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In the study of complex patterns in biology, mathematical and computational models are emerging as important tools. In addition
to experimental approaches, these modeling tools have recently been applied to address open questions regarding host-pathogen
interaction dynamics, including the immune response to mycobacterial infection and tuberculous granuloma formation. We
present an approach in which a computational model represents the interaction of the Mycobacterium infection with the innate
immune system in zebrafish at a high level of abstraction. We use the Petri Net formalism to model the interaction between the key
host elements involved in granuloma formation and infection dissemination. We define a qualitative model for the understanding
and description of causal relations in this dynamic process. Complex processes involving cell-cell or cell-bacteria communication
can be modeled at smaller scales and incorporated hierarchically into this main model; these are to be included in later elaborations.
With the infection mechanism being defined on a higher level, lower-level processes influencing the host-pathogen interaction can
be identified, modeled, and tested both quantitatively and qualitatively. This systems biology framework incorporates modeling
to generate and test hypotheses, to perform virtual experiments, and to make experimentally verifiable predictions. Thereby it
supports the unraveling of the mechanisms of tuberculosis infection.

1. Introduction

Tuberculosis (TB) is an infectious disease responsible for
1.5 million deaths annually. About one-third of the world’s
population is infected with the pathogen that causes this
disease, Mycobacterium tuberculosis (Mtb). Most infections
are controlled by the host’s immune system and remain
asymptomatic. However, the Mtb is capable to persist in
the host inside granulomas, highly organized structures
characterized by the presence of differentiated macrophages,
lymphocytes, and other immune cells that contain, but
fail to eradicate, the pathogen [1, 2]. The key to success
of Mtb infection lies, at least in part, with the ability of
the bacteria to proliferate inside host macrophages despite
the antimicrobial properties of these cells. Some of the
infecting bacteria can survive for extended periods within
macrophages and in a granuloma, establishing long-term
infections that may resurface later, for example, when the

host’s immune system is compromised due to malnutrition,
HIV coinfection, or immunosuppressive treatment. Insight
in the mechanisms that contribute to this long and complex
relationship between the pathogen and the host is essential
to the understanding of the fundamental aspects of TB
[3].

Various animal models are used to mimic Mtb pathogen-
esis in humans, each having their specific strengths as well
as limitations. In the recent years, the zebrafish has emerged
as a valuable addition to the mammalian models. They are
genetically tractable and have an immune system with innate
and adaptive branches, very similar to the human immune
system. A particularly useful property is the transparency
of the embryos, which allows for real-time imaging of
the interaction between pathogens and host immune cells
[4–7]. Mycobacterium marinum (Mm), one of the closest
relatives of Mtb, is used to study mycobacterial pathogenesis
in zebrafish. It causes a systemic tuberculosis-like infection
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in zebrafish, with the formation of structured granulomas
that closely resemble those in human TB. The use of this
model has recently contributed important insights into the
function of the granuloma in expansion and dissemination
of mycobacteria during the early stages of infection [8].

Mathematical and computational modeling provides an
important additional avenue for the further exploration
of disease dynamics and offers powerful and complemen-
tary tools for the study of the host-pathogen interaction.
Gathering and analyzing the information from the animal
model in a computational modeling process makes it possible
to describe, simulate, analyze and predict the mechanism
and interactions behind the infection process in intuitive
and easily analyzable terms. The agent-based model (ABM)
is a computational formalism based on rules that govern
autonomous agents [9]; it can be used to model discrete
as well as stochastic events in biology. Pappalardo et al.
have implemented and simulated models using ABM and
cellular automata to study the vaccine administration and
immune response to cancer in mice [10–12]. Kirschner et al.
have utilized ABM to model and simulate the Mtb disease
and the host-pathogen interaction [13–15]. They suggest
the ABM as an appropriate method for exploring complex
spatiotemporal systems such as granuloma formation [16].
The Petri net (PN) formalism is another method providing
a natural and promising modeling technique useful for
modeling metabolic pathways and biological behavior [17].
The PN formalism is, typically, very suitable for systems
with a concurrent nature, that is, systems in which processes
occur in parallel. In essence, the PN is a mathematical
modeling language based on a directed bipartite graph. The
PN formalism has already been successfully applied on case
studies in biology to create, verify, and validate models. The
stochastic activity network (SAN) is an extended Petri net
model that uses probabilistic time and is in particular useful
for performance evaluation. Tsavachidou and Liebman [18]
have used SAN in modeling and quantitative evaluation of
the biological pathways involved in menopause. They use
biological pathways and experimental data in an accurate
quantitative model to simulate and compare to in vivo/in
vitro experiments. Peleg et al. [19] have used colored
hierarchical PNs to study the effects of mutations in tRNA
on the protein translation. They define qualitative models
of molecular function at different levels of granularity. The
application domain of tRNA was chosen due the abundant
literature on tRNA molecular structure as well as the diseases
that relate to abnormal structure. Regarding the process of
mycobacterial infection, the interaction with host-pathogen
is complex and much remains unknown and significance of
specific immune factors present on the mycobacterial infec-
tion process still poorly understood. To date, mathematical
and computational models applied to mycobacterial infec-
tion have been used to explore specific aspects at various bio-
logical scales (e.g., intracellular, cell-cell interactions, and cell
population dynamics) [14–16]. The mycobacterial infection
process thus is composed of numerous subprocesses, some of
which are mutually dependant, giving rise to a very complex
set of interactions. A model describing the process at a higher
level is missing, and therefore we take the construction of

