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Background: A novel temperature dependent amorphous nano oxide semiconductor (AOS)

thin-film transistor (TFT) is reported here for the first time, which is vastly different from

conventional behavior. In the literature, the threshold voltage of TFTs decreases with

increasing temperature. Here, the threshold voltage increased at higher temperatures, which

is different from previously reported results and was repeated on different samples.

Methods: Electrical experiments (such as I-V measurements and photoelectron spectro-

meter experiments) were performed in order to explain such behavior. Double sweeping gate

voltage measurements were performed to investigate the mechanism for the temperature

dependent behavior.

Results: It was found that there was a change of trap charge under thermal stress, which was

released after the stress.

Conclusion: Non-Arrhenius behaviors (including a linear behavior) were obtained for the

amorphous nano oxide thin-film transistors within 303~425 K, suggesting their potential to

be adjusted by measurement processes and be applied as temperature sensors for numerous

medical applications.

Keywords: thin film transistors, TFTs, temperature, amorphous nano oxide semiconductors,

AOS, body temperature sensors, medical applications

Introduction
Amorphous oxide semiconductor (AOS) devices have been applied to a wide

number of applications including as medical display circuits especially since

2004, when a typical amorphous oxide semiconductor, In-Ga-Zn-O (IGZO), was

first published.1–4 They have a combination of advantages including transparency,

flexibility, relatively higher mobility than amorphous Si-H (a-Si: H) and low

temperature processing for large scale fabrication.

However, their temperature dependencies have been relatively less studied,

which demands further investigation for potential applications. The display circuit

working temperature range is up to 370 K.5 Therefore, the temperature stability of

AOS TFTs could impact their applications as medical display circuits. In most

reports, their temperature dependencies are similar, i.e., the transfer curve shifts

negatively with increasing temperatures.5,6

Besides, flexible and/or stretchable temperature sensors for humans are mainly

in the range of 300–400 K7–9 for wearable human-activity monitoring and for

personal health care. Temperature sensors for the human body mainly use either

the thermo-resistive effect, pyroelectric effect, or thermoelectric effect. However,

the presently reported flexible temperature sensors are based on nanomaterials
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fabricated either in solution-based processing methods or

in direct printing/writing processes.9 These methods have

been reported to have less stability and repeatability than

the processing of magnetron ratio frequency sputtering;

besides, prominent methods include thermistor configura-

tions. The resistance of thermistors varies in a nonlinear

relationship with temperature, T, so that it is not very

direct and convenient to have a good sensor with a linear

relationship with T.7

Here, the electrical properties change in a different

manner than most conventional reports, and both the tem-

perature dependence behavior of electrical properties and

trap generation mechanisms are investigated and dis-

cussed. The transfer curves shift positively at higher tem-

peratures, which is the opposite trend to most of the

literature and was repeated on different samples. The

degradation is commonly attributed to three components:

i. Electron/hole trapping at the interface between the mate-

rial layers; ii. Creation of ionized oxygen vacancies; and

iii. Donor like defect creation in the IGZO channel.3 In

this paper, the gate voltage, VGS, sweeping to measure the

transfer curves was clockwise, parallel shifting, and reco-

verable, so that the threshold voltage shift and hysteresis

corresponded to the electron trapping/draping and/or the

acceptor-like interface mechanisms.

Materials And Methods
The schematic of the sample with a bottom gate structure

and a top channel with electrodes is shown in Figure 1.

The key material used as the TFTs channels for all experi-

ments is a representative material of AOS, i.e., IGZO. The

Si substrate was used as both the substrate and the bottom

gate in the transistors. Another substrate was the PET

plastic flexible plates. The dielectric layer was added on

the bottom gate. Afterwards, IGZO was deposited by

radio-frequency (RF) magnetron sputtering and the

masks were employed to define the IGZO channel

dimensions. Characterization experiments were performed

using Keithley 4200, UPS (ultraviolet photoelectron spec-

troscopy) and SEM (scanning electron microscopy). The

electrical experiments were performed with the TFT sam-

ples on the probe station.

