechanics, the concomitant necessity of C1 continuity represents a major obstacle in the 
development of efficient finite element implementations16. Consequently, thick shell formulations based on 
Reissner-Mindlin theory requiring only C0 continuity have been extensively used (see reference17 for a compre-
hensive discussion). Such formulations exhibit various locking phenomena (including shear locking), however, 
and are computationally expensive due to the large number of degrees of freedom necessary to obtain thin 
wall solutions with reasonable precision18 (e.g., linear triangular shell elements with 54 degrees of freedom per 
element19). We refer the reader to references20–23 for excellent reviews of shell formulations. Recently, various 
isogeometric shell models with inherent high continuity in basis functions have been proposed to satisfy the C1 
continuity requirement in Kirchhoff-Love theory for thin shells16,24–26. Another promising approach is to express 
the curvature field in terms of the displacement of nodes of neighboring elements, thereby avoiding the need for 
rotational degrees of freedom18,27–29. Numerous rotation-free shell elements have been reported, including the 
basic shell triangle (BST) element27,28, curvature calculation through enhanced geometry (CEG) shell element18, 
and subdivision surfaces29.

The current work aims to implement a nonlinear structural formulation for realizing our overall vision of 
developing a strongly coupled, monolithic, computationally efficient, nonlinear FSI framework for vascular 
biomechanics. The lack of rotational degrees of freedom and the ability to handle non-structured meshes for 
complex, subject-specific geometries is crucial for such an FSI framework. A rotation-free nonlinear shell for-
mulation for vascular biomechanics will allow vessel wall nonlinearities to be incorporated in biomechanical 
analyses of complex subject-specific geometries and future extensions to FSI problems via an adaption of the 
CMM to large displacements.

Another important issue in vascular biomechanics is the lack of knowledge of the stress-free configuration 
in vivo. Specifically, models constructed from in vivo medical imaging necessarily represent both residually 
stressed (resulting from vascular development) and pre-stressed (e.g. due to axial preloads and in vivo pressures) 
vessels. To address this issue, various methods have been proposed either to estimate the state of stress in the 
in vivo geometry under in vivo loading30–33 or to identify the stress-free configuration directly34–36. One such 
method is a fixed-point iterative approach introduced by Sellier for general elastostatics problems37 and by Bols 
et al.38 for cardiovascular biomechanics. This method has been widely used in biomechanical modeling due to 
its algorithmic simplicity, capability to handle arbitrary material models, and ease of coupling with any finite 
element package that allows access to nodal displacements39–41.

In this work, we meld two well-known approaches. First, we adapt and expand the rotation-free triangular 
shell element reported by Oñate and Flores27,28, employing linear triangular shell elements where both the 
membrane and curvature fields are approximated in terms of the displacement of an element patch comprising 
the chosen element and three adjacent elements. We perform static condensation of the thickness stretch via 
incompressibility and a plane stress condition to allow 3D constitutive material models. We also incorporate 
external tissue support conditions to model the effect of perivascular tethering. Second, we adapt Sellier’s pre-
stress approach for a shell formulation to determine the unloaded traction-free configurations associated with 
medically-obtained, subject-specific in vivo vessel geometries. Toward this end, we describe the theoretical 
and implementation details of the proposed shell formulation and verify it against axisymmetric results and 
literature data. We also verify the prestress methodology in an idealized bifurcation model and demonstrate its 
significance in predicting arterial wall deformations. Lastly, we demonstrate the utility and robustness of our 
melded formulation via its application to subject-specific vascular mechanics in the mouse, using a constitutive 
equation for the wall that has been validated against biaxial mechanical data for murine arteries.

Theoretical formulation
Notation.  We use lowercase and uppercase symbols to define quantities in the current and reference (mate-
rial) configuration, respectively. Symbols with Greek subscripts/superscripts denote in-plane quantities where 
indices take values {1, 2} while symbols with Latin subscripts/superscripts denote quantities corresponding to 
3D and indices take values {1, 2, 3} . We follow Einstein’s index notation where a repeated symbol denotes a sum-
mation unless stated otherwise.

Differential geometry of shell.  Using the Kirchhoff hypothesis of straight and normal cross-sections, the 
shell continuum can be described by the midsurface position and the associated normal vector field. Given the 
position ϕ(0) of a point on the midsurface of the shell in the initial configuration, the associated tangent basis 
vectors are defined as

where ξ1 and ξ2 are the surface convective coordinates used to parametrize the shell midsurface. Following Grutt-
man and Taylor42, an orthonormal basis is defined in the initial configuration as (see Fig. 1)

with associated coordinates sα indirectly defined as

(1)Bα = ∂ϕ(0)

∂ξα
, B3 =

B1 × B2

�B1 × B2�
,

(2)A3 =
B1 × B2

�B1 × B2�
, A1 =

B1

�B1�
, A2 = A3 × A1,
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Similarly, the basis vectors at a position ϕ of a point on the midsurface of the shell in the current configura-
tion can be defined as

Using these definitions and the Kirchhoff hypothesis, positions X and x of a general point in the initial and 
current configuration, respectively, of the shell continuum can be described as a function of the midsurface 
position and associated unit normal vector as

where ξ3(−H
2 ≤ ξ3 ≤ H

2 ) denotes the perpendicular distance of the point to the midsurface with H being the 
shell thickness in the reference configuration.

