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Abstract

Technological advances and increasing availability of high-resolution satellite imagery offer the potential for more accurate
land cover classifications and pattern analyses, which could greatly improve the detection and quantification of land cover
change for conservation. Such remotely-sensed products, however, are often expensive and difficult to acquire, which
prohibits or reduces their use. We tested whether imagery of high spatial resolution (#5 m) differs from lower-resolution
imagery ($30 m) in performance and extent of use for conservation applications. To assess performance, we classified land
cover in a heterogeneous region of Interior Atlantic Forest in Paraguay, which has undergone recent and dramatic human-
induced habitat loss and fragmentation. We used 4 m multispectral IKONOS and 30 m multispectral Landsat imagery and
determined the extent to which resolution influenced the delineation of land cover classes and patch-level metrics. Higher-
resolution imagery more accurately delineated cover classes, identified smaller patches, retained patch shape, and detected
narrower, linear patches. To assess extent of use, we surveyed three conservation journals (Biological Conservation,
Biotropica, Conservation Biology) and found limited application of high-resolution imagery in research, with only 26.8% of
land cover studies analyzing satellite imagery, and of these studies only 10.4% used imagery #5 m resolution. Our results
suggest that high-resolution imagery is warranted yet under-utilized in conservation research, but is needed to adequately
monitor and evaluate forest loss and conversion, and to delineate potentially important stepping-stone fragments that may
serve as corridors in a human-modified landscape. Greater access to low-cost, multiband, high-resolution satellite imagery
would therefore greatly facilitate conservation management and decision-making.
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Introduction

Since the 1972 launch of the Earth Resources Technology

Satellite (renamed Landsat 1), remotely sensed imagery has been

increasingly used to monitor Earth’s ecosystems [1–5] by

quantifying land cover change [6], deforestation [7], carbon

stocks and emissions [8], habitat degradation and disease [9], [10],

species diversity [11], [12], invasive species [13], habitat suitability

[14], and species populations [15]. Satellite imagery products,

however, vary in their spatial and spectral resolution, geographic

and temporal coverage, cloud cover, security regulations, and

price [4], [6], [16], [17]–variables that can hamper their consistent

application in conservation. For example, not all areas of the globe

have equal access to high-resolution data, with tropical areas

having the least coverage available [18].

Satellite imagery employed in conservation research ranges

from 1000 m to ,1 m in resolution [4], [5]. Global- to biome-

scale monitoring of forest clearing is often conducted at spatial

resolutions of 250–1000 m [5], [6]. Landsat imagery (30 m

multispectral resolution) has been integral in scientific research

since 1972 [19], particularly in mapping and assessments of land

cover change [20], and it is currently available at no cost [21].

High-resolution imagery (e.g., IKONOS and QuickBird at #5 m

resolution) is typically used to map regional-to-local areas and

species, and to inform land cover classifications derived from

coarser imagery; but often such imagery is expensive and cost-

prohibitive [5]. One exception is the free, high-resolution imagery

provided via Google Earth that is increasingly being used in

scientific research [22], [23], can aid in the selection of field

sampling locations [10], and can be used as training samples for

classification [24]. Imagery analysis based on Google Earth

images, however, is limited as the different satellite bands are

not available for manipulation by the user.

Previous comparisons of land cover classifications based on

imagery of varying spatial resolutions (i.e., IKONOS, Landsat)

have revealed mixed results, with one type of satellite imagery

failing to consistently perform best across different studies

and systems [25–29]. Although high-resolution imagery often
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outperforms lower-resolution imagery in capturing small habitat

patches [27], [30], it can produce more canopy shadow [31], and

complicate multi-image comparisons and processing [9].

We assert that conservation research would benefit from a

better understanding of satellite imagery performance. The ability

to detect forest disturbance and degradation (e.g. as a result of

selective logging) with satellite imagery varies greatly [32], [33],

and missed detection can lead to false conclusions that natural

systems are intact when in fact they have undergone high levels of

disturbance [34], [35]. Furthermore, readily available vegetation

maps and data sets often mosaic multiple imagery from various

time periods [5], which may lead to difficulties in comparing land

cover change. Articles focusing on the applications of satellite

imagery and remote sensing are often published in remote-sensing,

physical geography, informatics, and ecology journals (see reviews

by [2], [4], [36–44]), which may limit the extent to which

conservation biologists encounter these topics. The increasing

availability of high-resolution imagery has the potential to provide

more accurate detection and quantification of habitat conversion,

degradation and fragmentation [35], [37], but we suspect such

imagery are not being taken advantage of by conservation

biologists, even though their usage can result in more accurate

habitat and ecosystem assessments. To test this assertion, we

compared land cover classifications in the Interior Atlantic Forest

of Paraguay (an area of current conservation concern due to recent

and extensive forest loss [20]), using 4 m multispectral IKONOS

and 30 m multispectral Landsat imagery and evaluated whether

imagery resolution significantly influences delineation of land

cover classes and fragmentation metrics of forest patches. We then

reviewed current literature from three conservation journals to

determine the extent and the type of usage of satellite imagery for

conservation purposes. Our findings have important implications

regarding the utility of higher-resolution imagery to monitor

habitat change, and to potentially model connectivity for species

within a fragmented landscape.

