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Background: A novel temperature dependent amorphous nano oxide semiconductor (AOS)
thin-film transistor (TFT) is reported here for the first time, which is vastly different from
conventional behavior. In the literature, the threshold voltage of TFTs decreases with
increasing temperature. Here, the threshold voltage increased at higher temperatures, which
is different from previously reported results and was repeated on different samples.
Methods: Electrical experiments (such as I-V measurements and photoelectron spectro-
meter experiments) were performed in order to explain such behavior. Double sweeping gate
voltage measurements were performed to investigate the mechanism for the temperature
dependent behavior.

Results: It was found that there was a change of trap charge under thermal stress, which was
released after the stress.

Conclusion: Non-Arrhenius behaviors (including a linear behavior) were obtained for the
amorphous nano oxide thin-film transistors within 303~425 K, suggesting their potential to
be adjusted by measurement processes and be applied as temperature sensors for numerous
medical applications.

Keywords: thin film transistors, TFTs, temperature, amorphous nano oxide semiconductors,
AOS, body temperature sensors, medical applications

Introduction

Amorphous oxide semiconductor (AOS) devices have been applied to a wide
number of applications including as medical display circuits especially since
2004, when a typical amorphous oxide semiconductor, In-Ga-Zn-O (IGZO), was
first published.'™ They have a combination of advantages including transparency,
flexibility, relatively higher mobility than amorphous Si-H (a-Si: H) and low
temperature processing for large scale fabrication.

However, their temperature dependencies have been relatively less studied,
which demands further investigation for potential applications. The display circuit
working temperature range is up to 370 K. Therefore, the temperature stability of
AOS TFTs could impact their applications as medical display circuits. In most
reports, their temperature dependencies are similar, i.e., the transfer curve shifts
negatively with increasing temperatures.>*°

Besides, flexible and/or stretchable temperature sensors for humans are mainly
in the range of 300-400 K’ for wearable human-activity monitoring and for
personal health care. Temperature sensors for the human body mainly use either
the thermo-resistive effect, pyroelectric effect, or thermoelectric effect. However,
the presently reported flexible temperature sensors are based on nanomaterials
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fabricated either in solution-based processing methods or
in direct printing/writing processes.” These methods have
been reported to have less stability and repeatability than
the processing of magnetron ratio frequency sputtering;
besides, prominent methods include thermistor configura-
tions. The resistance of thermistors varies in a nonlinear
relationship with temperature, T, so that it is not very
direct and convenient to have a good sensor with a linear
relationship with T.”

Here, the electrical properties change in a different
manner than most conventional reports, and both the tem-
perature dependence behavior of electrical properties and
trap generation mechanisms are investigated and dis-
cussed. The transfer curves shift positively at higher tem-
peratures, which is the opposite trend to most of the
literature and was repeated on different samples. The
degradation is commonly attributed to three components:
i. Electron/hole trapping at the interface between the mate-
rial layers; ii. Creation of ionized oxygen vacancies; and
iii. Donor like defect creation in the IGZO channel.® In
this paper, the gate voltage, Vs, sweeping to measure the
transfer curves was clockwise, parallel shifting, and reco-
verable, so that the threshold voltage shift and hysteresis
corresponded to the electron trapping/draping and/or the
acceptor-like interface mechanisms.

Materials And Methods

The schematic of the sample with a bottom gate structure
and a top channel with electrodes is shown in Figure 1.
The key material used as the TFTs channels for all experi-
ments is a representative material of AOS, i.e., IGZO. The
Si substrate was used as both the substrate and the bottom
gate in the transistors. Another substrate was the PET
plastic flexible plates. The dielectric layer was added on
the bottom gate. Afterwards, IGZO was deposited by
radio-frequency (RF) magnetron sputtering and the
masks were employed to define the IGZO channel

A

dimensions. Characterization experiments were performed
using Keithley 4200, UPS (ultraviolet photoelectron spec-
troscopy) and SEM (scanning electron microscopy). The
electrical experiments were performed with the TFT sam-
ples on the probe station.