a model of the infection mechanism at a higher level of
granularity as a starting point for our modeling efforts and
explorations. The availability of such a model enables to
connect and visualize the whole infection process. This top-
down approach allows identifying, modeling, and testing of
the lower-level processes in both qualitative and quantitative
manner. The input for these lower-level processes is obtained
from both empirical research and literature data.

The zebrafish model of Mycobacterium infection, based
on Mm infection, has been identified as very useful in
the understanding of host-mycobacteria interactions during
early stages of infection. This model system is used to
generate experimental data that elucidate the pathogenesis
as well as to transfer the findings to the human case.
The perspective of analysis from in vivo/in vitro studies
requires an integration layer so that experimental data can
be understood in the range of complex interactions that are
underlying the infection process. Therefore, we intend to
construct such integration layer from an in silico perspective
using the Petri net formalism as a modeling method to sim-
ulate bacteria-host interactions in early stages of tuberculous
granuloma formation. As indicated, our starting point is to
construct such a model from a higher level of abstraction.
We, therefore, designed a PN by first identifying the processes
in the infection process, that is, phagocytosis of mycobacteria
by macrophages, the migration of infected macrophages to
deeper tissue, the growth of mycobacteria within individual
macrophages, and the granuloma formation and matu-
ration. These processes were represented in a qualitative
colored Petri net (CPN) using the Snoopy software, a tool
for modeling and animating/simulating hierarchical graph-
based formalisms. The information analysis on the processes
was obtained from recent literature about the phases involved
in the early response to mycobacterial infection [8] and from
interviews with researchers.

From the processes as the major design elements, we
constructed a qualitative colored Petri net on a level of
abstraction that helps understanding and describing the
causal relations in a dynamic process. In addition to the
processes, we acknowledged entities such as the zebrafish,
the macrophage, the granuloma, and the bacteria. As such,
the phases of the infection process are addressed whilst,
for the moment, time and probability are not considered.
In this manner, our model explores the disease on a high
level of abstraction, modeling the factors that are crucial
to visualize the mycobacterial infection process and the
early immune response. Complex processes involving cell-
cell or cell-bacteria communication can be modeled in a
small-scale process and incorporated into the model as
a hierarchical layer. As intended, the model shows the
cause-effect relations that trigger the infection process. The
graphical representation of the CPN communicates that in
a manner a biologist can grasp immediately. Now, as the
model incorporates the process of infection, the toolbox of
the biologist is extended with an approach that allows to
perform “what-if” as part of the experimentation whereas
at the same time new experimental findings can be added
to the model in a close collaboration between empirical and
modeling scientists.
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Figure 1: Microscope image of a zebrafish larva infected with
Mycobacterium marinum by injection used for the study on
infection progression and immune system response. Image is
obtained with a Leica stereo fluorescence microscope commonly
used in zebrafish research. Here the microscope image is depicted
with an overlay of a fluorescent channel (red) in which the bacteria
are visualized. The arrows indicate granulomas that have been
developed after an induced infection with Mycobacterium marinum.

