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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is notoriously difficult to treat due to its aggres-

sive, ever resilient nature. A major drawback lies in its tumor grade; a phenomenon

observed across various carcinomas, where highly differentiated and undifferentiated tumor

grades, termed as low and high grade respectively, are found in the same tumor. One emi-

nent problem due to such heterogeneity is drug resistance in PDAC. This has been impli-

cated to ABC transporter family of proteins that are upregulated in PDAC patients.

However, the regulation of these transporters with respect to tumor grade in PDAC is not

well understood. To combat these issues, a study was designed to identify novel genes that

might regulate drug resistance phenotype and be used as targets. By integrating epigenome

with transcriptome data, several genes were identified based around high grade PDAC. Fur-

ther analysis indicated oncogenic PAX2 transcription factor as a novel regulator of drug

resistance in high grade PDAC cell lines. It was observed that silencing of PAX2 resulted in

increased susceptibility of high grade PDAC cells to various chemotherapeutic drugs. Mech-

anistically, the study showed that PAX2 protein can bind and alter transcriptionally; expres-

sion of many ABC transporter genes in high grade PDAC cell lines. Overall, the study

indicated that PAX2 significantly upregulated ABC family of genes resulting in drug resis-

tance and poor survival in PDAC.

Introduction

Pancreatic cancer is the fourth leading cause of cancer related death in several countries and

will surpass breast, prostate cancer to become the second leading cause of cancer related death

in the near future [1], [2], [3]. With no apparent symptoms in its early stages, pancreatic cancer

grows aggressively, infiltrating adjacent tissues and promoting metastasis along with resistance

to chemo and radiotherapy [4], [5]. Most of the patients are present with metastatic disease or
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local infiltration at the time of initial diagnosis, and only 15–20% of the patients are candidates

for surgical resection. Out of the several types of pancreatic cancer, pancreatic ductal adeno-

carcinoma (PDAC) is the most common (85%) [6].

Clinically, histological alterations indicating more differentiated PDACs are termed as low

grade, while the undifferentiated tumors are termed as high grade PDAC [7], [8]. The clinical

aspects that might help PDACs develop drug resistance includes tumor heterogeneity, epithelial

mesenchymal transition, and upregulated drug transporters [9], [10], [11]. Many ABC family of

transporters, like ABCC1, ABCC2, ABCC3, and ABCC5 have been shown to be upregulated in

pancreatic cancer patients [12], [13], [14], [15], [16], [17], [18]. Several studies have established

the relationship between ABC family transporter proteins and drug resistance in pancreatic can-

cer. ABCC5 expression, for instance, was found to be significantly correlated with cellular sensitiv-

ity to 5-fluorouracil (5-FU) [14] and gemcitabine [18], where acquired resistance to 5-FU was

associated with an increase in ABCC5 expression [14]. Further, it was reported that expression lev-

els of ABCC3 and ABCC5 changed during tumor development, and the expression of ABCC3 was

significantly correlated with high tumor grade. It was also observed that ABCC3 expression was

linked to survival in patients, where patients with lower expression of the gene had longer survival

period [12]. Upregulation of ABCC2 and ABCC1 is often expressed in a PDAC cohort [19].

ABCC2 is correlated with negative prognosis in several forms of carcinomas, while ABCC1 expres-

sion reportedly increased when exposed to high doses of gemcitabine in PDAC [20]. However, a

distinct regulation of these transporters with respect to tumor grade is not well understood.

To understand the underlying mechanism of PDAC behavior due to its heterogeneity, an

integrative study was conducted to identify enriched regions within the genome marked by

histone methylation regulators, and to correctly assign the upregulation and downregulation

of important genes present within these regions. In addition, network study to understand the

underlying biological process and pathway of significantly enriched genes present in the high

grade cell lines were conducted. Oncogenic transcription factor PAX2 (belonging to the con-

served DNA-binding paired box domain family) showed strong physical network in PDAC

cell lines belonging to high grade tumors. Additionally, it was found that PAX2 silencing in

pancreatic cancer cells increases susceptibility towards known clinical agents. Our study

reveals that PAX2 transcriptionally regulates the expression of several drug transporter family

members like ABCC1, ABCC2, ABCC3, and ABCC5 by binding to the promoters of these drug

resistance genes. Overall, this study establishes data integration and mining methods to iden-

tify and mechanistically validate genes regulating high grade PDAC related oncogenesis.

Materials and methods

Data retrieval, quality check and sequence alignment

The data for the analysis were obtained from NCBI GEO database, deposited by Nicoli P et al

[8]. Details about the cell lines used for the study are given below (Table 1):

Quality check on the raw data files were done using FastQC (http://www.bioinformatics.

babraham.ac.uk/projects/fastqc), a tool for assessing the quality of NGS data. For RNA-Seq

data, HISAT2 [21] was used for alignment of sequences due to its speed and sensitivity. For-

ward and reverse strands of each replicates were aligned using built-in genome for reference

(hg19). The mean distance between pairs was set to 200bp for each sample.