The covariant basis vectors at a general point in the initial configuration of the shell continuum are given as 
Gα = ∂X

∂sα
 and can be expressed in terms of midsurface basis vectors as:

where (·),α denotes the partial derivative of a quantity with respect to sα . The contravariant vectors can be 
obtained as

Therefore, the metrics can be obtained as

where Aαβ are the components of the covariant metrics (first fundamental form) in the initial configuration 
given as

and κ(0)αβ  are the components of the curvature (second fundamental form) of the midsurface in the initial con-
figuration given as

(3)Aα = ∂ϕ(0)

∂sα
.

(4)aα = ∂ϕ

∂sα
.

(5)X(ξ1, ξ2, ξ3) = ϕ
(0)(ξ1, ξ2)+ ξ3A3(ξ1, ξ2),

(6)x(ξ1, ξ2, ξ3) = ϕ(ξ1, ξ2)+ ξ3a3(ξ1, ξ2),

(7)Gα = Aα + ξ3A3,α ,

(8)G3 = A3,

(9)Gα = GαβGβ , GαγGγβ = δαβ , Gαβ = Gα · Gβ .

(10)Gαβ = Aαβ + 2ξ3κ
(0)
αβ + ξ 23A3,α · A3,β ,

(11)Gα3 = G3α = Aα · A3 + ξ3A3,α · A3 = 0,

(12)G33 = A33 = 1,

(13)Aαβ = Aα · Aβ ,

thickness
direction

A2

A1

ξ1

ξ2

a1

a2

F =
∂ϕ

∂ϕ(0)

X
Y

Z

ϕϕ(0)

A3 a3

       shell
midsurface

Figure 1.   Schematic drawing illustrating the basis vectors in the initial and deformed configuration.
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We linearize strain through the thickness and therefore neglect the quadratic term in Eq. (10) to obtain16:

Similarly, using the basis vectors in the current configuration gα = ∂x
∂sα

 , the metrics in the current configura-
tion are

with

This expression shows that gαβ are not components of the unit tensor in the initial configuration for curved 
surfaces (i.e. where κ(0)αβ  = 0 ). Therefore, following Flores and Oñate27, we approximate the covariant components

where χαβ denotes the change in curvature of the midsurface and is

Note that the orthonormal basis equation (2) is defined only in the initial configuration and the corresponding 
basis in the deformed configuration is, in general, not orthonormal (see Fig. 1). Furthermore, the above equations 
do not reflect changes in thickness during the deformation, which will be considered later.

Shell kinematics.  Using the basis vectors defined in Eqs. (7)–(9), the deformation gradient tensor can be 
written

and the right Cauchy-Green tensor as

Here, the transverse components gα3 = g3α = 0 since gα · g3 = 0 . Furthermore, Eq. (21) indicates that the 
covariant coefficients of the right Cauchy-Green tensor and the metrics in the deformed configuration are identi-
cal. However, since g33 = a3 · a3 = 1 , this equation does not reflect the change in shell thickness. Consequently, 
to account for the thickness deformation, Eq. (21) needs to be replaced by16

with

where C33 will be obtained via plane stress and incompressiblity conditions, as described in “Constitutive models” 
section. This allows the Jacobian determinant to be expressed as

where J0 =
√

|gαβ |
|Gαβ |  denotes the in-plane Jacobian determinant. Equation (24), in combination with the incom-

pressibility condition

yields

This coupling of out-of-plane components with the in-plane metrics ensures satisfaction of the incompress-
ibility constraint.

Next, the Green-Lagrange strain tensor can be written

with

(14)κ
(0)
αβ = 1

2
(Aα · A3,β + Aβ · A3,α).

(15)Gαβ = Aαβ + 2ξ3κ
(0)
αβ .

(16)gαβ = aαβ + 2ξ3καβ ,

(17)aαβ = aα · aβ , καβ = 1

2
(aα · a3,β + aβ · a3,α).

(18)gαβ = aαβ + 2ξ3χαβ ,

(19)χαβ = καβ − κ
(0)
αβ .

(20)F = ∂x

∂X
= ∂x

∂sα
⊗ ∂sα

∂X
= gi ⊗ Gi ,

(21)C = FTF = gijG
i ⊗ Gj .

(22)C = CijG
i ⊗ Gj ,

(23)Cij =
[

g11 g12 0
g21 g22 0
0 0 C33

]

,

(24)J =
√

det(C) = J0
√
C33,

(25)J = 1,

(26)C33 = J−2
0 .

(27)E = EijG
i ⊗ Gj ,
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Here, the transverse shear strains vanish since Cα3 = Gα3 = 0 . Furthermore, the transverse normal strain E33 
will be statically condensed by employing plane stress and incompressibility constraint, as described in “Con-
stitutive models” section16. Therefore, only the in-plane components remain to be considered and are given as

where Emαβ denotes the components of the membrane contribution to the Green-Lagrange strain tensor

and χαβ denotes the change in curvature of the midsurface given by Eq. (19).