Starting from the abstract model of the global infection
process, future extensions, such as submodels representing
processes on tissue, cellular, and molecular scale, will hier-
archically connect as a single model. In close collaboration
with the empirical scientist and using the model, we intend to
perform in silico experiments that are otherwise impractical
or not feasible in vivo or in vitro, thereby predicting results
of new experiments and generate further hypotheses about
the immune system response to mycobacterial infection. The
CPN model presented in this paper is the cornerstone of that
process.

The remainder of this paper is structured as follows. In
Section 2, we discuss the pathogenesis of the Mycobacterium
infection in Zebrafish in more detail and next we introduce
the building blocks of the CPN and the software that we have
used to build the model. In Section 3, we provide a series of
design considerations to come to an implementation of the
model. Finally in Section 4, we end with the conclusion and
discussion.

2. Materials and Methods

2.1. The Zebrafish Model of Mycobacterial Pathogenesis. The
zebrafish is naturally susceptible to infections caused by M.
marinum (Mm), genetically closely related to M. tuberculosis
(Mtb). The Mm infection shares pathological hallmarks
with Mtb infection. Like other pathogenic mycobacteria,
Mm causes chronic infection of macrophages resulting
in tuberculous granulomas, making it a useful model to
study mycobacterial pathogenesis [20]. Zebrafish embryos
have functional innate immune cells (macrophages and
neutrophils), while their adaptive immune system is not
yet functional. The experimental infection of zebrafish
embryos is initiated by injected bacteria into the blood
circulation or into tissue. Macrophages that are attracted to
the site of infection take up the mycobacteria by a process
called phagocytosis. Real-time imaging of infected zebrafish
embryos has allowed the direct observation of the arrival of
phagocytes at the infection site and their uptake of bacteria.
The macrophages are the primary cell type infected with
Mm; however, also infected neutrophils have been observed
[6, 8] and were recently shown to play an important role in
Mm infection control [21]. In Figure 1, an Mm infection in a
zebrafish is depicted.

Inside the macrophage, bacteria can be exposed to bac-
tericidal mechanisms and degraded in lysosomes. However,
intracellular mycobacteria are predominantly distributed
between the early and late phagosomal compartments,
with some also escaping into the cytoplasm [22, 23].
Similar to Mtb, Mm escapes from lysosomal degradation
and its survival inside macrophages is facilitated through
the dynamic modulation of a range of cellular processes.
These include inhibition of pathways involved in the fusion
of the phagosome with lysosomes, antigen presentation,
apoptosis, and the activation of bactericidal responses [23–
25]. Mycobacterial interference with the host signaling
machinery severely compromises the immune defences, and
the multiplication of mycobacteria inside the macrophage
over time causes its death, thereby enabling further spreading
of the infection.

Once it has become infected with mycobacteria, the
macrophage starts to induce recruitment of uninfected
macrophages. Studies have established an important role for
a mycobacterial virulence factor, the ESX-1 secretion system,
in the recruitment of new macrophages to granulomas
and the expansion of infected macrophages [5, 25, 26].
These macrophages efficiently find and phagocytose infected
macrophages and bacteria that are released from dead
cells, but in this process these macrophages are getting
infected too. The aggregated macrophages become activated,
a transformation reflected by an increase in their size and
subcellular organelles, ruffled cell membranes, and enhanced
phagocytic and microbicidal capabilities. A common feature
of all Mycobacterium granulomas is the further differenti-
ation of the macrophages into epithelioid cells that have
tightly interdigitated cell membranes in zipper-like arrays
linking adjacent cells. Those aggregates grow into organized
structures that are referred to as granulomas, lumps of
immune cells that surround the infection [23].

Primary granulomas are capable of disseminating
infection throughout the body by egression of infected
macrophages which suggests that granuloma macrophages
constitute the major mechanism for dissemination of the
infection [5]. These granulomas are the hallmark of the
tuberculosis disease in both human and animal models. In
Figure 2, a schematic representation is depicted of the early
stages of the mycobacterial of the pathogenesis infection
process.