Read count and Expression analysis

FeatureCounts [22], a highly optimized read counting tool was used for the study because of

its speed and reliability. Aligned RNA-Seq reads in the form of Binary Alignment Map (BAM)

was provided as input, along with a list of genomic features in Gene Transfer Format (GTF)
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for human reference genome Human GRCh37 (hg19). The procedure was carried out for all

the replicates. DeSeq2 [23], a package in R for differential gene expression, was used for this

study. The dataset were divided into low grade group, consisting of CAPAN-2 and CFPAC-1

replicates, and high grade group, consisting of MIA PaCa-2 and PANC-1 replicates. Differen-

tial gene expression analysis was performed by considering the low grade group as control,

and the high grade ones as treatment.

ChIP-Seq data for PDAC were aligned using Bowtie2 [24], a fast memory efficient tool for

large sequence alignment. All reads were single-end, and were mapped using built-in genome

index with hg19 as the reference genome. The computational analysis of ChIP-Seq experiment

started with fastq files containing an associated per-nucleotide quality score Q that is an esti-

mation of the -10�log (p), where p is the probability that the corresponding base call is incor-

rect. The pipeline involves quality assessment by plotting base qualities and frequencies per

sequencing cycle, alignment to the genome, duplicate filtering of alignments, removal of low

complexity regions and transformation of the aligned data to coverage vectors.

Peak calling and peak correlation

MACS2 [25] is a program that is widely considered the best tool for ChIP peak identification. It

makes use of a parametric model based on a local Poisson distribution parameterized from the

control data. The filtered and aligned dataset obtained from the previous step was then provided

as input for peak calling and identification. The enriched regions for H3K4Me1 and H3K4Me3

were discovered using default settings with BW = 300, along with the broad peaks option. The

comparison for each sample was made with its corresponding input data.

Correlation between the peaks of all datasets were compared using deep sequencing tools

[26] present in the Galaxy platform [27] for visualization of deeply sequenced data. BAM files

generated by Bowtie2 were processed using the module bamCoverage to reduce the size of data.

This resultant data was saved in bigwig format. The data was then compared against each other

based on their difference using the module bigwigCompare. Correlation plot of all the datasets

were then computed using Spearman correlation coefficients. EaSeq [28], a tool for ChIP-Seq

data analysis and visualization was used for annotation of genes to peak regions, and the peak

intensity of low grade and high grade PDAC peaks were compared. Visualization of peak

regions around genes were carried out using UCSC browser [29].

Integrative analysis of ChIP and RNA-Seq data using BETA, Gene

Ontology and network analysis

Binding and Expression Target Analysis (BETA) [30] is an integrative tool for the analysis of

transcription factors and chromatin regulator binding sites from ChIP-Seq by correlating with

Table 1. ChIP-Seq and RNA-Seq datasets with corresponding ID.

Cell-line GEO ID

Low grade PDAC

ChIP-Seq RNA-Seq

H3K4Me1 H3K4Me3 Replicate 1 Replicate 2

Control GSM1574271

CAPAN-2 GSM1574243 GSM1574258 GSM1574299 GSM1574300

CFPAC-1 GSM1574245 GSM1574259 GSM1574301 GSM1574302

High grade PDAC Control GSM1574272

MIA PaCa-2 GSM1574250 GSM1574261 GSM1574305 GSM1574306

PANC-1 GSM1574252 GSM1574262 GSM1574307 GSM1574308

https://doi.org/10.1371/journal.pone.0223554.t001
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differentially expressed genes from RNA-Seq. The main purpose of this tool is to determine

the activating and repressing function of each gene, which is detected using a nonparametric

statistical test.

For this study, BETA was used for the integration of ChIP with RNA-Seq. Peak files of each

cell line were correlated with their corresponding differentially expressed gene data according

to their methylation state. The operation was carried out using hg19 as the reference genome,

and by setting the Benjamini-Hochberg false discovery rate (FDR) for differentially expressed

genes at� 0.05. The result from this analysis consisted of a list of upregulated and down regu-

lated genes along with their ranks based on the regulatory potential of factor binding and dif-

ferential expression upon factor binding.

Enrichment analysis of high-throughput data was calculated inclusive of parameters like

Chi-square, Fisher’s exact test, Binomial probability and Hypergeometric distribution [31].

The genes identified from high-throughput screening are then annotated with Gene Ontology

(GO) [32] terms. Cytoscape [33], an open source tool for visualization and analysis of complex

networks, was used for the analysis of expressed gene data network. Cytoscape gives the ability

to integrate arbitrary data on the graph, while serving as a platform for its visual representa-

tion. Moreover, the interface has the means to implement external methods in the form of

plug-ins. Biological Networks Gene Ontology tool (BinGO) [34], a plugin for ontology analysis

in Cytoscape, was used for ontological analysis of biological processes, and the connections

between selected genes were studied using GeneMANIA [35], a tool for generating hypothesis

on gene function and analysis of gene sets. For BinGO, overrepresented genes were specified

for the visualization, which were selected using a hypergeometric test, with an FDR of 0.05.