Constitutive models.  Next, consider constitutive equations for the shell formulation from a general 3D 
continuum constitutive model characterized by an elastic strain energy function ψel(C) . To enforce incompress-
ibility, the elastic strain energy function ψel(C) is augmented with a constraint term using a Lagrange multiplier 
p as

For the shell model, the additional unknown p can be determined using a plane stress condition16. Following 
Kiendl et al.16, we first derive the 3D components of the second Piola-Kirchhoff stress tensor ( S = SijGi ⊗ Gj ) 
while considering p to be a function of Cij as

Correspondingly, the components of the stiffness tensor C = CijklGi ⊗ Gj ⊗ Gk ⊗ Gl are

with derivatives of the Jacobian determinant given as

where Čij denote the components of the inverse of the Cauchy-Green tensor. Let the term ‘plane stress’ refer to 
the state of zero normal transverse stress. Using the plane stress condition

with Eqs. (24), (25), (26), (32), and (34), we obtain

The corresponding derivative is

where δij denotes the Kronecker delta. Substituting these relations into Eqs. (32) and (33) and using Eqs. (25), (34), 
and (35), we obtain

(28)Eij =
1

2
(Cij − Gij).

(29)Eαβ = 1

2
(Cαβ − Gαβ) = Emαβ + ξ3χαβ ,

(30)Emαβ = 1

2

[

(aαβ − Aαβ)
]

,

(31)ψ = −p(J − 1)+ ψel(C).

(32)Sij = 2
∂ψ

∂Cij
= 2

∂ψel

∂Cij
− 2

∂p

∂Cij
(J − 1)− 2p

∂J

∂Cij
.

(33)

C
ijkl = 4

∂2ψ

∂Cij∂Ckl

= 4
∂2ψel

∂Cij∂Ckl
− 4

∂2p

∂Cij∂Ckl
(J − 1)− 4

∂p

∂Cij

∂J

∂Ckl

− 4
∂J

∂Cij

∂p

∂Ckl
− 4

∂2J

∂Cij∂Ckl
,

(34)
∂J

∂Cij
= 1

2
JČij ,

(35)
∂2J

∂Cij∂Ckl
= 1

4
J
(

ČijČkl − ČikČjl − Čil Čjk
)

,

(36)S33 = 0,

(37)p = 2
∂ψel

∂C33
C33.

(38)
∂p

∂Cij
= 2

(

∂2ψel

∂C33∂Cij
C33 +

∂ψel

∂C33
δi3δj3

)

,

(39)Sij = 2
∂ψel

∂Cij
− 2

∂ψel

∂C33
C33Č

ij ,
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These expressions define the 3D stress and elasticity tensor for a general incompressible material under plane 
stress. To express the in-plane components of these tensors needed for the shell formulation, we perform static 
condensation of the transverse normal strain so that the entire shell kinematics can be described completely 
by midsurface quantities. Specifically, the plane stress condition in Eq. (36) is used to eliminate the transverse 
normal strain E33 as

Therefore, coefficients of the statically condensed stiffness tensor C̆αβγ δ are16

Substituting Čαβ = gαβ and C33 = J−2
0  in Eqs. (39) and (40) and using Eq. (42), the in-plane components of 

stress and stiffness tensor needed for the shell formulation are

Using these expressions, a through-thickness integration yields the stress resultants

Equations (43) and (44) provide a consistent method of obtaining in-plane components of stress and stiffness 
from arbitrary 3D constitutive models. In this work, we consider two different constitutive models:

Mooney‑Rivlin.  The elastic strain energy for Mooney-Rivlin model is

where c1 , c2 are the material parameters and IC , IIC are the first and second principal invariants of right Cauchy-
Green tensor given as

For the special case of c2 = 0 , this model reduces to the incompressible Neo-Hookean model.

Four‑fiber family model.  The four-fiber family model characterizes arterial wall as a composite structure com-
prising an elastin-dominated isotropic matrix and four families of embedded collagen fibers. The elastic strain 
energy is43–45

where c , ck1 , ck2 are material parameters, IC is again the first invariant of right Cauchy-Green tensor and 
�
k =

√
Mk · CMk  is the stretch experienced by the k-th fiber family that is oriented along the direction 

Mk = [0, sin αk
0 , cosα

k
0 ]T in the reference configuration. The four-fiber families are considered to be aligned 

along α1
0 = 0◦ (axial family), α2

0 = 90◦ (circumferential family) and α3,4
0 = ±α0 (symmetric diagonal families), 

(40)
C
ijkl = 4

∂2ψel

∂Cij∂Ckl
− 4

(

∂2ψel

∂C33∂Cij
C33 +

∂ψel

∂C33
δi3δj3

)

Čkl − 4Čij

(

∂2ψel

∂C33∂Ckl
C33 +

∂ψel

∂C33
δk3δl3

)

− 2
∂ψel

∂C33
C33

(

ČijČkl − ČikČjl − Čil Čjk
)

.

(41)S33 = C
33αβEαβ + C

3333E33 = 0 =⇒ E33 = −C
33αβ

C3333
Eαβ .