2.2. Computational Modeling. Experimental research has
generated a tremendous amount of insights into host-
pathogen interactions that occur during mycobacterial infec-
tions. Mathematical and computational models can offer
powerful and complementary methods in support for better
understanding the mechanisms behind the infection process
in intuitive and easily analyzable terms. Amongst these
methods, we can refer to modeling approaches such as
Brane calculi [28], π-calculus [29], agent-based modeling
(ABM) [16], and petri nets (PNs) [30]. These modeling
methods can be used to describe, simulate, analyze, and
predict the behavior of biological system by turning what
is known about the biology into equations and/or rules to
describe and ultimately understand the system. Previously,
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Figure 2: Schematic representation of the early stages of the immune response to the early stages of the mycobacterial infection process. This
figure is an authors’ rendition adapted from [27].

we proposed a system for modeling, simulating, and visual-
izing the Mycobacterium infection and granuloma formation,
addressing the basic layout and the modeling challenges
for this approach and evaluating between computational
methods the Petri net as an appropriate method for the
modeling of the infection process [31].

The Petri nets provide a formal and clear representation
of systems based on their firm mathematical foundation for
the analysis of system properties. The graphical notation
of Petri nets allows an easy and intuitive construction of
models of biological systems. To characterize the structure,
behavioral properties, and dynamics of a model, there are
several techniques to add time-dependent and space aspects
as well as data and probabilistic aspects [32]. Petri nets
have as their underlying structure a directed, finite, bipartite
graph, typically without isolated nodes. The four main
components of a general Petri net are as follows [33]:

(i) places: passive nodes that refer to conditions or local
states;

(ii) tokens: variable elements that represent current infor-
mation on a condition or local state;

(iii) transitions: active nodes that describe local state
shifts, events, and activities in the system;

(iv) directed arcs: connections that specify relationships
between transitions and places.

Standard PN models are discrete and have no notion
of time and as such are very useful for modeling processes
without time or probability. To model more complex
processes, extensions to the standard PN are used; in colored
Petri nets (CPNs), data values are assigned features using
different colors as data structure [34]; in stochastic Petri
nets (SPNs) probabilities are added to the transitions [35];

other extensions such as hybrid Petri nets (HPNs) and hybrid
functional Petri nets (HFPNs) allow for coexistence of both
continuous and discrete processes [36].

In order to create a flexible, compact, and parameteri-
zable model, we decided to use a CPN to model the early
stages of the infection process and granuloma formation.
Although standard Petri nets can be used to model parts
of our problem, such as reaction processes and biochemical
components, it becomes impractical to represent different
levels of abstraction, when in addition, other aspects have
to be taken into account such as the physical and spatial
organization of the organism, from the intracellular to
the intercellular level and beyond (molecular, cellular, and
tissues). Colored Petri nets allow the description of several
similar network structures in a concise and well-defined way,
providing a flexible template mechanism for network design-
ers. In colored Petri nets, tokens can be distinguished by their
colors. This allows one to discriminate levels (molecules,
metabolites, proteins, secondary substances, genes, etc.). In
addition, the token colors can be used to distinguish between
subpopulations of a species in different locations (cytosol,
nucleus, and so on).

For these reasons, we have chosen to model the early
stages of the Mycobacterium infection process and granuloma
formation and dissemination in terms of colored Petri nets.
The process consists of phagocytosis of the mycobacteria
by macrophages, migration of infected macrophages, and
bacterial replication in an individual macrophage as well as
the aggregation, granuloma formation, and dissemination of
the infection. In the following section, we give a definition
of CPN based on [34, 37] We use B to denote the Boolean
type, containing the elements {false, true} with the standard
operations from propositional and we use Type (Vars) to
denote a set of types {Type (v) | v ∈ Vars} of a typed set Vars.
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Definition 1. A multiset m over a nonempty set S
is a function m : S −→ N. An element s ∈ S is said to belong
to the multiset m if m(s) /= 0, and then we write s ∈ m. The
nonnegative integers {m(s) | s ∈ S} are called the coefficients
of the multiset m, and m(s) is called the coefficient of s. The
nonnegative integer m(s) ∈ N is the number of appearances
of the element s in the multiset m.

We may represent a multiset m by the formal sum:

∑

s∈S
m(s)′s. (1)

By SMS we denote the set of all multisets over S.