GO biological process was selected as the preferred ontology process for Homo sapiens, exclu-

sively. GeneMANIA parameters were specifically restricted to genetic interactions, physical

interactions, and shared pathways, to further isolate and study relevant connections between

selected genes. All weightage provided were set to automatic. Comparison between the upre-

gulated and downregulated genes of high grade data, and analysis of key genes were visualised

in the form of a Venn diagram using the tool FunRich [36], an enrichment tool which provides

graphical output for data visualization. FunRich was also used for assigning ontology process

to a few selected genes from UniProt database [37] for an FDR of� 0.05. Pathway analysis was

conducted using ClueGo [38] by selecting KEGG pathways for the desired ontology. Genes

that occur below a threshold of p-value� 0.05 were investigated at global level network speci-

ficity. Pathways relevant to cancer were investigated using Pathview [39], with the help of indi-

vidual cell line gene expression data from DEGUST (http://degust.erc.monash.edu/) using

edgeR [40]. HGPEC [41], a plugin for Cytoscape which uses a random walk with restart on

heterogeneous data (RWRH) algorithm, was used to predict the disease-gene association on

heterogeneous network. In this method, a list of known genes from given diseases are used as

training data. A complete different set of genes, which do not appear on the training set of

genes, serve as the candidate gene set. The RWRH algorithm then uses the training data to

identify and classify all candidate genes and disease in the heterogeneous network.

Cell culture, reagents and transfection

MIA PaCa-2 (MIA PaCa-2 ATCC1 CRL-1420™) cells and PANC-1 (PANC-1 ATCC1 CRL-

1469™) cells were provided by Dr. Hari Kumar KB (RGCB, India). Both cells were cultured in

DMEM medium, (Thermo Fisher Scientific, Waltham, MA), supplemented with 10% fetal

bovine serum (FBS), at 37˚C, 5% CO2. The identity of cell lines were confirmed by STR (Short

Tandem Repeats) profiling using standard primer sets for core human loci (https://strbase.

nist.gov/coreSTRs.htm) and the cells were determined to be mycoplasma free using MycoAlert

PAX2 - Master regulator of drug resistance in PDAC
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Mycoplasma detection kit from Lonza (NJ, USA). For RNAi studies, previously validated

PAX2 siRNA (5’CATCAGAGCACATCAAATC3’, [42]) (Integrated DNA Technologies, Inc.,

USA) was used and cells were transfected using 20 nM siRNA complexed with RNAi-Max

(Thermo Fisher Scientific).

The siCell Death, siRNA used as Positive cell death phenotype control, from qiagen, USA.

This commercially available siRNA known as AllStars Hs Cell Death siRNA (Catalogue Num-

ber SI04381048). Camtothecin and 5’Flurouracil were purchased from Tocris biosciences and

dissolved according to instructions. Gemcitabine was purchased from Santa Cruz biotechnol-

ogy and dissolved as per instructions.

mRNA analysis

For real-time PCR analysis, total RNA from cells was extracted using RNA extraction kit

(Thermo Fisher Scientific, MA), and cDNA was synthesized using the iScript cDNA synthesis

kit (Bio-Rad, Hercules, CA) following the manufacturer’s protocol. For normalization 18S

ribosomal RNA was used as a reference. The following primer sets were used for SYBR green

based qPCR: PAX2: Forward primer 50- CAACGGTGAGAAGAGGAAACGAG -30,
Reverse Primer 50- TAATGCTGCTGGGTGAAGGTGTC-3’ [43], 18sRNA: For-
ward 5’- GTAACCCGTTGAACCCCATT-3’, Reverse 5’- CCATCCAATCGGTAGT
AGCG 3’, ABCC2/MRP2: Forward 5’- ACGGGCACATCACCATCAAG -3’,
Reverse 5’- CTCCAGGCAGCATTTCCAAG -3’ [44], ABCC3/MRP3: Forward
5’- CGCCTGTTTTTCTGGTGGTT -3’, Reverse 5’- TTGTGTCGTGCCGTCTGCTT
-3’ [44], ABCC1/MRP1: Forward 5’- ACCCTAATCCCTGCCCAGAG -3’,
Reverse 5’- CGCATTCCTTCTTCCAGTTC -3’ [44], ABCC5/MRP5: Forward
5’- CCAAGCTGACCCCCAAAATGAAAAA -3’, Reverse 5’- TGGATGTGCTTGCC
TTCTTCCTCTTC -3’ [44], TM4SF1: Forward 5’- AAGGGGGAGAAAACCTAGCA
-3’, Reverse 5’- CCAGCCCAATGAAGACAAAT -3’ [45].