(42)C̆
αβγ δ = C

αβγ δ − C
αβ33

C
33γ δ

C3333
.

(43)Sαβ = 2
∂ψel

∂Cαβ

− 2
∂ψel

∂C33
J−2
0 gαβ ,

(44)
C̆
αβγ δ = 4

∂2ψel

∂Cαβ∂Cγ δ

+ 4
∂2ψel

∂C2
33

J−4
0 gαβgγ δ − 4

∂2ψel

∂C33∂Cαβ

J−2
0 gγ δ − 4

∂2ψel

∂C33∂Cγ δ

J−2
0 gαβ

+ 2
∂ψel

∂C33
J−2
0

(

2gαβgγ δ + gαγ gβδ + gαδgβγ
)

.

(45)Nαβ =
∫ H/2

−H/2
Sαβ dξ3,

(46)Mαβ =
∫ H/2

−H/2
Sαβξ3 dξ3.

(47)ψel = c1(IC − 3)+ c2(IIC − 3),

(48)IC = tr(C),

(49)IIC = 1

2

[

tr(C)2 − tr(C2)
]

.

(50)ψel =
c

2
(IC − 3)+

4
∑

k=1

ck1
4ck2

[

ec
k
2 [(�k)2−1]2 − 1

]

,
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where α0 is a free parameter. The four-fiber family model has recently been recommended as the first choice 
constitutive model to simulate arterial deformations that lie outside the range of experimental tests46 and has 
been extensively employed to describe the behavior of both human and murine arterial tissue44,45.

Implementation
The weak form of linear momentum balance can be expressed as

with

where ρ0 is the mass density, ü = ∂2u
∂t2

 the acceleration, f  the external force, δu the virtual displacement, δEm the 
variation of Green-Lagrange strain tensor, δχ the variation of the curvature, and N , M are the force and bending 
stress resultants with their components given by Eqs. (45) and (46).

Interpolation functions.  Here, we closely follow Flores and Oñate27. Consider a surface discretization of 
the shell midsurface using a triangular mesh with linear shape functions associated with displacement degrees 
of freedom at each node. Since a linear triangular element is flat, the linear shape functions over an element 
are inadequate for the calculation of curvature. Therefore, following27, to calculate the membrane and bending 
behavior of a given element (referred as the master element), we employ an element patch comprising the given 
element and its three neighboring elements (see Fig. 2).

This element patch, comprising six nodes, allows us to consider a quadratic interpolation of the geometry that 
can be used to compute the membrane and curvature behavior. Figure 2A shows the current configuration of 
the element patch with the corresponding nodal positions of six nodes given in natural coordinates as (Fig. 2B)

where the nodes of the neighboring elements are ordered such that nodes 4, 5, and 6 refer to those opposite nodes 
1, 2, and 3, respectively. The standard linear shape functions defined on a three node triangle are

In addition, we define the following (quadratic) shape functions over the element patch as

(51)δWkin + δW int − δWext = 0,

(52)δWkin =
∫

A
ρ0ü · δuH dA,

(53)δW int =
∫

A
[N : δEm +M : δχ ]H dA,

(54)δWext =
∫

A
f · δuH dA,

node 1 : (η1, η2) = (0, 0), node 4 : (η1, η2) = (1, 1),

node 2 : (η1, η2) = (1, 0), node 5 : (η1, η2) = (−1, 1),

node 3 : (η1, η2) = (0, 1), node 6 : (η1, η2) = (1,−1),

(55)L1 = η1, L2 = η2, L3 = 1− η1 − η2.

N1 = η3 + η1η2, N4 = η3

2
(η3 − 1),

N2 = η1 + η2η3, N5 = η1

2
(η1 − 1),

N3 = η2 + η3η1, N6 = η2

2
(η2 − 1),

6
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3 45
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Figure 2.   Schematic of the element patch comprising a master element and three adjacent elements in (A) 
spatial coordinates and (B) natural coordinates. (C) Plots of the six quadratic shape functions defined over the 
element patch.
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where η3 = 1− η1 − η2 . Figure 2C shows these shape functions over the element patch, which allows us to 
approximate the position of shell midsurface as

Additionally, we employ a single in-plane quadrature point per element. Similar to the EBST1 element 
reported by Oñate and Flores28, we employ an assumed strain approach where the gradients at the single quad-
rature point are approximated via the gradients calculated at the midpoints of the edges of the master element 
(denoted as I1 , I2 , and I3 in Fig. 2). Referring to Fig. 2, the edges of the master element are numbered such that 
the edge I refers to the edge opposite to node I ( I = 1, 2, 3 ). It can be verified that this choice of shape functions 
ensures that the gradient at a given edge midpoint depends only on the four nodes surrounding the edge mid-
point. Therefore, the gradient at an edge midpoint is unique for the two elements that share this edge since the 
same four nodes contribute to the gradient at edge midpoint, irrespective of the choice of element over which 
the gradient is calculated.