The detailed fabrication can be found in previous

publications.4 First, the IGZO channel was deposited on

the SiO2 and Si substrates using the RF magnetron sputter-

ing method. The power was 100 W. The gas ratio was Ar:

O2=14:3. Secondly, the IGZO channel was patterned.

Thirdly, the metal oxide electrodes were grown. Post

annealing was performed to passive TFTs under 573 K

for 1 hr. Electrical properties of the IGZO samples were

measured from the drain terminal as the drain current IDS
was investigated as a function of the voltage applied on the

bottom gate terminal as shown in Figure 2A. A Keithley

4200 instrument was applied to measure the electrical

properties, i.e., the channel current IDS versus the applied

voltage on the terminals of the semiconductor devices.

When a sweeping voltage was applied on the gate terminal

with the source terminal voltage fixed at 0 V, the drain

voltage was set at a certain value, 2~5 V, and the tempera-

ture T increased from 303 K to 453 K as the measured

current, IDS, from the drain shifted gradually to the right-

hand side.

Results And Discussion
Temperature Stress Measurements
While some of our samples shifted to the left like previous

publications, some others shifted to the right or shifted to

both sides. This suggests at least two mechanisms corre-

sponding to the curve shifts, with an additional mechanism

to previous published dominant mechanisms. Figure 2A

shows a typical transfer curve of the samples here under

temperature stress. As shown in Figure 2A, the transfer

curves of several samples, shifted to the right side when

Figure 1 (A) Schematic of nano amorphous oxide semiconductor (AOS) thin film transistors (TFTs). (B) SEM of the cross section of In-Ga-ZnO(IGZO) TFTs fabricated in

lab (scale bar =100 nm).
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the temperature of the stress increased from 303 K to 453

K. The higher the temperature stress, the more to the right

the transfer curve shifted. This right shift trend was opposite

to previous reports of a left shift.10–12 This updated positive

shift could be observed in over 3 samples from 303–425 K.

It is hence suggested that more than one mechanism was

responsible for the degradation. Among the mechanisms,

one is for the left shift, and the other is for the updated right

shift, which was dominant on more than one sample tested

here and needs to be further investigated. The mechanisms

for transistor degradation mainly contained three compo-

nents: electron/hole trapping in the interface of different

layers; oxygen vacancies; and donor-like interface trap gen-

eration. Because oxygen vacancies and donor-like traps are

mainly responsible for the negative shift of the threshold

voltage, the positive shift could be attributed to electron

trapping.3 Furthermore, the behavior in the reverse degrada-

tion trend of the device was due to donor-like traps and may

even be attributed to acceptor-like traps.

Mechanism Under Temperature Stress
As shown in Figure 2B, the transfer curve showed a loop at

the VGS sweeping, which suggested charge trapping. The

loop was different from the direction of the anti-clockwise

hysteresis, which claimed that the increase of the drain cur-

rent was attributed to the partial desorption of the oxygen

from the semiconductor during characterization.3,11 The

clockwise loop suggested an electron trapping mechanism

in the literature, which is additional evidence for the charge

trapping mechanism during temperature stress.3,13

In order to clarify the mechanism behind the degrada-

tion under temperature stress, additional spectroscopy

measurements were performed. As shown in Figure 3A,

the UPS experimental results before and after temperature

stress are shown. UPS reflects the electron structure infor-

mation, where counts per second (CPS) are proportional to

the number of trapped electrons. A higher UPS value

corresponds to a larger amount of trapped electrons. The

difference between before and after the temperature stress

Figure 2 (A) Typical transfer curve degradation of the AOS TFTs samples under temperature stress. (B) Typical transfer curve loop of the AOS TFTs used here.

Figure 3 (A) Ultraviolet ray photoelectron spectrometer (UPS) diagram of our AOSTFTs samples before temperature stress (sample 1) and after temperature stress

(sample 2). (B) Linear fitting of threshold voltage Vth as a function of temperature T.
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suggested differences caused by temperature stress. As

shown in Figure 3A, the sample under temperature stress

had a higher CPS, which suggested enhanced electron

trapping. This may be attributed to the reason that because

more electrons are scattered or trapped by the increased

density in sample 2, and the current transport is depressed,

there are less free electrons for channel currents. In this

case, the current IDS at a higher temperature decreases at

the same VGS and hence the IDS-VGS shifts to the right at a

higher temperature.