Chromatin Immunoprecipitation assays

ConTra V3 [46] was used for the identification of TFBS across the promoter regions of ABC

transporter family of genes, which was further verified using the GTRD [47]. This process was

carried out to find conserved regions of PAX2 protein, and to extract these features for the

designing of primers. Chromatin immunoprecipitations were carried out using a kit following

the manufacturer’s protocol (Millipore). Briefly, 1x107 cells were fixed with formaldehyde and

lysed with SDS Lysis Buffer. The cell lysates were then sonicated to shear the DNA to lengths

between 0.2-1kb. The samples were precleared with Protein agarose slurry. Control normal

Rabbit IgG (Catalogue No#2729, Cell Signalling Technology, USA) or Anti-PAX2 Rabbit (Cat-

alogue No# ab23799, AbCam Plc, UK) antibody was added (concentration 10μg/ml) and incu-

bated overnight at 4˚C followed by incubation with fresh Protein agarose slurry for 2 hours.

Precipitated chromatin complexes were removed from the beads through 30-min incubation

with 500 μL of elution buffer. Finally, the protein–DNA cross-links were reversed by incuba-

tion at 65˚C for 4 hours and immunoprecipitated DNA was analyzed by qPCR. Primers used

for this analysis are given below:

ABCC2: 5’GGACCACTCTGCTTATCTTGGA3’; 5’GGTGTGCTGCAGTGTAAATCA 3’
ABCC5: 5’ GATAATCAGCTAAGCTAGGGAAC3’; 5’CCATAAAGAACAGCGGCTCA

C3’
ABCC1: 5’GGTGTCTCTCTGCTTCTGT3’; 5’CTTTCTACAATCTAAGCCCC3’
ABCC3: 5’ ATGAAGGCAGAGCTGGGATA3’; 5’ GTGCGATCATAGCTCACAGTA3’

PAX2 - Master regulator of drug resistance in PDAC
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TM4SF1: 5’ CCAGGCTGGTCTTGAACTCAT3’; 5’CGAAAGAAACTTAAGTGTGAT
G3’

Cell viability and caspase assay

Caspase activation and cell viability was measured using the CaspaseGlo 3/7 and the CellTiter-

Glo1 Luminescent assay systems respectively (Promega) as per manufacturer’s instruction

using at least three biological replicas of each treatment. Spark10M luminometer from Tekan

was used for luminescence measurement.

Statistical analysis

Statistically significant differentially expressed genes and BETA analysis were identified using

Benjamini-Hochberg false discovery rate. Enriched ChIP-Seq peaks were identified using

empirical false discovery rate. For gene ontology studies, hypergeometric test and Benjamini-

Hochberg false discovery rate were performed. Statistical analysis was performed for all wet

lab experiments. Experiments were performed as biological triplicates. Dunnette’s multiple

comparison test, Student t-test were performed for cell survival data. For real time PCR data,

SEM ±3 of biological triplicates were considered. All data were found to be statistically

significant.

Results and discussion

Analysis of PDAC dataset

The quality of dataset used for analysis of PDACs were verified using FastQC and the mean

quality scores of all cell lines indicated that the data lies in the good quality call region with

minimal chances of error. The total number of expressed genes obtained were 20,795, out of

which the number of genes classified as differentially expressed were 1044 over-expressed and

2092 under-expressed genes based on an FDR of 0.05 (5%) and fold enrichment > 2. Fig for

correlation between the samples, and the volcano plot for differentially expressed genes were

provided (S1 Fig), while a comprehensive list of all up/downregulated genes can be found in

S1 Table. Genes below this particular threshold were discarded from further use.

PDAC dataset was analyzed for activating methylation signatures (Monomethylation;

H3K4Me1 vs. Trimethylation; H3K4Me3) in MIA PaCa-2 and PANC-1 cells belonging to the

high grade PDAC cell lines (Fig 1). Low grade PDAC cell lines represented by CFPAC-1 and

CAPAN-2 were also used as controls during data analysis.

During signal intensity comparison between methylated peaks (Fig 1A), the monomethy-

lated peaks for low grade lines (CAPAN-2 and CFPAC-1), displayed a deep shade of blue, cor-

responding to greater correlation. In the case of trimethylated peaks for low grade samples,

correlation between CAPAN-2 and CFPAC-1 became distant, with CAPAN-2 H3K4Me3

peaks clustering more towards trimethylated peaks representing High grade cell lines (Fig 1B).

Monomethylated and trimethylated high grade samples, MIA PaCa-2 and PANC-1, on the

other hand, displayed good correlation, indicating close association between the cell lines.

High grade PDAC cell line (MIA PaCa-2 and PANC-1) peak frequencies were on par for

H3K4Me3, with a high intensity. Although H3K4Me1 peak intensities for MIA PaCa-2 and

PANC-1 were on the lower end, very similar peak profiles were observed (Fig 1C). Overall,

peak intensity for high grade PDAC were closely matched for all cell lines. On the other hand,

low grade PDAC peak intensity for each cell line was varied (Fig 1B). The results from methyl-

ation pattern comparison indicated that high grade tumors are more likely to show similar

gene expression for methylated promoter regions.