Definition 2. A colored Petri net is a tuple CPN = (Σ,P,T ,A,
C,G,E, I), where

(i) Σ is a finite nonempty set of types, called color sets;

(ii) P is a finite nonempty set of places;

(iii) T is a finite nonempty set of transitions such that

P ∩ T = ∅; (2)

(iv) A is a finite set of arcs such that

A ⊆ P × T ∪ T × P; (3)

(v) C is a color function; it is defined from P to Σ;

(vi) G is a guard function; it is defined from T to
expressions such that

∀t ∈ T :
[
Type (G(t)) = B ∧ Type (Var (G(t))) ⊆ Σ

]
; (4)

(vii) E is an arc expression function; it is defined from A
into expressions such that

∀a ∈ A :
[

Type (E(a)) = C
(
p(a)

)
MS

∧Type (Var(E(a))) ⊆ Σ
]

,
(5)

where p(a) is the place component of a;

(viii) I is an initialization function (initial marking); it is
defined from P into closed expressions such that

∀p ∈ P :
[

Type
(
I
(
p
)) = C

(
p
)

MS

]
. (6)

In general, a marking m is a function associating with
each place p a multiset m(p) of colors (tokens) from C(p).
Markings are the global states of the colored Petri net.

The Petri net semantics describes the behavior of the
net, based on a firing rule consisting of a precondition and
the effect of the occurrence (firing) of a single transition.
Whether or not a transition can fire depends on the marking
of its preceding-places and the arc expression on the input
arcs. A transition is enabled and is allowed to fire, if all
preceding-places, are sufficiently marked and if the binding
of the variables that appear in the arc expressions evaluates

to a multiset of token colors that is present on the corre-
sponding input place. The guards of the transition should
evaluate to true for the giving binding. If a transition has
no preceding-places, it is always enabled. When a transition
occurs with a given binding, a multiset of colored tokens are
taken from each preceding-place and added to later-places in
accordance with the arc expression on the arc leading to those
places. Repeatedly firing transitions lead to firing sequences
and determine the state space of the Petri net [33].

2.3. Software and Hardware Platform. Several tools are avail-
able to model biological systems using Petri nets, simulate
their dynamic behavior, and analyze their structure. The
Snoopy software provides an extensible, adaptive, and mul-
tiplatform framework to design, animate, and simulate Petri
nets [38]. Its design facilitates the modular implementation
of our CPN model allowing future extensions to be added
through hierarchical organization of Petri nets. We have used
the Snoopy software to implement and animate our net with
two different operating systems (OS): Windows 7 (HP Intel
core i7, 4 Gb RAM) and Mac OS 10.6 (MacBook Pro Intel
core i7, 4 Gb RAM). The main difference between the two
platforms is the additional features in the user interface for
the Windows implementation. The CPN model runs with
the same accuracy on both OS versions. This illustrates the
platform independency of the Snoopy software framework.

3. Results

We have modeled the role of the innate immune system in
the early stages of a mycobacterial infection. Our approach
is to provide a large-scale model that drives the infection
behavior. We have used the Snoopy tool, a framework
for modeling and animating/simulating hierarchical graph-
based formalisms [38], in order to create a qualitative colored
Petri net representing the relevant phases in the infection
process as depicted on Figure 2. In the following sections, we
present the color sets Σ, places P, transitions T , and the initial
marking I present in our CPN = (Σ,P,T ,A,C,G,E, I).

3.1. Set of Color Sets Σ. We have defined five simple color sets:
position, individual, status, and count and four compound
color sets: macrophage, bacteria, proliferation, Granuloma
composed of the basic color sets. They represent empirical
information from the infection process:

(i) position is an integer value representing the location
of a macrophage, bacteria, and/or granuloma;

(ii) individual is a string value (mm, mac) used to
identify bacteria and macrophages;

(iii) status is a Boolean value; it can represent the infection
status (healthy/infected) of a macrophage or the
saturation of a proliferation;

(iv) count is an integer value representing a threshold for
the simulation;

(v) macrophage is composed of position, individual,
and status colors and represents host macrophage
immune cells;
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(vi) bacteria is composed of position and individual
colors and represents M. marinum bacteria that will
be injected;

(vii) proliferation is composed of count, individual, and
status colors and represents the amount of infected
aggregated macrophages;

(viii) granuloma is composed of position, individual, and
count colors and represents granulomas with the
amount of macrophages.

3.2. Set of Places P. The set of places of our CPN is defined as

P = {Infection, ImmuneSystem, Phagocytosis,

Migration, BactGrowth, Checkpoint,

Condition, DeadMacrophage,

RecruitmentCount, AgregationAmount,

StopSignaling, Maturation, Dissemination
}
.

