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Abstract
Despite the prognostic value of IDH and other gene mutations found in diffuse gli-
oma, markers that judge individual prognosis of patients with diffuse lower-grade 
glioma (LGG) are still lacking. This study aims to develop an expression-based micro-
RNA signature to provide survival and radiotherapeutic response prediction for LGG 
patients. MicroRNA expression profiles and relevant clinical information of LGG pa-
tients were downloaded from The Cancer Genome Atlas (TCGA; the training group) 
and the Chinese Glioma Genome Atlas (CGGA; the test group). Cox regression analy-
sis, random survival forests-variable hunting (RSFVH) screening and receiver operat-
ing characteristic (ROC) were used to identify the prognostic microRNA signature. 
ROC and TimeROC curves were plotted to compare the predictive ability of IDH 
mutation and the signature. Stratification analysis was conducted in patients with 
radiotherapy information. Gene ontology (GO) analysis and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analysis were performed to explore the bio-
logical function of the signature. We identified a five-microRNA signature that can 
classify patients into low-risk or high-risk group with significantly different survival in 
the training and test datasets (P < 0.001). The five-microRNA signature was proved 
to be superior to IDH mutation in survival prediction (AUCtraining = 0.688 vs 0.607). 
Stratification analysis found the signature could further divide patients after radio-
therapy into two risk groups. GO and KEGG analyses revealed that microRNAs from 
the prognostic signature were mainly enriched in cancer-associated pathways. The 
newly discovered five-microRNA signature could predict survival and radiotherapeu-
tic response of LGG patients based on individual microRNA expression.
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1  | INTRODUC TION

Glioma is a common type of intracranial malignant tumour, char-
acterized by diffuse infiltration, no clear boundary, infinite pro-
liferation and high invasion. According to histomorphological 
classification, World Health Organization (WHO) classifies gli-
omas into grades I to IV for diagnosis, guidance treatment and 
prognosis. Grade I gliomas have the lowest invasiveness and the 
best prognosis. Generally, patients can be cured by surgical re-
moval of tumour tissue, and the 5-year survival rate reaches 94%.1 
On the contrary, grade IV tumours, in which glioblastomas are the 
majority, are the most aggressive and malignant. Even after maxi-
mal resection plus post-operative chemoradiotherapy, the median 
survival of patients with glioblastoma is as short as about one 
year.2 Gliomas of grades II and III are intermediate in terms of ma-
lignant degree and prognosis and are combined into lower-grade 
gliomas because of their similarity in high invasiveness and the 
tendency to recur or develop advanced lesions such as second-
ary glioblastoma. Especially, the grade II/III astrocytic tumours 
and the grade II/III oligodendrogliomas (oligoastrocytomas are 
sorted into either astrocytoma or oligodendroglioma) are incorpo-
rated into diffuse lower-grade gliomas (LGG) after the 2016 CNS 
WHO Classification.3 Some studies have found little prognostic 
difference between grade II diffuse astrocytomas and grade III an-
aplastic astrocytomas.4,5 However, not all studies have confirmed 
the prognostic consistency of grade II and grade III gliomas.6 
Variabilities responding to treatment and differences in the timing 
of disease progression or recurrence are also frequently seen in 
LGG. Therefore, for patients with LGG, prognostic markers that 
can predict individual clinical outcome and treatment response are 
essential.

With the introduction of IDH mutation and 1p/19g codeletion 
into the classification of diffuse gliomas, it is increasingly recog-
nized that molecular features play a significant role in the evalua-
tion of prognosis and treatment response. MicroRNAs are a group 
of short-chain non-coding RNA molecules that are involved in the 
regulation multiple genes expression and activation of signalling 
pathways. Abnormal microRNA expression occurs in a variety of 
tumours and is closely related to tumour invasion, metastasis and 
more malignant lesions. Thus, microRNA could be used to predict 
treatment response and prognosis of many types of cancer and 
become a molecular marker. In addition, the stability and detect-
ability of microRNAs in a variety of body fluids (serum/plasma/
cerebrospinal fluid) are more favourable for their use as prognos-
tic markers. Therefore, microRNA signature containing multiple 
microRNAs has been demonstrated its promising prognostic role 
in various tumours including breast cancer,7 hepatocellular carci-
noma8 and glioblastoma.9 However, there is a lack of microRNA 
signature that can predict individual outcomes of patients with 
LGG.