PAX2 - Master regulator of drug resistance in PDAC
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To analyze the differentially expressed genes associated with altered methylation in high

grade lines, BETA Plus analysis was performed on high grade cell lines by integrating ChIP--

Seq data with RNA-Seq data, thus providing a list of upregulated and downregulated genes.

Activation and repression function of histone methylation were predicted from PDAC cell

lines, and upregulated/downregulated genes were visualized in the form of Venn diagrams (S2

and S3 Figs). Cytoscape and BinGO tools identified a large interconnected cluster, displaying

affinity towards cellular differentiation and structure development (Fig 2A), with optimal

FDR. This interconnected network was further isolated and the participating gene compo-

nents, with a strong relation to cancer, were verified through text mining. This group of genes

were then analyzed using GeneMANIA to decipher the interconnection between them. The

criteria for the interconnection were specifically assigned for co-expression, and physical and

genetic interactions. From the generated network (Fig 2B), it was found that PAX2 gene had

the highest number of physical interactions, thus making it an important target. Other genes

that were highlighted in the network like DDR2, DPYSL5, SPARC, and FAM5C were also eval-

uated to understand their contribution in the growth and resistance of PDAC. Additional

ontology analysis for each of the genes mentioned above were conducted to disseminate their

individual roles (S4 Fig).

The network of significant pathways predicted by ClueGo was depicted in Fig 3A, where

pathways in cancer was highlighted in a red box. It was observed that a majority of the genes

were involved in this pathway, and were interconnected with several other essential processes.

To further investigate this set of genes, the tool was rerun, but this time at medium level net-

work specificity for a more detailed insight into the pathways involved in cancer. As expected,

the genes that partake in pathways in cancer were seen in pancreatic cancer, as well as tran-

scriptional misregulation in cancer (Fig 3B). To understand the contribution of each gene, the

Fig 1. Correlation plot for high grade PDAC ChIP-Seq dataset and peak signal intensity. (A) Spearman correlation plot for low and high

grade PDAC ChIP-Seq dataset. Correlation comparison of peak signal intensity for (B) Low grade PDAC cell lines and (C) High grade PDAC

cell lines.

https://doi.org/10.1371/journal.pone.0223554.g001
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fold enrichment for individual cell lines were obtained using DEGUST. Gene expression data

from DEGUST output was divided into groups: control (low grade) and sample (high grade),

which was then used to generate KEGG pathways for pathways in cancer, transcriptional mis-

regulation in cancer and pancreatic cancer using Pathview (S5, S6, and S7 Figs).

The evidence of PAX2 as an essential gene in the regulation of high grade PDAC was fur-

ther solidified using HGPEC. Initially, genes from disease closely related to pancreatic cancer

were selected from DisGeNET database [48] present in HGPEC. This set of genes were used as

training dataset. For the candidate gene set (test dataset), the genes identified from the current

study were used as input. This provided us with a comprehensive network of genes predicted

to be involved in pancreatic cancer (Fig 4).

To biologically validate our findings, we silenced individual gene like PAX2, FAM5C,

DDR2, DPYSL5, and SPARC in high grade PDAC cell line MIA PaCa-2 using RNAi and

accessed cell viability to understand critical function of the genes. We found that mRNA levels

of all the genes were downregulated upon RNAi but only PAX2 downregulation showed con-

sequent decrease in cell viability (~37%) in MIA PaCa-2 cells (S8 Fig).

The octagonal nodes were used to represent candidate genes that were highly ranked in

pancreatic cancer. PAX2 is shown to interact with RB1, a prominent tumor suppressor gene

[49].

Fig 2. Analysis of high grade PDAC dataset for differential expressed genes using Cytoscape. (A) Representative network cluster for biological process that are

actively involved in cell differentiation and structural development were identified using BinGO. Nodes represented in white were not significantly expressed, while a

deeper shade of orange correlated with processes predicted with confidence. The inset represents a cluster of biological processes with p-value� 0.05. These clusters

were involved in cell differentiation and structural formation. (B) Gene interaction network obtained using GeneMANIA was conducted on selected genes identified

from important biological processes. Black nodes represent the selected genes, while grey nodes were automatically drawn by the tool based on their connectivity to the

highlighted ones. All edges in the network were derived from prior knowledge.

https://doi.org/10.1371/journal.pone.0223554.g002
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PAX2 downregulation increases drug susceptibility in pancreatic cells

PAX2 is known to promote various oncogenic process like metastasis, drug resistance by tran-

scriptionally regulating effector genes in various cancers like Wilms tumor and renal cell carci-

noma [50], [51]. Moreover, PAX2 expression has been linked with EMT transition [52].