The detailed fabrication can be found in previous
publications.* First, the IGZO channel was deposited on
the SiO, and Si substrates using the RF magnetron sputter-
ing method. The power was 100 W. The gas ratio was Ar:
0,=14:3. Secondly, the IGZO channel was patterned.
Thirdly, the metal oxide electrodes were grown. Post
annealing was performed to passive TFTs under 573 K
for 1 hr. Electrical properties of the IGZO samples were
measured from the drain terminal as the drain current Ipg
was investigated as a function of the voltage applied on the
bottom gate terminal as shown in Figure 2A. A Keithley
4200 instrument was applied to measure the electrical
properties, i.e., the channel current Ipg versus the applied
voltage on the terminals of the semiconductor devices.
When a sweeping voltage was applied on the gate terminal
with the source terminal voltage fixed at 0 V, the drain
voltage was set at a certain value, 2~5 V, and the tempera-
ture T increased from 303 K to 453 K as the measured
current, Ipg, from the drain shifted gradually to the right-
hand side.

Results And Discussion

Temperature Stress Measurements

While some of our samples shifted to the left like previous
publications, some others shifted to the right or shifted to
both sides. This suggests at least two mechanisms corre-
sponding to the curve shifts, with an additional mechanism
to previous published dominant mechanisms. Figure 2A
shows a typical transfer curve of the samples here under
temperature stress. As shown in Figure 2A, the transfer
curves of several samples, shifted to the right side when

" g B ]
Ti Metal Layer | :

IGZO Channel LEyer

SiO, Dielectric Layer

Si Bottom Gate Layer

Figure | (A) Schematic of nano amorphous oxide semiconductor (AOS) thin film transistors (TFTs). (B) SEM of the cross section of In-Ga-ZnO(IGZO) TFTs fabricated in

lab (scale bar =100 nm).
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Figure 2 (A) Typical transfer curve degradation of the AOS TFTs samples under temperature stress. (B) Typical transfer curve loop of the AOS TFTs used here.

the temperature of the stress increased from 303 K to 453
K. The higher the temperature stress, the more to the right
the transfer curve shifted. This right shift trend was opposite
to previous reports of a left shift.'® > This updated positive
shift could be observed in over 3 samples from 303-425 K.
It is hence suggested that more than one mechanism was
responsible for the degradation. Among the mechanisms,
one is for the left shift, and the other is for the updated right
shift, which was dominant on more than one sample tested
here and needs to be further investigated. The mechanisms
for transistor degradation mainly contained three compo-
nents: electron/hole trapping in the interface of different
layers; oxygen vacancies; and donor-like interface trap gen-
eration. Because oxygen vacancies and donor-like traps are
mainly responsible for the negative shift of the threshold
voltage, the positive shift could be attributed to electron
trapping.® Furthermore, the behavior in the reverse degrada-
tion trend of the device was due to donor-like traps and may

even be attributed to acceptor-like traps.
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Mechanism Under Temperature Stress

As shown in Figure 2B, the transfer curve showed a loop at
the Vgs sweeping, which suggested charge trapping. The
loop was different from the direction of the anti-clockwise
hysteresis, which claimed that the increase of the drain cur-
rent was attributed to the partial desorption of the oxygen
from the semiconductor during characterization.>'" The
clockwise loop suggested an electron trapping mechanism
in the literature, which is additional evidence for the charge
trapping mechanism during temperature stress.>'?

In order to clarify the mechanism behind the degrada-
tion under temperature stress, additional spectroscopy
measurements were performed. As shown in Figure 3A,
the UPS experimental results before and after temperature
stress are shown. UPS reflects the electron structure infor-
mation, where counts per second (CPS) are proportional to
the number of trapped electrons. A higher UPS value
corresponds to a larger amount of trapped electrons. The

difference between before and after the temperature stress

1.5
=>1.0f
0.5}
AR
L& . :
300 330 360 390 420
T(K)

Figure 3 (A) Ultraviolet ray photoelectron spectrometer (UPS) diagram of our AOSTFTs samples before temperature stress (sample 1) and after temperature stress
(sample 2). (B) Linear fitting of threshold voltage Vth as a function of temperature T.
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suggested differences caused by temperature stress. As
shown in Figure 3A, the sample under temperature stress
had a higher CPS, which suggested enhanced electron
trapping. This may be attributed to the reason that because
more electrons are scattered or trapped by the increased
density in sample 2, and the current transport is depressed,
there are less free electrons for channel currents. In this
case, the current Ipg at a higher temperature decreases at
the same Vgg and hence the Ipg-Vgg shifts to the right at a
higher temperature.