In the present study, LGG patients with microRNA expression 
data were collected from the Cancer Genome Atlas (TCGA) database 
and the Chinese Glioma Genome Atlas (CGGA). We aim to use these 

expression data and clinical data to identify a prognostic microRNA 
signature and validate its predictive ability for survival and treatment 
response.

2  | MATERIAL S AND METHODS

2.1 | Diffuse lower-grade glioma patient cohorts 
and data collection

One dataset with 530 LGG cases and microRNA expression data were 
collected from the TCGA (http://cance rgeno me.nih.gov/, https://xenab 
rowser.net/datap ages/), of which 525 LGG patients had survival time 
and survival status. Another dataset with 107 LGG cases was down-
loaded from CGGA database (http://www.cgga.org.cn/), and we found 
99 cases with survival information. Then, the 525 LGG cases from TCGA 
and 99 LGG cases from CGGA were treated as the training and test data-
sets, respectively. The clinical information of all 624 patients was shown 
in Table 1. There were 1881 microRNAs involved for further analysis, 

TA B L E  1   Summary of the patient demographics and clinical 
characteristics

Characteristic
Training dataset 
(n = 525)

Test dataset 
(n = 99)

Age (y)

>40 264 41

≤40 261 57

Unknown  1

Sex

Female 239 46

Male 286 53

Vital status

Living 389 49

Dead 136 50

Grade

G2 255 55

G3 269 44

Unknown 1  

IDH mutation status

Mutant 88 64

Wild-type 34 30

Unknown 403 5

Chemo status

No  44

Yes  53

Unknown 525 2

Radio status

No 174 9

Yes 285 89

Unknown 66 1

http://cancergenome.nih.gov/
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
http://www.cgga.org.cn/
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and log2 transformation was performed for the original expression value 
of microRNAs.

2.2 | Developing prognostic microRNA signatures 
in the TCGA dataset

Through univariate COX proportional regression analysis, we first 
identified the microRNAs associated with patients' survival time 
from the training group. Then, we further reduced the number of 
the survival related microRNAs using the random survival forests-
variable hunting (RSFVH) algorithm. In RSFVH, an iteration proce-
dure was performed to narrow down the microRNAs set in which 
the 1/4 least important microRNAs were discarded at each iteration 
step and five hundred trees were grown at each step until without 
changing the error rate too much and then 9 microRNAs were se-
lected.10,11 Finally, COX regression analysis of selected candidate mi-
croRNAs was performed and prognostic models were constructed 
as follows: microRNARisk Score=

∑N

i=1

�

Expressioni×�i
�

, where N 
is the number of microRNA, expression is the microRNA expres-
sion value and β is the microRNA estimated regression coefficient 
in the Cox regression analysis.12,13 The final prognostic microRNA 
signature was screened out by comparing area under the ROC curve 
(AUC) values of prognostic models.14

2.3 | Statistical and bioinformatics analysis

The median risk score was used as the cut-off value to subdivide 
patients with LGG into two risk groups. Kaplan-Meier analysis was 
performed to assess the survival difference of two risk groups, 
and statistical significance was assessed using the two-sided log-
rank test. Multivariate Cox regression analysis was performed 
to explore the independence of the screened signature. ROC and 
TimeROC were used to compare predictive performance. All analy-
ses were performed with R program (www.r-proje ct.org), including 
packages named pROC, TimeROC, randomForestSRC and survival 
downloaded from Bioconductor (http://www.bioco nduct or.org/). 
MicroRNA function was analysed by DIANA-mirPath, which is a 
web-based computational tool developed to identify molecular 
pathways potentially for single or multiple microRNAs by perform-
ing an enrichment analysis of multiple microRNA target genes.15,16

3  | RESULTS

3.1 | Identification of prognostic microRNAs and 
construction of microRNA signature in diffuse lower-
grade glioma

A total of 624 LGG patients with their microRNA expression data 
and clinical follow-up information were collected from the TCGA 
and CGGA database. Based on statistical analysis of the clinical data, 

we found that the median age of the enrolled patients was 40 years 
(14-87 years) and male patients were more than female ones. The 
number of grade II cases was basically the same as that of grade 
III, accounting for roughly half. Every patient had survival informa-
tion, all but 186 of whom died. In addition, we listed the histological 
type, IDH mutation and radiotherapy and chemotherapy informa-
tion (Table 1).