However, the role of PAX2 in high grade PDACs is not known. RNAi based silencing of PAX2
in high grade PDAC cells (MIA PaCa-2 and PANC-1) resulted in decreased expression of

PAX2 with consequent cell death in MIA PaCa-2 (~37%) and PANC-1 (~34%) cells. Percent

cell viability was calculated with respect to Negative control siRNA (siNeg). siCell Death, an

siRNA, used as Positive cell death phenotype control (Fig 5A and 5B). Owing to the association

of PAX2 with drug resistance and metastasis in other cancers [53], [54], [55], [56], we were

interested to check the effect of PAX2 silencing with respect to drug treatment in high grade

cell lines MIA PaCa-2 and PANC-1 which show more resistance towards drugs like camp-

tothecin, 5’ Flurouracil (5’FU), Gemcitabine as reported previously [11], [57], [58], [13], [59],

[60], [61], [62], [63], [64]. PAX2 was silenced followed by addition of Camptothecin or 5’FU

(Flurouracil) at varying concentrations in MIA PaCa-2 cells (Fig 5C). Increased cell death

(Camptothecin IC50 = 0.094 uM, 5’FU IC50 = 0.14uM) was observed in cells that were treated

with siPAX2 compared to Negative control siRNA transfected MIA PaCa-2 cells (Camptothe-

cin IC50 = 6.42 uM, 5’FU IC50 = 11.6 uM). Similar increase in drug sensitivity was observed in

PANC-1 treated with 5 FU (5’FU IC50 = 16.9uM! 0.24uM) upon PAX2 silencing (Fig 5D).

Caspase3/7 activity of these cells were checked under drug treatment and it was found that

PAX2 silenced cells displayed increased caspase3/7 activity compared to control siRNA trans-

fected cells (Fig 5E). Together, these results suggest that PAX2 might promote drug resistance

phenotype in high grade pancreatic cancers.

Fig 3. Pathway analysis using ClueGO indicated that several identified genes were interconnected to cancer related pathways. (A)

Representation of KEGG pathways enriched in PDAC gene set (Bonferroni step-down corrected p� 0.05). Pathways in cancer (highlighted in a red

box) was found to be interconnected to other over-represented terms (B) Pie-chart of pathways expressed in PDAC for gene set extracted from

pathways in cancer, with essential pathways marked in red.

https://doi.org/10.1371/journal.pone.0223554.g003
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Gemcitabine in combination with other agents had shown promising effects in PDACs

[63], [65]. However, several factors may cooperatively cause gemcitabine resistance which had

been associated with aggressiveness and lethality [66], [67], [68], [69]. We checked for PAX2
involvement during Gemcitabine resistance in high grade PDAC cells. Increasing dose of gem-

citabine (upto 160nM) starting from 10nM treatment was used to generate drug resistant MIA

PaCa-2 cells (Res-MIA PaCa-2) as described previously [13]. Interestingly, PAX2 knockdown

in Res-MIA PaCa-2 cells was able to decrease cell viability as compared to control siRNA

treated cells, thus reestablishing gemcitabine sensitivity (Fig 5F). This data indicated that

PAX2 plays a critical role in development of various drug resistance in PDACs.

PAX2 transcriptionally regulates ABC family of transporters

Various ABC family of transporters are known for promoting drug resistance in pancreatic

cancer patients [70], [71]. However, the transcriptional regulation of these transporters in

PDACs is not well understood. The expression of ABCC1, ABCC2, ABCC3, ABCC5 transport-

ers in MIA PaCa-2 cells were studied with respect to PAX2 knockdown. The expression of

ABCC1, ABCC2, ABCC3, ABCC5 transporters were found to be decreased in PAX2 silenced

cells compared to control siRNA transfected cells (Fig 6A).

We wanted to check if PAX2 transcriptional factor can directly bind and regulate the pro-

moters of the transporter genes. To do this, potential PAX2 binding sites were scanned in silico
within the promoter regions of ABC transporter family of proteins using ConTra v3. Evidence

of binding sites were further confirmed from GTRD. With this information, 200bp sequence

in the upstream and downstream region of the TFBS were extracted. The potential binding site

for PAX2 in the promoter regions of ABC family transporter proteins are given in S9 Fig.

Fig 4. Predicted gene topological relation as obtained from HGPEC.

https://doi.org/10.1371/journal.pone.0223554.g004
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Fig 5. RNAi based silencing of PAX2 in MIA PaCa-2 and PANC-1 cells led to an increase in drug susceptibility. (A) MIA PaCa-2 and (B) PANC-1 cells were

transfected using indicated siRNAs for 48hours. Cell viability assay was performed post 48 hours using luminometer. Percent cell viability was calculated with respect to

Negative control siRNA (siNeg). siCell Death, an siRNA used as Positive cell death phenotype control, from qiagen, USA was used as a positive control. Experiments

were done independently in triplicates SEM = ± 3. The viability of (C) MIA PaCa-2 and (D) PANC-1 cell lines, previously transfected with siNeg control or siPAX2

siRNA and subsequently (24 hours post transfection) exposed to increasing concentrations of chemotherapeutic drugs camptothecin or 5’Flurouracil for 48 hr

(mean ± SEM, n = 3) at each drug concentration normalized to vehicle (V, 0.1% DMSO). (E) Caspase 3/7 activity in MIA PaCa-2 (top panel) or PANC-1 (bottom panel)

cell lines, previously transfected with siNeg control or siPAX2 siRNA and subsequently (24 hours post transfection) exposed to indicated concentrations of

chemotherapeutic drugs camptothecin or 5’Flurouracil (5’FU) for 48 hours (mean ± SEM, n = 3) at each drug concentration normalized to vehicle (V, 0.1% DMSO).