In order to model the relationship of temperature and
the electrical property dependence of AOS TFTs, the
threshold voltage, Vth, was plotted as a function of
increasing stress temperature as shown in Figure 3B.
Figure 3B shows the linear dependence of Vth on tem-
perature T. A linear trend was found for the degradation of
AOS TFTs in both subthreshold and saturation working
status of the TFTs, which also showed a similar slope and
intercept. This linear relationship suggested a potential to
be a good sensor'® for IGZO TFTs. This nice linear fit in
Figure 3B and the fast recovery in Figure 4 suggested that
the AOS TFTs have good potential as a candidate for
medical temperature sensor applications.

An optimal sensor should have a good recovery cap-
ability to a normal status. As shown in Figure 4, the blue

line represents the transfer curve, i.e. Ipg-Vgs, at a room
temperature of 303 K. The black line stands for the trans-
fer curve of IGZO TFTs at a higher temperature stress, i.e.,
425 K. The red line is the transfer curve after the high
temperature stress and under the 303 K temperature. As
shown in Figure 4, the temperature stress results in a
transfer curve shifted to the right. The release of high
temperature stress leads to a left shift of the transfer
curve. The black line shifts to the right-hand side of the
original blue line. The transfer curve shifts to the right
when the temperature increases. The line in red is the
transfer curve of IGZO TFTs under the temperature of
303 K after being heated to 425 K. The red line shifts
back to the left side. This degradation and fast recovery is
additional evidence of the existence of trap states at the
semiconductor/dielectric interface. The percentage of the
released charge under temperature stress was roughly 70%
after 1 h of room temperature recovery, which suggested
that the dominant degradation mechanism was charge
trapping at the interface."*'” Such recovery after the
release of the temperature was found in all our sample
measurements. This shows the potential of medical tem-
perature sensor applications for our IGZO TFTs. The
recoverable behavior can be adjusted more by adding
proper passivation procedures.
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Figure 4 Transfer curves Ipg vs. Vgs before (in blue), under (black) and after high temperature stress (red).
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The recovery ability of our samples could be verified
and explained by the in situ temperature XPS as shown in
Figure 5. This is because oxygen interstitials are considered
to play a key role as donors and lead to free electrons for
carrier conduction.!” The oxygen vacancies correspond to
mobile electron carriers and a 531.3 eV increase from above
0.7 when the temperature decreases. Now, the number of
oxygen interstitials decrease after high temperature stress.
In this way, a higher gate threshold voltage is required for
the same number of electron carriers to turn on the channel,
so that the transfer curves shift to the right side. This

— (0 surrounded

explanation is consistent with the observed experimental
results. When the temperature decreases back, as shown in
Figure 5, the oxygen vacancies and thus number of elec-
trons increase back again so that the threshold voltage
decreases and the transfer curve shifts back to the left.

As shown in Figure 6A, when the negative gate pres-
sure is applied continuously over a period of time, the
transmission curve moves negatively and the longer the
pressure is applied, the larger the negative shift; this is
because of the bulk donor created by the gate stress.'®'
On the contrary, Figure 6B showed that when positive
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Figure 5 Temperature dependence of XPS for IGZO sample when the temperature decreases back.
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Figure 6 (A) The transfer curve with Vp=1.5V under different negative gate bias stress times. (B) The transfer curve with Vp=1.5V under different positive gate bias stress times.

pressure was applied, the transmission curve moved posi-
tively. This is because the positive gate stress forced the

captured positive charge to be released.?%*!

Conclusion

In this manuscript, we prepared temperature-sensitive AOS
TFTs within the range of 303 K - 425 K. Considering all the
present main working mechanisms (such as electron/hole
trapping, oxygen vacancies and donor/acceptor like defects),
we analyzed the temperature dependence of the AOS TFTs
and proved that the threshold voltage shifted positively with
higher temperatures. The degradation is mainly due to elec-
tron trapping at the semiconductor/dielectric interface which
was verified by UPS and XPS. This AOS TFTs threshold
voltage shift was linear to temperature and recovered fast,
which suggests an AOS application as the temperature sensor
for a wide range of medical applications.
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