Using microRNA profiling data and survival information from 
the training set or TCGA set, we performed univariate Cox re-
gression analysis to explore the association of patients' overall 
survival (OS) with microRNA expression. A total of 400 microR-
NAs significantly associated with OS (P < 0.05, Table S1) were 
discovered and displayed as grey or red dots in Figure 1A. Next, 
we further reduced the number of prognostic microRNAs avail-
able for risk model by random survival forests-variable hunting 
(RSFVH) analysis, which were analysed by gradually removing 
one-fourth of the least important genes at each step (Figure 1B). 
And we screened out 9 prognostic microRNAs based on impor-
tance scores (Figure 1C). Then, we brought the prognostic mi-
croRNAs into the risk prediction model formula and constructed 
29 − 1 = 511 combinations or possible signatures in the training 
dataset. Patients were assigned corresponding risk scores by 
each possible signature. The median risk score divided patients 
into high-risk group or low-risk group. ROC analyses were anal-
ysed, and AUC values were compared to finalize the best predic-
tor from all the 511 signatures (Table S2). The final signature was 
screened out due to its maximum AUC value and best predictive 
performance (AUC signature = 0.69, Figure 1D), including five mi-
croRNAs (hsa-miR-10b, hsa-miR-148a, hsa-miR-155, hsa-miR-15b 
and hsa-miR-196b). And the risk model based on the expression 
values of above five microRNAs and their regression coefficients 
is as follows: Risk score = (0.18 × expression value of hsa-miR-
10b) + (0.33 × expression value of hsa-miR-148a) + (0.59 × ex-
pression value of hsa-miR-155) + (0.68 × expression value of 
hsa-miR-15b) + (0.20 × expression value of hsa-miR-196b). The 
positive regression coefficients of these five microRNAs indicated 
that they were all risk genes and were associated with poor prog-
nosis (Table 2).

3.2 | The microRNA signature predicts survival of 
patients with diffuse lower-grade glioma in the 
training and the independent dataset

When the median risk score was used as the cut-off point, the 
five-microRNA signature divided the training dataset into either 
the high-risk (n = 262) or low-risk group (n = 263). Kaplan-Meier 
analysis identified the low-risk group had significantly longer 
survival time than those in the high-risk group (median survival: 
11.59 years vs 4.08 years, P < 0.001; Figure 2A). Then, we treated 
the independent CGGA diffuse lower-grade dataset with the spe-
cific follow-up survival time and vital status (n = 99, Table 1) as the 
test dataset to validate the prognostic value of the five-microRNA 

http://www.r-project.org
http://www.bioconductor.org/
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signature. We calculated the microRNA signature-based risk 
scores of the patients and then separated patients into high- and 
low-risk score group with the median risk score. Kaplan-Meier 

verified that the five microRNA could distinguish the low-risk 
group from the high-risk group in the test dataset (log-rank test 
P < 0.001; Figure 2B).

F I G U R E  1   Identification of the prognostic signature in the training dataset. (A) Volcano plot displayed the survival associated microRNAs 
in univariate cox regression analysis. Grey dots were protective microRNAs with negative coefficient, and red dots were risking microRNAs 
with positive coefficient (B, C) Random forest supervised classification algorithm reduced the prognosis-associated microRNAs to 9 
microRNAs.(D) After calculating the AUC of 29 − 1 = 511 signatures, the prognostic five-microRNA signature with the largest prediction 
power (AUC = 0.69) was screen out
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hsa-miR-15b 0.68 <0.001 High

hsa-miR-196b 0.20 <0.001 High

aDerived from the univariable Cox regression analysis in the training set. 

TA B L E  2   The microRNAs in the 
prognostic signature and their association 
with LGG prognosis in the training dataset 
(n = 525)
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To further illustrate the relationship between gene expres-
sion of the five-microRNA signature and survival, we showed 
each patient's gene expression, risk score and survival informa-
tion in Figure 3. In the training dataset, the low expression of the 
five prognostic genes indicated the low the risk score and the 
long the patient's survival time. And patients with shorter sur-
vival times had higher risk scores and higher expression of five 
risk genes (Figure 3A). In the test dataset, patients with high 
five-microRNAs expression have shorter life span and are more 
likely to die than patients with low five-microRNAs expression 
(Figure 3B).