Relative fold change in caspase activity was measured using caspase 3/7 Glo assay using luminometer. (F) The viability of MIA PaCa-2 parental (Pa-MIA PaCa-2) or

Gemcitabine resistance MIA PaCa-2 (Res-MIA PaCa-2) cell lines, previously transfected as indicated, with siNeg control or siPAX2 siRNA and subsequently (24 hours

post transfection) exposed to increasing concentrations of Gemcitabine for 48 hours (mean ± SEM, n = 3) at each drug concentration normalized to vehicle (V, 0.1%

DMSO).

https://doi.org/10.1371/journal.pone.0223554.g005
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Fig 6. Effect of PAX2 on the transcriptional regulation of ABC family of transporters and survival analysis. (A) MIA PaCa-2 cells were transfected with siRNAs

against PAX2. Relative mRNA levels were analysed with respect to relative mRNA levels (siNEG) 48hours post transfection. Normalization was performed with 18sRNA

levels. Experiments were done independently in triplicates SEM = ± 3. (B) MIA PaCa-2 cells were transfected with siNeg or siPAX2 siRNAs. ChIP assay was then

performed with PAX2 antibody or control IgG antibody. The fold enrichment of coprecipitating DNA was determined by qPCR for the indicated promoters. Error bars

are means ± SD of three independent experiments with triplicate samples. Survival analysis was performed using Surv Express software [72]. Patient datasets used (C)

[73], (D) [74], [75], (E) TCGA pancreatic adenocarcinoma, (F) ICGC portal, for the multivariant analysis of indicated genes ABCC2, ABCC5, ABCC3, ABCC1 and

PAX2. High (blue) and low (yellow) represents gene expression.

https://doi.org/10.1371/journal.pone.0223554.g006
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Chromatin immunoprecipitation was performed in control siNeg MIA PaCa-2 or siPax2 MIA

PaCa-2, using control normal rabbit IgG (Catalogue No#2729, Cell Signalling Technology,

USA) or anti-PAX2 rabbit (Catalogue No# ab23799, AbCam Plc, UK) antibody was added

(concentration 10μg/ml) and checked for PAX2 promoter occupancy. It was found that PAX2

binds to promoters of ABCC1, ABCC2, ABCC3, ABCC5 transporters and this binding is

decreased upon silencing of PAX2 in cells. Together these results indicate that PAX2 can be a

master regulator of drug resistance in pancreatic cancers by controlling drug transporter cas-

settes. Inhibitors of PAX2 mediated transcription can be an effective drug target against mixed

grade PDAC and can be used to increase susceptibility of end stage PDACs towards existing

clinical interventions.

Conclusions

Many previous reports of drug resistance pancreatic cancers indicated the existence of a

molecular network that evolves with the progression of PDACs [76], [77], [78], [79], [80]. We

speculate that the poorly differentiated mixed grade nature of PDACs harbor the key to such

phenotype [81]. Although various factors like ABC family of transporters, regulators like

TM4SF1, various cofactors had been implicated in drug resistance associated with PDACs

[82], [83], [18], [13], [14], [84], none of these were able to distinctly classify them to particular

tumor grade. Our analysis observed a distinct pattern variation with respect to histone methyl-

ation marks and differential gene expression between low grade and high grade PDAC cell

types (Fig 1 and S1 Fig). Further analysis of high grade PDAC cells indicated network of genes

that show strong physical correlation with tumor progression in selected pathways (Fig 3 and

S5, S6, and S7 Figs). PAX2 served as an oncogenic transcription factor in various other cancers

by reprogramming gene regulatory networks [85], [86], [87], [54]. Our data shows that PAX2

binds to the promoter region of ABC family genes and regulate their transcription in high

grade PDAC cell lines. In addition, it was also found that PAX2 transcriptional factor can bind

to the promoter of previously reported transmembrane-domain family TM4SF1, a gene that

played a role in gemcitabine resistant pancreatic cancer [83]. Silencing PAX2 expression

resulted in down regulation of TM4SF1 expression, suggesting a possible mechanism for gem-

citabine resistance in PDACs (Fig 6A and 6B). Interestingly, our study indicated that the

mechanism of TM4SF1 driven drug resistance might be transcriptionally controlled by PAX2.

These findings indicate that PAX2 could act as a master transcription factor regulating drug

resistance phenotype in high grade PDACs.

Surprisingly, drug resistance phenotype is a hallmark of lethality associated with PDACs

[88], [89], [90]. We found that PAX2 silencing alone was able to rescue drug susceptibility in

high grade cell types with various chemotherapeutic agents (Fig 5). We checked for survival in

PDAC patient samples from various available data sets and performed multivariate analysis on

PAX2 and ABCC family members. Surprisingly, we found that PAX2 in combination with

ABCC transporters were able to significantly alter hazard ratio and survival in PDAC patient

(Fig 6C, 6D, 6E & 6F). Together these findings indicate that PAX2 may have a major prognos-

tic value and future development of PAX2 inhibitors warrants clinical interventions.