(7)

They represent population of cells and multicellular
complexes that are part of our model:

(i) C(Infection) = {Bacteria}: a place with the mycobac-
teria that intrude the host;

(ii) C(ImmuneSystem) = {Macrophage}: a place con-
taining the immune cells (healthy macrophages) that
will react to an infection signaling;

(iii) C(Phagocytosis)={Macrophage}: a place containing
the infected macrophages;

(iv) C(Migration) = {Macrophage} and
C(BactGrowth) = {Proliferation}: places containing
information about the bacterial replication within
one macrophage and its movement;

(v) C(DeadMacrophage) = {Macrophage} and
C(AgregationAmount) = {Granuloma}: places
containing dead macrophages and the aggregation of
recruited healthy macrophages (granuloma);

(vi) C(Maturation) = {Macrophage} and
C(Dissemination) = {count}: places containing
information about the infected aggregated
macrophages (intracellular bacterial spread) and the
control of the infection dissemination;

(vii) C(Checkpoint)= {status}, C(Condition)= {status},
C(RecruitmentCount) = {count} and
C(StopSignaling) = {count}: places controlling
the flow of the simulation.

3.3. Set of Transitions T . The set of transitions of our model
is defined as

T = {BacSignaling, MacSignaling, IntracelullarSpread,

Spread, t1, t2, t3, t4
}
.

(8)

They describe important events that govern the infection
process and refer to the molecular interaction, signaling

reaction and intracellular changes; they also regulate some
thresholds that control the simulation:

(i) BacSignaling represents the signaling process when
bacteria reach the host;

(ii) MacSignaling represents the signaling process of an
infected macrophage after its death (recruitment of
healthy macrophages);

(iii) IntracelullarSpread represents the bacterial repli-
cation among the aggregated macrophage in the
granuloma;

(iv) Spread represents the dissemination of granuloma
infection;

(v) t1, t2, t3, and t4 represent the control thresholds of
the simulation.

3.4. Initial Marking I . The initial marking in our model
determines for each place the number and type of colored
tokens initially present in the places. We have the condition
markings that are fixed and used to control the process and
the example markings which are used in our example and
can be modified without changing the workflow. They are
defined as follows.

Condition markings:

(i) I(Checkpoint) = 1′(true): initialized for checking
if the bacterial replication inside the macrophage
reaches its limits;

(ii) I(RecruitmentCount) = 1′(0): initialized for count-
ing the number of macrophages recruited to aggre-
gate into the dead macrophage;

(iii) I(BactGrowth) = 1′(1, mm, true): initialized to trig-
ger replicating the bacteria inside the macrophage;

(iv) I(Dissemination) = 1′(0): initialized to keep count
of the dissemination of the granuloma;

(v) I(Condition) = 1′(true): initialized to enable one
infected macrophage become dead and start the
signaling process.

Example markings:

(i) I(Infection) = 1′(1, mm) + 1′(2, mm) + 1′(3, mm)
defines the initial concentration of the mycobacteria
that will intrude the host. We have defined three
different positions to represent different injection
sites;

(ii) I(ImmuneSystem)=1′(1, mac, false)+1′(2, mac, false)
+ 1′(3, mac, false) + · · · + 1′(10, mac, false) defines
the initial concentration of healthy macrophages
in the host. The positions and amount of healthy
macrophages are empirical and used just to represent
their presence in the host.

All other places are initially empty, that is, there are no
tokens at the onset.
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Figure 3: Screenshot of the CPN modeling the early stages of the immune response to the mycobacterial infection process implemented in
Snoopy software.

3.5. Implementation and Execution of the Model. Our model
is motivated by the biology discussed in Section 2, and
it specifically focuses on the process of granuloma for-
mation and infection dissemination. The environment of
the model represents the innate immune response based
on the Mycobacterium marinum infection process in the
zebrafish embryo, although at this level, the CPN model
can be used to describe the early immune response to any
kind of mycobacterial infection process. The elements of
the Colored Petri Net described in the previous sections
represent key factors involved in the processes of infection,
innate immune response, and granuloma formation. The
rules of the model represent the biological interactions as
described in Section 2.1, that is,

(i) signaling of intruding bacteria detected by healthy
macrophages followed by phagocytosis;

(ii) migration and intracellular bacterial replication
within infected macrophages and their death;

(iii) recruitment and migration of healthy macrophages
in response to the dead macrophage signals;

(iv) the aggregation process and granuloma formation;

(v) the bacterial spread in the aggregate macrophage and
the infection dissemination.