3.3 | The five-microRNA signature is an 
independent predictive factor

Through chi-square test in the training or test dataset, we found 
microRNA signature was associated with clinical variables such as 
grade (Table 3).

In addition, there are numerous known prognostic factors for 
LGG patients. Therefore, it is critical important to understand 
whether the microRNA signature could predict prognosis with-
out relying on other factors. Multivariable Cox regression analysis 
showed that the microRNA signature could independently predict 
patients' clinical outcome in the training or test dataset (High-risk 
group vs Low-risk group, HRtraining = 2.91, 95% CI 1.92-4.40, 
P < 0.001, n = 525; HRtest = 2.76, 95% CI 1.37-5.55, P = 0.002, 
n = 99, Table 4). Besides, grade was also found to be a prognostic 
independent factor (G3 vs G2, HRtraining = 2.56, 95% CI 1.75-3.75, 
P < 0.001, n = 525; HRtest = 2.84, 95% CI 1.45-5.59, P = 0.005, 
n = 99, Table 4).

3.4 | Comparison of IDH mutation and the five-
microRNA signature

Considering the important role of IDH mutation in the prognosis pre-
diction of LGG, we performed ROC analysis and compared the area 
under the ROC curve (AUC) of IDH mutation and the five-microRNA 
signature to analyse their predictive power.17,18 After congregating 
the TCGA and CGGA sets of data, we found a total of 216 patients 
with IDH mutation information. ROC analysis for vital status showed 
the predictive performance of the microRNA signature was better 
than IDH mutation status (AUCIDH = 0.607; AUCsignature = 0.688, 
Figure 4A). TimeROC analysis found the AUC of the signature was 
0.737/0.720/0.728 at 1/3/5 years (Figure 4B), and the AUC of IDH 
was 0.601/0.646/0.673 at 1/3/5 years (Figure 4C) indicating that 
signature was better than that of IDH mutation in survival prediction.

3.5 | Radiotherapy stratification analysis

From the clinical information in Table1, we can find that most pa-
tients from the TCGA or CGGA datasets have clear radiotherapy 
information. To determine whether the signature can guide radia-
tion therapy in LGG patients, we performed stratified analyses. As 
in the entire radiotherapy group, the overall survival time of the 
high-risk (n = 216) patients was significantly shorter than that of 
low-risk (n = 158) group patients (median survival 4.24 years vs 
12.09 years, log-rank test P < 0.001, Figure 5A). Patients undergo-
ing non-radiotherapy (n = 183) can also be divided into two groups 
with different prognosis by the signature (5-year/10-year survival 
rate: 45.60%/36.48% vs 92.40%/64.52%, log-rank test P < 0.001, 
Figure 5B).

F I G U R E  2   The prognostic microRNA signature predicts overall survival of patients with diffuse lower-grade glioma. Kaplan-Meier plots 
indicated patients could be classified into high- and low-risk groups according to the signature in the training (A) and test (B) datasets, and P 
values were calculated by log-rank test
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F I G U R E  3   Risk score distribution, 
survival status and microRNAs expression 
patterns for patients in the training and 
test dataset
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Training set

P

Test set
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Age

>40 108 156 <0.001 16 25 0.07

≤40 155 106 34 23

Gender

Female 116 123 0.57 24 22 0.91

Male 147 139 26 27

IDH mutation status

Wild-type 12 22 <0.001 12 18 0.21

Mutant 60 28 36 28

Grade

G2 161 94 <0.001 40 15 <0.001

G3 102 167 10 34

Radio status

NO 123 51 <0.001 3 6 0.48

YES 112 173 46 43

Chemo status

NO    26 18 0.13

YES    22 31

*Low ≤ the median risk score. *High > the median risk score.

TA B L E  3   Association of the microRNA 
signature with clinical characteristics in 
LGG patients
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3.6 | Function analysis of the five microRNAs

To explore the role and function of microRNAs screened in this study, 
we first detected the target genes of the five microRNAs and then 
performed functional analysis of the target genes by mirPath (see 
method). Figure 6A showed the target genes of the five microRNAs 
were significantly enriched in multiple cancer-related pathways, 
among which the glioma pathway was located in the top 10 differential 
pathways. Figure 6B displayed the target genes of the five prognostic 
microRNAs involved in the glioma pathway, indicating the pathway or 
mechanism in which the prognostic microRNAs might play a key role.