Supporting information

S1 Fig. Correlation plot and volcano plot for high grade PDAC RNA-Seq data. (A) Correla-

tion plot between RNA-Seq data from DESeq2. (B) Volcano plot of upregulated (red) and

downregulated (blue) genes in high grade PDAC cell line.

(TIF)
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S2 Fig. Activating and repressing function for high grade PDAC cell lines. Activating and

repressing function of (A) MIA PaCa-2 H3K4Me1, (B) MIA PaCa-2 H3K4Me3, (C) PANC-1

H3K4Me1 and (D) PANC-1 H3K4Me3. Red lines indicate upregulated genes while the purple

line indicates downregulated genes. The black dots represents non-differentially expressed

genes (Background). X axis represents the rank of genes based on the regulatory potential

while the y axis represents the proportion of genes.

(TIF)

S3 Fig. Overlapping genes in high grade PDAC cell lines. Venn diagram for (A) Common

upregulated genes between mono and tri-methylated MIA PaCa-2 and PANC-1 and (B) Com-

mon downregulated genes between mono and tri-methylated MIA PaCa-2 and PANC-1. (C)

Visualization of enriched peaks around the promoter region of PAX2 gene indicated that tri-

methylation of histones in that region could possibly lead to transcriptional activity of the

underlying gene. This was in agreement with the expression data obtained through RNA-Seq

analysis.

(TIF)

S4 Fig. Gene Ontology report for biological process, Molecular Function, and Cellular

Component of high grade PDAC genes. Gene Ontology report for Biological Process, Molec-

ular Function, and Cellular Component of (A) DDR2, (B) DPYSL5, (C) FAM5C, (D) PAX2,

and (E) SPARC were generated using the FunRich tool. Biological process of PAX2 presented

notable contribution towards negative regulation of apoptosis in general.

(TIF)

S5 Fig. Pathview output for the pathway “Pathways in cancer”. Gene components of high

grade PDAC were compared against gene components of low grade PDAC, giving rise to the

nodes marked in color. Green (-1) depicts genes downregulated in high grade cell line (but

upregulated in low grade), while those marked in red (1) depicts upregulated genes in high

grade cell line. Some nodes are split between two colors, indicating difference in regulation

between MIA PaCa-2 (left) and PANC-1 (right).

(TIF)

S6 Fig. Pathview output for the pathway “Transcriptional misregulation in cancer”. Gene

components of high grade PDAC were compared against gene components of low grade

PDAC, giving rise to the nodes marked in color. Green (-1) depicts genes downregulated in

high grade cell line (but upregulated in low grade), while those marked in red (1) depicts upre-

gulated genes in high grade cell line. Some nodes are split between two colors, indicating dif-

ference in regulation between MIA PaCa-2 (left) and PANC-1 (right).

(TIF)

S7 Fig. Pathview output for the pathway “Pancreatic cancer”. Gene components of high

grade PDAC were compared against gene components of low grade PDAC, giving rise to the

nodes marked in color. Green (-1) depicts genes downregulated in high grade cell line (but

upregulated in low grade), while those marked in red (1) depicts upregulated genes in high

grade cell line. Some nodes are split between two colors, indicating difference in regulation

between MIA PaCa-2 (left) and PANC-1 (right).

(TIF)

S8 Fig. Relative mRNA levels and cell viability assay for high grade PDAC cell lines. (A)

MIA PaCa-2 cells were transfected with siRNAs against indicated genes (Gene of Interest,

GOI). Relative mRNA levels were analysed with respect to siRNA Negative control (siNEG)

48hours post transfection. Normalization was performed with 18sRNA levels. Experiments
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were done independently in triplicates SEM = ± 3. (B) Mia-Paca2 cells were transfected using

indicated siRNAs for 48hours. Cell viability assay was performed post 48 hours using lumin-

ometer. Percent cell viability was calculated with respect to Negative control siRNA (siNeg).

siCell Death, Death, an siRNA used as Positive cell death phenotype control, from qiagen,

USA was used as a positive control. Experiments were done independently in triplicates SEM

= ± 3. (C) PANC-1 cells were transfected with PAX2 siRNAs. Relative mRNA levels were ana-

lysed with respect to siRNA Negative control (siNEG) 48hours post transfection. Normaliza-

tion was performed with 18sRNA levels. Experiments were done independently in triplicates

SEM = ± 3.

(TIF)

S9 Fig. Predicted binding site for PAX2 in the promoter regions of ABCC family trans-

porter genes. (A) ABCC1, (B) ABCC2, (C) ABCC3, and (D) ABCC5.

(TIF)

S1 Table. List of upregulated and downregulated genes found in high grade PDAC cell

lines using DeSeq2.

(XLS)
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