Figure 3 shows the prototype model in a colored Petri
net implemented using the Snoopy software [38]. Arrows
labeled with a black dot as an arrow head are so-called testing
arcs: they represent two arcs in opposite directions between

the place and transition with an identical arc expression;
however, the tokens are not consumed, just tested for their
presence. Next, we will discuss the colored Petri net model in
more detail.

As initial conditions to our model, we have defined some
numbers as boundaries to check the behavior of the net
using the simulation mode in the Snoopy software. The
intracellular bacterial spread is limited to a concentration
of 255 bacteria. In the literature, no specific information
was found about the capacity of a macrophage or about its
absolute position. In early stages of the zebrafish embryos,
it is known where the macrophages are not present [6]. For
this reason we have defined 10 relative positions to represent
the presence of macrophages and their movement during the
infection process and granuloma formation. In order to keep
the model straightforward, we also limit the concentration of
aggregated macrophages (cf. Figure 5). Next, we have defined
a threshold concerning the infection dissemination; that is,
we limit the concentration of dissident macrophages that are
released from the granuloma. Although from in vivo/in vitro
experiments it seems that the dissemination is regulated by
the adaptive immune system [5, 15], we have not considered
this to be in the scope of our model.

The infection starts when the mycobacteria intrude
the host. In our model we concentrate on three different
positions of the mycobacteria (1, mm), (2, mm), (3, mm).
Each position represents different injection sites used in the
experiments with the zebrafish animal model (yolk, caudal
vein, or hindbrain ventricle). In our example, the bacteria are
detected by the innate immune system by signals to immune
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Figure 4: Screenshot of the infection detection and phagocytosis process.
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Figure 5: Screenshot of the migration and bacterial replication within macrophage causing its death.

cells, in our model healthy macrophage (1, mac, false),
(2, mac, false), (3, mac, false) . . . (10, mac, false), to take up
the bacteria (phagocytosis). Figure 4 shows this process.

After phagocytosis, the bacteria start to proliferate and
move within the macrophage; the macrophage changes
its position, moving to deep tissue while the bacteria
replicate inside the macrophage. The intracellular growth of
mycobacteria is modeled as bacterial multiplication until a
concentration of 255, causing the death of the macrophage.
Figure 5 depicts this process.

A dead macrophage starts to signal, recruiting new
healthy macrophages to take up the infected macrophage
and the bacteria. In this way aggregates of immune cells are
formed. The aggregates contain the bacteria but are unable
to get rid of them. This process is visualized in Figure 6
where a dead macrophage 1′(10, mac, true) is recruiting new
macrophages to aggregate. The recruitment of macrophages
is controlled by the MacSignaling transition that stops when
four healthy macrophages are recruited. The numbers of
macrophages that are recruited are set such that a minimal
number will give rise to the formation of a granuloma. The
latter is important in the development of the infection and

the disease in general. The number can be increased if a
particular scenario for an in silico experiment so requires.
It will not alter the general layout of the net rather creating
different balances. The place RecruitmentCount controls
that.

As these aggregates grow, structures develop that are
referred to as tuberculous granulomas, lumps of immune
cells that surround the infection. Figure 7 shows the repre-
sentation of this process in our model, where one granuloma
is formed at the position 10 with a concentration of five
macrophages 10 1′(10, mac, 5).

The intracellular mycobacterial spread in the granuloma
is visualized in our model by the process depicted in Figure 8.
There, all five immune cells that form the granuloma on
the position 10 {5′(10, mac, true)} get infected and start the
process of dissemination.

In the dissemination process, an infected macrophage
leaves the granuloma structure {3′(10, mac, true)} and starts
another infection, moving, hosting an intracellular mycobac-
terial replication, dying, and repeating the granuloma forma-
tion process on another position. This process is visualized in
Figure 9.
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Figure 6: Screenshot of the dead macrophage signaling and aggregation process.