Computation of membrane strain.  The components of the membrane part of Green-Lagrange strain 
tensor in Eq. (30) are given in Voigt notation as

Using the assumed strain approach28, we calculate the components of metrics by averaging their values at 
the edge midpoints as

where the superscript I indicates that the variable has been evaluated at the midpoint of the edge I. While a variety 
of other choices exist for approximating covariant metrics, the above approach satisfies the patch test and per-
forms well for large deformations47. For the boundary edges (where one or more elements of the patch are miss-
ing), the gradient at the edge midpoint is taken to be equal to the gradient calculated over the master element as

where the superscript (·)M indicates that the quantity has been calculated using standard three-node linear 
shape functions defined in Eq. (55). Using Eqs. (4), (17) and (57), the variation of the membrane part of Green-
Lagrange strain tensor is obtained as

Further algebraic manipulations needed for implementation are in Supplementary Appendix B online.

Computation of curvature.  Following Oñate and Flores28, we assume the curvature to be uniform within 
each element which can be calculated as the mean over the master element given by

where AM is the area of the master element in the initial configuration. Integrating by parts and using the diver-
gence theorem,

where nα denote components of outward normal to the element boundary. Similar to Oñate and Flores28, we 
consider the standard linear interpolation over the master element for the definition of midsurface normal a3 in 
the above expression, instead of the quadratic interpolation over the element patch to obtain

This definition yields a uniform value of midsurface normal over the master element, resulting in zero contri-
bution from the second term on the right hand side in Eq. (62). Therefore, the components of the curvature are
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Next, consider the line integral as the sum over the integration points (chosen as the edge midpoints) on the 
edges of the master element

where lI denotes the length of I-th edge in the initial configuration. Equation (65) can be alternatively expressed as

where the gradients ϕI
,α are calculated at the edge midpoints using quadratic interpolation. Equation (66) allows 

the curvatures to be interpreted as projections of vectors hαβ over the normal vector. Therefore, if a different 
direction is chosen (e.g. the midsurface normal obtained via all six nodes of element patch), at an angle θ to the 
currently chosen uniform normal, this would have an influence of order θ2 in the projection. This justifies the 
use of a normal defined solely on the master element, Eq. (63), to calculate the curvature.

We defer the treatment of the bending behavior of boundary edges to “Boundary conditions” section. Using 
Eqs. (19) and (66), the variation of the change in curvature can be expressed as

where the variations of hαβ are obtained from Eq. (66) as

For the second term in Eq. (67), the variations of a3 can be expressed as27

where ăα are contravariant basis vectors in the master element defined using the linear interpolation and

Combining Eqs. (68)–(71) with Eq. (67) yields the final expression for the variation of curvature as seen in 
Supplementary Appendix B online.

Boundary conditions.  Treatment of boundary edges (with missing adjacent element) again follows Oñate 
and Flores28. For the sake of completeness, we mention the key expressions needed for the treatment of boundary 
conditions and refer the reader to reference28 for more details.

For the membrane terms, gradients at the boundary edges are considered to be equal those in the master 
element calculated using linear interpolation, see Eq. (59). However, for the curvature terms, hαβ and δhαβ are 
modified by considering a local-to-edge orthonormal basis [ϕ,n, ϕ̄,q] comprising the unit normal vector to the 
plane of symmetry ϕ,n and the unit normal vector along the boundary edge ϕ̄,q . This results, for a boundary 
edge defined by node K and J, in the following expressions for hαβ and δhαβ on the boundary edge midpoint:

where the influence of change in the length of vector ϕ,n has been neglected.

External tissue support.  Various Robin boundary conditions have been proposed to model effects of the 
surrounding tissues on the vasculature8,48. These boundary conditions model the mechanical response of the 
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external tissue via a lumped parameter model that relates the stress on the outer wall with its displacement and 
velocity. Using this approach, we consider an imposed traction on the shell surface given as

where ks and kd are the coefficients associated with simplified elastic and the viscoelastic responses of the external 
tissue, respectively, and p0 represents the extravascular pressure. In general, these parameters can depend both 
on space and time and can be tuned to match the available data on vessel wall displacement. We assume constant 
and uniform values, with kd = 0 for all cases.

Time integration.  Upon the spatial discretization of the weak form (51), a transient nonlinear system of 
equations is assembled and then discretized in time and solved using the Generalized-α method49 as given in 
Supplementary Appendix C online.

Prestress methodology
To account for the in vivo state of stress in the medically imaged vessel geometry, we employ an iterative prestress 
method, first proposed by Sellier37. This method allows an easy interface with any standard finite element solid 
mechanics package and is applicable for arbitrary choice of material models38,41.

Sellier’s approach employs multiple forward simulations to iteratively update the nodal coordinates to iden-
tify the unloaded configuration. For 3D solid mesh elements, the unloaded geometry is described by the nodal 
coordinates of the mesh. In contrast, for a shell formulation, the unloaded geometry is described by nodal coor-
dinates of shell midsurface and the corresponding thickness distribution over each mesh element. Therefore, 
the prestress approach for a shell formulation needs to iteratively update both the midsurface coordinates and 
the thickness distribution to identify the unloaded geometry.