4  | DISCUSSION

Since molecular features have integrated into glioma classification, 
the importance of molecular features in the prognosis of glioma is 

self-evident. At present, IDH mutation and 1p/19g codeletion still have 
some defects in the prognosis evaluation and treatment guidance of pa-
tients with LGG. This study analysed 624 LGG patients and found a good 
indicator for prognosis prediction and radiotherapy guidance, which is 
named as a five-microRNA signature. The signature could predict the 
survival of patients with LGG and determine whether patients can ben-
efit from radiation therapy.

Compared with GBM patients with a median overall survival 
of 14-17 months,19 patients with LGG are relatively benign with a 
median survival of 7 years.20 Although the new WHO glioma clas-
sification combined diffuse grade II with grade III gliomas into LGG, 
there are considerable differences among diffuse lower-grade glio-
mas. From the view of tumour behaviour, some lower-grade gliomas 
progress slowly, while others are as aggressive as glioblastoma. From 
the view of patients' outcome, some patients could survive 15 years 
and are sensitive to treatment whereas other patients have only 
1 year of survival and no effective treatment.21 Thus, this article is 

TA B L E  4   Univariable and multivariable Cox regression analysis of the signature with LGG survival

Variables  

Univariable analysis Multivariable analysis

HR

95% CI of HR

P HR

95% CI of HR

Plower upper lower upper

Training dataset (n = 525)

Age >40 vs ≤40 3.40 2.34 4.95 <0.001 2.54 1.75 3.68 <0.001

Sex Male vs Female 1.14 0.81 1.60 0.46 1.20 0.85 1.70 0.30

IDH mutation status Wild-type vs Mutant 0.83 0.62 1.13 0.25 0.93 0.67 1.28 0.65

Grade G3 vs G2 3.29 2.27 4.78 <0.001 2.56 1.75 3.75 <0.001

The microRNA signature High risk vs low risk 3.77 2.51 5.65 <0.001 2.91 1.92 4.40 <0.001

Test dataset (n = 99)

Age >40 vs ≤40 1.91 1.09 3.33 0.02 1.57 0.87 2.83 0.13

Sex Male vs Female 1.03 0.59 1.80 0.91 0.90 0.50 1.61 0.72

IDH mutation status Wild-type vs Mutant 1.58 0.87 2.88 0.14 1.19 0.64 2.21 0.58

Grade G3 vs G2 4.60 2.54 8.35 <0.001 2.84 1.45 5.59 0.005

The microRNA signature High risk vs low risk 3.70 2.03 6.74 <0.001 2.76 1.37 5.55 0.002

F I G U R E  4   Comparison of the survival predictive power of the signature and IDH mutation by ROC (A). TimeROC analysis of the survival 
predictive power of the signature (B) and IDH mutation (C)
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devoted to finding novel molecular markers to assess the progno-
sis of each patient and determine personalized treatment. Based on 
microRNA expression profiles of 624 patients with LGG and mul-
tiple bioinformatics analysis methods, we find an expression-based 
five-microRNA signature that could categorize each patient as high 
risk or low risk in terms of survival. Two literatures on the prognostic 
microRNA signature of LGG can be found on Pubmed. Our five-mi-
croRNA signature has several advantages over the two published 
microRNA signatures. First, our research cohort is the largest and 
contains over 600 patients with their expression data. Second, we 
evaluated the prognostic capabilities of IDH mutation and five-mi-
croRNA signature, highlighting the advantages of our filtered signa-
tures. Finally, we also discovered that our signature had the role of 
radiotherapy guidance, while the other two published signatures did 
not have this finding.

Isocitrate dehydrogenase (IDH)1 and IDH2 are key enzymes 
that catalyse the conversion of isocitrate to α-ketoglutarate. IDH 
mutations cause a change in enzyme activity, resulting in a large 
amount of 2-hydroxyglutarate (D2HG) being synthesized and 
accumulated. Since the discovery of IDH mutations in diffuse 
lower-grade glioma,22 studies have confirmed IDH could be a 
prognostic biomarker for glioma.23,24 Incorporating the IDH status 
into the new WHO classification highlights its prognostic ability. 
The five-microRNA signature screened in this paper exceeded 
IDH mutation in prognostication through comparative analy-
sis, illustrating its strong prognostic value. Moreover, in the new 
version of glioma classification, IDH NOS patients are difficult to 
assess prognosis. Therefore, the establishment of this microRNA 
signature can complement the prognosis of patients with IDH 
NOS glioma.