(pos, mac, true)

(pos, mac, k)

(pos, mac, true)

Macrophage

true

k
RecruitmentCount

status
StopSignaling

count
10

[k > 4](pos, mac, k)

[k ≥ 5]0
MacSignalling DeadMacrophage

[k = 4]true

1

1

[k < 5]k+1++

AgregationAmount
Granuloma

1(10, mac, 5)

t4
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The outcome of our model reproduces the early stages of
the mycobacterial process and the innate immune response.
We used the animation mode available in the Snoopy
software to verify the dynamic behavior of our model. This
property allows to animate the token flow of the net as well
as to observe the causality of the model and its behavior. For
inspection and perusal, the animation sequence can be found
at http://bio-imaging.liacs.nl/galleries/cpn-mmarinum.

4. Conclusion and Discussion

A systems’ biology approach, integrating both modeling
and experimental aspects, has much to contribute to the
study of host-pathogen interactions. Biological processes
that are relevant to the immune response occur at different
scales or levels of resolution, that is, molecular, cellular,
and tissue levels [39, 40]. Development of multiscale, multi-
compartment models based on in vivo/in vitro experimental
data is essential to create a computational system that
reflects this biological behavior [40]. In our previous work
[31], we provide a basic layout addressing the modeling
challenges from the integration of imaging analysis data and
the Petri net formalism in different levels of abstraction,
from epidemiological to genetic levels in a multiple-scale
model.

The aim of this work is to introduce a modeling approach
new to the modeling of the innate immune response in a
model; this modeling represents the dynamic behavior of the
mycobacterial infection process. We consider our model to
represent a high level of abstraction in which the infection
process can be visualized in a large-scale model. Complex
processes involving cell-cell or cell-bacteria communication
can be modeled as small-scale processes and incorporated
in our model. We use the Petri net formalism as a formal
modeling method because of its extensible, modular, easy,
and intuitive construction properties different from other
and more broadly used modeling frameworks [32]. We have
developed a high-level abstraction of the infection process by
designing a PN by acknowledging the major processes of the
Mycobacterium infection together with the basic actors that
are involved in these processes.

As a result, we have delivered a CPN model that expresses,
at a high level of abstraction, the details that are involved
in the early disease of mycobacterial infection. Information
about the early mycobacterial infection process, the innate
immune response, and the infection dissemination can be
observed in our model. Through a parameterizable net
that assembles information about the host-pathogenesis
interaction phases, we can visualize the dynamics of the
infection process. The scalability of our model allows
extension on different levels of abstraction providing the
aggregation of independent and related model hierarchically,
that is, gene expression pathways, molecular process, cell-to-
cell interaction events, and so forth. In this manner allowing
experiments that simultaneously track molecular, cellular,
tissue, organism, and population scale events, biologists have
greatly appreciated the visualization of the processes through
the animation of the PN.

Several reliable tools have been developed to create and
investigate qualitative and quantitative properties of Petri
nets by structural analysis, simulation of time-dependent
dynamic behavior, and model checking. In the research
presented here, we have chosen the Snoopy software [38]
to implement and animate our model. This software is
extensible and adaptive through support of simultaneous use
of several models. Moreover, it is platform independent. Fur-
ther extensions are to investigate the quantitative properties
of the process. Such can be accomplished using the Charlie
tool [41] so as to verify and validate the net and further
analyze our model.

In summary, we have developed a straightforward model
to explore the early mycobacterial infection and the immune
response. Modeling the steps that regulate the infection
process requires further testing on both theoretical and
experimental levels. The results of these in silico experi-
ments/findings can become the input for further analysis. It
will support, for example, identification of key parameters
or mechanisms, interpretation of data, or comparison of
the capability of different mechanisms to (re)generate the
observed data. Finally, a model that successfully describes
existing experimental data may be used in the prediction
of results from new experiments and generation of further
hypotheses about the immune system response to mycobac-
terial infection helping to unravel the mechanisms of TB
infection [42]. In this manner it can contribute to treatment.
As indicated from the design of our CPN, the next steps in
the development of the net are to add lower-level processes
representing the tissue, cellular, and molecular interactions
relevant to the infection process. The CPN accommodates
this as hierarchical layers. Along with these layers, numerical
data will become available that will allow to elaborate on
the quantitative aspects of this process. The interplay of
hierarchical levels and quantitative information has the
potential to develop to a powerful tool for the research in
tuberculosis disease, and hopefully it will further mature in a
paradigm for integrated research to infection diseases.
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