The point of departure is the medically imaged vessel geometry, characterized by midsurface nodal coordi-
nates and elemental thickness (x∗, h∗) . Referring to Fig. 3, the medically imaged in vivo geometry is taken to be 
the first guess for the unloaded configuration, (X1,H1) . Subsequently, the k-th iteration consists of applying the 
(known) in vivo loading to the k-th initial configuration to compute the k-th deformed configuration (xk , hk) . 
At the end of each iteration, a nodal error vector is calculated as the difference between the coordinates of the 
deformed configuration and the measured in vivo configuration, Rk = xk − x∗ . In addition, for a shell formu-
lation, an elemental thickness error vector is calculated as the difference between the thickness distribution of 
the deformed configuration and the measured in vivo configuration, Rh

k = hk − h∗ . The aim of the prestress 
algorithm is to drive these error vectors to zero by iteratively updating the guess for the unloaded configuration. 
To this end, the error vectors (with scaling factor, α ) are subtracted from the current guess for the unloaded 
configuration to obtain the unloaded configuration for the next iteration, (Xk+1,Hk+1) = (Xk ,Hk)− α(Rk ,Rh

k) 
. This iterative procedure is repeated until the maximum value of the error vectors falls below specified tolerances, 
i.e., the deformed configuration matches the medically imaged in vivo configuration.

In the original approach proposed by Sellier37, the scaling factor, α , used to update the reference configuration 
was taken to be 1. Subsequent reports have revealed that this is not necessarily the best choice and the optimal 
value of scaling factor might be problem-dependent41. Furthermore, since this approach utilizes a fixed-point 
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iteration method, it can lead to convergence issues for some problems. However, we did not encounter any such 
issues for the numerical examples reported in this work. We remark that the choice of scaling factor affects only 
the convergence rate and not the final result. In this work, we have not explored methods to potentially accelerate 
this rate of convergence and have employed a uniform scaling factor of 0.5.

Results
Verification with axisymmetric solution.  First, we compare our numerical results against the well-
known axisymmetric solution for a thick-walled cylindrical tube. Details of this solution are provided in Supple-
mentary Appendix A online. This solution provides, in the most general case, the static mechanical response of a 
thick axisymmetric tube under combined bending, inflation, extension, and torsion50,51. Therefore, the solution 
of a thin wall tube (which is the object of verification in this study) is a special case of the more general solution.

For purposes of verification, we consider a distension-extension test where the vessel is represented as an 
incompressible cylindrical tube subjected to axial loading and pressurization. Under these loading conditions, 
the cylindrical tube deforms largely in the membrane mode, given appropriate boundary conditions at the ends 
(radial rollers). Consider a cylindrical tube with midsurface radius r = 8.6 mm , axial length, L = 60 mm , and 
wall thickness t = 0.43 mm , resulting in a radius-to-thickness ratio of 20. For this verification, the arterial wall 
is assumed to be characterized by a four-fiber family model with material parameters listed in Supplementary 
Table S1 online. The tube is subjected to the loading conditions shown in Fig. 4A: pressurization to 10 mmHg, 
followed by an extension to an axial stretch of 1.5 at constant pressure and a subsequent pressurization to 80 
mmHg. For the pressurization steps, the ends of the vessel are fixed in the axial direction. For the axial extension 
step, a non-zero displacement is prescribed on the ends to achieve the required axial stretch.

Figure 4B shows the final deformed configuration at 80 mmHg and an axial stretch of 1.5, obtained from 
the shell formulation. Fig. 4C–F compare the shell formulation results (red) against the axisymmetric theory 
predictions at axial stretch 1 and 1.5 at the location indicated by the green dotted circle in Fig. 4B. Consider four 
different metrics: midsurface radius, first invariant of Green-Lagrange strain tensor, and axial and circumfer-
ential Cauchy stress. The shell formulation results agree well with the axisymmetric theory for all the metrics 
considered, verifying our implementation. We remark that, in the absence of an imposed axial stretch (i.e., 
for axial stretch = 1), the pressurization of cylindrical segments is known to exhibit buckling instabilities52,53. 
Consequently, the axisymmetric solution for an axial stretch of 1 may not be physically attainable at high pres-
sures. In this work, we only considered a mild pressurization to 10 mmHg for an axial stretch of 1 to avoid this 
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instability and have highlighted the axisymmetric solution for higher inflation pressures via dotted green line 
to indicate this regime.

Verification against literature data.  Next, consider the shell formulation for combined membrane and 
bending deformation modes. A simply supported circular plate under uniform pressure has been previously 
used as a benchmark to assess the bending behavior of shell formulations29,54. The plate has a radius r = 7.5 mm 
and thickness t = 0.5 mm , resulting in a radius-to-thickness ratio of 15. A Mooney-Rivlin material model, as 
described in “Constitutive models” section, was used with the material parameters c1 = 80 Pa and c2 = 20 Pa . 
Figure 5A shows the initial (P = 0) and the deformed configuration of the plate (P = 35 Pa) . Figure 5B compares 
the pressure vs. maximum displacement obtained from our implementation against previously reported results. 
Specifically, we compare our results against two formulations: (i) subdivision elements reported by Cirak and 
Ortiz29 and, (ii) selectively-integrated 9 node axisymmetric solid elements reported by Hughes and Carnoy54. 
Our results agree well with these prior results, thereby demonstrating the ability of the current shell formulation 
to handle combined bending and membrane deformation modes with excellent accuracy.