According to the European Association for Neuro-Oncology 
(EANO) guideline, the treatment of patients with LGG is mainly 

conservative management and radiotherapy, and a few patients with 
high malignancy require combination chemotherapy. However, there 
is no consistent conclusion as to which patient can no longer con-
tinue to ‘watch and wait' but need radiotherapy or which patient 
have good radiotherapeutic response and can benefit from radiation 
therapy. Whether patients currently receive radiotherapy depends 
mainly on some prognostic indicators, such as age, Karnofsky per-
formance score.25 This study found that the signature can classify 
patients after radiotherapy into high- and low-risk groups with sig-
nificant differences in prognosis, making the signature can be used 
to guide radiotherapy.

Notably, the five microRNAs in the signature are all risk fac-
tors. As for the functions of microRNAs in LGG, our GO and KEGG 
analysis found that the five risky microRNAs enriched in glioma 
related pathways. In the Pubmed database, we searched related 
studies to explore the role of the five microRNAs in glioma. Since 
the expression of miR-10b was found to be up-regulated and be 
closely related to the poor prognosis of glioma,26-28 researchers 
have discovered that miR-10b may be involved in tumorigenesis 
by activating the p53 pathway29 and induced glioma cell invasion 
by miR-10b/HOXD10/MMP-14/uPAR signalling pathway.30 MiR-
10b down-regulation inhabited proliferation, migration and in-
vasion of glioma cell through regulating TGF-β1 stimulation31 or 
homeobox B3 (HOXB3) expression.32 For miR-148a, Wang et al33 
the NF-κB/miR-148a/TGF-β pathway was a critical mechanism of 
glioblastoma aggressiveness. Moreover, consistent with our study, 
researchers identified that miR-148a was an oncogenic gene asso-
ciated with glioma survival and affected EGFR activation or regu-
lated glioma growth by mediating HIF1α and Notch signalling.34,35 
Encouragingly, circulating exosome miR-148a was found in serum 
and promoted tumour progression by targeting CADM1 to activate 
STAT3 pathway, suggesting its clinical value.36 MiR-155 has also 

F I G U R E  5   Radiotherapy stratification analysis. The five-microRNA signature could further divide patients undergoing radiotherapy (A) or 
patients undergoing non-radiotherapy (B) into two groups with significantly different survival
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been proven to be a circulating microRNA that is stable in plasma37 
and could promote the proliferation and invasion of glioma. Yan 
et al38 believed that microRNA-155 exerted oncogenic function 
through activating miR-155/HBP1/Wnt/β-catenin pathway. Other 
scientists reported that miR-155 induced tumorigenesis was me-
diated by targeting γ-aminobutyric acid A receptor 1 (GABRA1),39 
caudal-type homeobox 1 (CDX1)40 and F-box and WD repeat do-
main containing 7 (FBXW7).41 Likewise, miR-196b has also been 
suggested as an oncogene and could be used as a marker for the 
malignant progression of gliomas.42,43 However, the specific mech-
anism of how miR-196b promotes tumour progression has not yet 
been elucidated. MiR-15b is the most controversial microRNA in 
the five-microRNA signature. Several studies consider miR-15b 
as an oncogene44 and a risk factor for glioma prognosis.45 Other 
studies, contrary to our finding, regarded miR-15b as a tumour 
suppressor in the progression of glioma.46-49 Therefore, the role of 
miR-15b in glioma tumorigenesis remains unclear. Considering that 
the five microRNAs found in this study are all glioma prognostic 

risk genes, we still need to figure out whether there is some con-
nection between the five microRNAs and how they work together 
to promote glioma progression.

In summary, our study findings revealed an expression-based 
five-microRNA signature can predict individual survival and radio-
therapeutic response of patients with LGG. This paper highlights the 
promising potential of the novel five-microRNA signature as a good 
prognostic biomarker for individual survival prediction and thera-
peutic decision making.
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