In order to model the relationship of temperature and

the electrical property dependence of AOS TFTs, the

threshold voltage, Vth, was plotted as a function of

increasing stress temperature as shown in Figure 3B.

Figure 3B shows the linear dependence of Vth on tem-

perature T. A linear trend was found for the degradation of

AOS TFTs in both subthreshold and saturation working

status of the TFTs, which also showed a similar slope and

intercept. This linear relationship suggested a potential to

be a good sensor10 for IGZO TFTs. This nice linear fit in

Figure 3B and the fast recovery in Figure 4 suggested that

the AOS TFTs have good potential as a candidate for

medical temperature sensor applications.

An optimal sensor should have a good recovery cap-

ability to a normal status. As shown in Figure 4, the blue

line represents the transfer curve, i.e. IDS-VGS, at a room

temperature of 303 K. The black line stands for the trans-

fer curve of IGZO TFTs at a higher temperature stress, i.e.,

425 K. The red line is the transfer curve after the high

temperature stress and under the 303 K temperature. As

shown in Figure 4, the temperature stress results in a

transfer curve shifted to the right. The release of high

temperature stress leads to a left shift of the transfer

curve. The black line shifts to the right-hand side of the

original blue line. The transfer curve shifts to the right

when the temperature increases. The line in red is the

transfer curve of IGZO TFTs under the temperature of

303 K after being heated to 425 K. The red line shifts

back to the left side. This degradation and fast recovery is

additional evidence of the existence of trap states at the

semiconductor/dielectric interface. The percentage of the

released charge under temperature stress was roughly 70%

after 1 h of room temperature recovery, which suggested

that the dominant degradation mechanism was charge

trapping at the interface.14–17 Such recovery after the

release of the temperature was found in all our sample

measurements. This shows the potential of medical tem-

perature sensor applications for our IGZO TFTs. The

recoverable behavior can be adjusted more by adding

proper passivation procedures.

Figure 4 Transfer curves IDS vs. VGS before (in blue), under (black) and after high temperature stress (red).
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The recovery ability of our samples could be verified

and explained by the in situ temperature XPS as shown in

Figure 5. This is because oxygen interstitials are considered

to play a key role as donors and lead to free electrons for

carrier conduction.17 The oxygen vacancies correspond to

mobile electron carriers and a 531.3 eV increase from above

0.7 when the temperature decreases. Now, the number of

oxygen interstitials decrease after high temperature stress.

In this way, a higher gate threshold voltage is required for

the same number of electron carriers to turn on the channel,

so that the transfer curves shift to the right side. This

explanation is consistent with the observed experimental

results. When the temperature decreases back, as shown in

Figure 5, the oxygen vacancies and thus number of elec-

trons increase back again so that the threshold voltage

decreases and the transfer curve shifts back to the left.

As shown in Figure 6A, when the negative gate pres-

sure is applied continuously over a period of time, the

transmission curve moves negatively and the longer the

pressure is applied, the larger the negative shift; this is

because of the bulk donor created by the gate stress.18,19

On the contrary, Figure 6B showed that when positive

Figure 5 Temperature dependence of XPS for IGZO sample when the temperature decreases back.
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pressure was applied, the transmission curve moved posi-

tively. This is because the positive gate stress forced the

captured positive charge to be released.20,21

Conclusion
In this manuscript, we prepared temperature-sensitive AOS

TFTs within the range of 303 K - 425 K. Considering all the

present main working mechanisms (such as electron/hole

trapping, oxygen vacancies and donor/acceptor like defects),

we analyzed the temperature dependence of the AOS TFTs

and proved that the threshold voltage shifted positively with

higher temperatures. The degradation is mainly due to elec-

tron trapping at the semiconductor/dielectric interface which

was verified by UPS and XPS. This AOS TFTs threshold

voltage shift was linear to temperature and recovered fast,

which suggests an AOS application as the temperature sensor

for a wide range of medical applications.
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