Prestress verification.  Next, we verified our prestress methodology and evaluated the effect of inclusion of 
prestress in the analysis. Consider an idealized bifurcation model comprising a main artery and a side branch. 
The main vessel is a cylinder with radius 0.6 mm while the side branch is a cylinder with radius 0.2 mm . The two 
branches meet at a right angle with a fillet radius of 0.2 mm at the blending region. The wall thickness is taken 
to be 10% of the local radius, resulting in wall thickness of 0.06 mm and 0.02 mm for the main vessel and the 
branch, respectively and a smooth variation of thickness in the blend region. We refer to this analytical configu-
ration as the true unloaded configuration. Without a loss of generality, we assumed a Neo-Hookean material 
model with c1 = 0.16 MPa . We employ radially-free boundary conditions for the ends such that nodes are free 
to move in the radial direction while fixed in the longitudinal direction, to enforce fixed axial extensions, and 
constrained circumferentially, to ensure axisymmetry.

To create the reference dataset for the verification of prestress algorithm, we first perform a standard forward 
analysis where we subject the true unloaded configuration to P = 80 mmHg and P = 120 mmHg to obtain true 
diastolic and true systolic configurations, respectively. Next, we pretend that the true diastolic configuration is 
obtained from medical imaging but the corresponding unloaded configuration is unknown. Hence, starting 
from the true diastolic configuration, the corresponding systolic configuration can be obtained via two possible 
analyses: 

1.	 With prestress: Here, the true diastolic configuration is subjected to a prestress analysis to first obtain the 
corresponding unloaded configuration. Subsequently, this unloaded configuration is subjected to systolic 
pressure ( P = 120 mmHg ) to obtain the systolic configuration.

2.	 Without prestress: Here, the true diastolic configuration is assumed to be the unloaded configuration and is 
directly subjected to systolic pressure ( P = 120 mmHg ) to obtain the systolic configuration. This case mimics 
the frequently employed approach where subject-specific anatomies are simulated neglecting prestress30,55,56.

Therefore, the analysis with prestress includes an intermediate step of identifying the unloaded configuration via 
the aforementioned prestress algorithm. Figure 6A–C show different configurations obtained via these analyses. 
Specifically, Fig. 6A shows the true unloaded, diastolic, and systolic configurations obtained via a standard for-
ward analysis. Figure 6B,C show the corresponding configurations obtained from the analysis with and without 
prestress, respectively. Figure 6D shows the enlarged versions of these configurations along the planes I, II, and 
III indicated in Fig. 6A–C, respectively. Referring to the left and the middle column of Fig. 6D, we note that the 
predicted unloaded configuration with prestress is almost identical to the true unloaded configuration. Fur-
thermore, the predicted systolic configuration with the inclusion of prestress agreed well with the true systolic 
configuration. In contrast, the predicted systolic configuration without the inclusion of prestress (right column 
of Fig. 6D) is much larger than the true systolic configuration (left column of Fig. 6D). Next, Fig. 6E–G show 
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circumferential variations of different metrics in the predicted systolic configurations at an arbitrarily chosen 
location on the side branch, indicated by the dotted green lines in Fig. 6A–C. Specifically, we compare three 
different metrics in the predicted systolic configuration: wall thickness, first invariant of the Green-Lagrange 
strain tensor, and circumferential Cauchy stress. Again, results obtained with the inclusion of prestress are in 
excellent agreement with the true results while the results without the inclusion of prestress differ significantly 
from the true results for all the metrics.

Application to subject‑specific geometries.  Next, we demonstrate the utility of our shell formula-
tion and prestress algorithm for mouse-specific anatomies featuring multiple branches. These anatomies were 
obtained via non-invasive in vivo micro-CT and have been used in our previous work12. We employ an indepen-
dently validated four-fiber family constitutive model to describe the behavior of the aortic wall. The regionally 
varying material parameters and distributions of wall thickness were obtained through in  vitro biaxial tests 
(Supplementary Table S2 online). Further details about the experimental procedures can be found elsewhere12. 
We employ radially-free boundary conditions for the aortic wall ends, as described in “Prestress verification” 
section. In order to avoid unphysiological deformations and buckling of the arterial wall, it is crucial to include 
external tissue support boundary conditions to model the effect of surrounding tissue. Therefore, we incorporate 
the external tissue support conditions described in Eq. (74) with ks = 105 g/(mm2 s2).

Figure 7A shows the volume rendered geometric model and the associated skeleton, obtained from the 
micro-CT data for a 20-week old wild-type mouse. Starting from this anatomy and the experimentally obtained 
wall properties (material parameters and thickness distribution), we employ our prestress algorithm to identify 
the corresponding unloaded geometry, which was not available in this anesthetized mouse. Figure 7B shows the 
predicted unloaded configuration overlaid on the medically imaged in vivo anatomy. Figure 7C shows enlarged 
views of the three different locations (I, II, III) indicated in Fig. 7B. It can be seen that the predicted unloaded 
configuration is contained within the in vivo configuration at all three locations. These results support the ability 
of our prestress algorihtm to handle complex, subject-specific anatomies with multiple branches.

To further test the robustness of our implementation, we repeat the same analysis on a Fbln5−/− knockout 
(KO) mouse. The regionally varying material parameters for the four-fiber constitutive model and the thickness 
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distribution are listed in Supplementary Table S3 online. Figure 7D shows the corresponding volume rendered 
geometric model of the aortic anatomy and associated skeleton obtained from the micro-CT data. The KO 
anatomy exhibits a marked increase in tortuosity and therefore serves as a more stringent test to assess our 
implementation for complex, subject-specific anatomies. Figure 7E shows the predicted unloaded configura-
tion overlaid on the medically imaged in vivo anatomy while Fig. 7F shows the corresponding enlarged version 
at three different locations indicated in Fig. 7E. As expected, the predicted unloaded configuration is smaller 
than the in vivo configuration. Note that the deformation of the aortic wall in the regions of vessel bifurcations 
is characterized by significant bending.

Figure 8 shows deformations of the arterial wall of a wild-type mouse without (panel A) or with (panel B) 
external tissue support. The solution without external tissue support exhibits unphysiological large deforma-
tions, leading to buckling in the head branches and eventual failure of the prestress analysis at P = 7 mmHg . 
In contrast, the analysis with external tissue support exhibits no buckling and yields realistic deformations of 
arterial wall at P = 120 mmHg.

Therefore, these results serve as a confirmation of the ability of our shell formulation to handle combined 
membrane and bending mode deformations in complex image-based multi-branched vascular models.

Discussion and conclusions
We have implemented a geometrically and materially nonlinear rotation-free shell formulation capable of han-
dling large deformations for vascular biomechanical applications. The formulation accounts for both membrane 
and bending behaviors with only displacement degrees of freedom by considering an element patch comprising 
the chosen element and the three adjacent elements. We performed static condensation of the thickness stretch 
using incompressibility and a plane stress condition; this provides a consistent method for incorporating arbitrary 
3D constitutive models in our formulation. We also adapted a previously reported prestress algorithm to this 
shell formulation. Lastly, we incorporated the effect of surrounding tissue on vasculature by including external 
tissue support boundary conditions.

We verified the membrane behavior of the shell formulation by considering a distension–extension test on 
a cylindrical geometry and comparing our results against benchmark predictions. We further verified our shell 
formulation for combined membrane and bending modes by considering the deformation of a simply supported 
circular plate under uniform pressure, again with excellent agreement with prior findings by others.

Furthermore, we verified the prestress algorithm against standard forward calculations in an idealized bifur-
cation model. Our results indicate that given the in vivo pressure, anatomy, and associated mechanical proper-
ties (constitutive model, material parameters, and wall thickness), the prestress algorithm is able to accurately 
predict the unloaded configuration. This is an important demonstration given that both residual stresses (those 
existing in the traction-free configuration) and prestresses (those existing in vivo at diastolic pressure) are well 
known to influence significantly the calculated values of wall stress50, yet they are difficult to estimate directly 
via either experimental (e.g., opening angle tests and retraction measurements upon transection) or theoreti-
cal (e.g., growth and remodeling simulations, noting that residual and prestresses arise in part during vascular 
development) methods. Our results confirm that an analysis without prestress significantly overestimates the 
deformations of the arterial wall, thereby highlighting the need to include prestress in the analysis.
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Lastly, we demonstrated the utility and robustness of our implementation by melding the shell formulation 
and prestress algorithm to identify the unloaded configuration of mouse-specific anatomies for wild-type and KO 
mice studied under anesthesia. These anatomies include multiple branches and exhibit significant bending around 
vessel bifurcations. Therefore, these cases serve as a test of the ability of our shell formulation to handle vascular 
deformations under complex membrane and bending modes. For these examples, we used an experimentally 
informed four-fiber constitutive material model to capture known nonlinearities and anisotropies, which vary 
by region. Our prestress algorithm predicted reasonable unloaded configurations for both anatomies, confirming 
the robustness of our implementation for application to complex, subject-specific anatomies.

The lack of rotational degrees of freedom in the presented nonlinear shell formulation makes it well-suited 
to serve as the structural model for a strongly coupled, monolithic, computationally efficient, nonlinear fluid-
structure interaction framework via an adaption of the CMM to large displacements. Although prior simulations, 
including our own12,13, have proven useful in studying fluid–solid interactions in many regions of the vasculature, 
the present formulation promises to be better suited to study ventricular-vascular interactions, particularly since 
the ascending aorta experiences dramatic finite distension, extension, and bending during the cardiac cycle. The 
presented shell formulation is also suitable for including growth and remodeling by using a constrained mixture 
theory (CMT)57. Including CMT in future fluid-solid simulations will extend our prior work58 to subject-specific 
geometries and large displacements and thereby improve the understanding of the interplay between altered 
hemodynamics and vascular adaptation. Since the current shell formulation is based only on displacement 
degrees of freedom, it also enables standard integration with the methodologies proposed in literature to perform 
acute stress analysis on stents59, to investigate vascular adaptation following the stent implantation60, and indeed 
to consider a host of clinical interventions for patient-specific geometries.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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