Materials and Methods

Imagery Analysis of Interior Atlantic Forest
The Atlantic Forest of South America is one of the major global

‘‘hotspots’’ for biodiversity due to its large number of endemic

species and its dramatic decrease in size due to human-induced

habitat loss and fragmentation [45], [46]. Paraguay has lost 85

percent of its Atlantic Forest during the past 60 years [47–49], and

it is one of the least-studied countries in South America [50], with

little known regarding lost species and those in imminent danger of

disappearing. This pattern of deforestation has continued in

Paraguay to present [51]. We assessed a heterogeneous landscape

directly surrounding and including Reserva Natural Privada

Morombi (centroid coordinates: 24u 399 S, 55u 229 W), a private

25,000 ha reserve in the Departments of Canindeyú and

Caaguazú, Paraguay (Fig. 1). Reserva Morombi consists of

remnant patches of semi-deciduous Interior Atlantic Forest,

surrounded by a matrix of agriculture (pasture and cropland),

wetlands, and grasslands.

We obtained cloud-free, geometrically corrected, and orthor-

ectified IKONOS (4 m multispectral resolution) and Landsat

(30 m multispectral resolution) imagery for the study region. Both

imagery types spanned a 43,200 ha area that contained forest

patches within the reserve, as well as the surrounding heteroge-

neous matrix. We selected Landsat imagery because it is readily

and freely available, and frequently used for land cover

classification [52]; we selected IKONOS imagery because it is

often used for vegetation assessment [5]. Dates of imagery were

paired relatively close in time (September 2008 and July 2009 for

IKONOS and Landsat, respectively) to help ensure consistency in

cover classes and phenology; we were, however, limited by the

available date for IKONOS imagery and the inability to use

Landsat imagery from September 2008 due to sensor malfunction

(ETM+ on Landsat 7; [16]) and cloud coverage (Landsat 5). The

differences in imagery dates (2008 and 2009) and date of field data

collection (2010) did not impact our results, given that there were

no major changes in land cover from 2008 to 2010 in the study

area (as referenced from Landsat images during this time period,

and likely a result of the protection status of the study area).

We collected 250 ground-truth points in the study area in June

2010 to serve as training samples for the classification; these points

were taken throughout the private reserve. Using ERDAS Imagine

10, we drew polygons around each point and assigned the polygon

to a land cover class. Training samples (number of locations and

number of pixels) were distributed evenly across classes, with the

exception of water because this class was limited in its spatial

distribution across the study area (,1% of study area). We used

the same 250 locations for both IKONOS and Landsat

classifications. We used transformed divergence [53], to validate

the suitability of these training classes; all comparisons met the

standards with values .1700. We conducted pixel-based, super-

vised classifications of both images based on the maximum

likelihood algorithm, and delineated six general cover classes

(forest, wetlands, grasslands, agriculture, cleared, and water;

definitions of land cover classes available in Table 1). The

agricultural class originally consisted of two separate classes of

crops and pasture, but during post-classification processing these

classes were merged into a single ‘agriculture’ class to facilitate

more general comparisons with other land cover classes, as is

commonly done in conservation studies [54], [55]. We measured

classification accuracy by randomly selecting 204 point locations

(evenly distributed among the six classes) from a 1 m resolution

panchromatic IKONOS image from the study area. We

calculated accuracy and kappa statistics (k) for the overall

classification and for each of the six land cover classes [56],

determining the accuracy of the 204 locations in both the

IKONOS and Landsat classified data sets.

We converted raster data to vector data in ArcGIS 9.3 to

calculate patch-level metrics. Continuous pixels were combined

into a single vector patch, allowing for the quick delineation of

number of patches and their sizes. We converted raster data to

vector data instead of using object-based landscape analysis [57],

[58], due to the ease of working with vector data in ArcGIS 9.3,

software commonly used by authors in our literature review. Due

to differences in pixel size we expected the high-resolution

classification to result in a greater number of patches; therefore,

we compared metrics based on all patches as well as only patches

$0.5 ha, following previous fragmentation studies [59], [60], that

used a 0.5 ha minimum patch size.

A grid consisting of 36 rows and 12 columns (432 1-km61-km

grid cells) was overlaid on both IKONOS- and Landsat-derived

classifications (Fig. 1c). For each grid cell, we calculated the area

(in ha) and number of patches occupied by each of the six land

cover classes. We then tested whether area and/or number of

patches significantly differed between the two imagery types based

on Multivariable Analysis of Variance (MANOVA) with the six

land cover types as variables (a= 0.05). Post-hoc Tukey tests were

used to test significant differences between the imagery types

(IKONOS and Landsat) for individual land cover classes (with

familywise a= 0.05).

We calculated patch-level fragmentation metrics (i.e. patch area,

patch edge, shape index, perimeter-area ratio) using Patch Analyst

Importance of High-Resolution Satellite Imagery
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5.0 [61], based on all patches and patches $0.5 ha. We calculated

the distance from each forest patch’s centroid to the closest patch’s

centroid (nearest neighbor) and the mean distance from a target

patch centroid to all other centroids using Hawth’s Tools for

ArcGIS [62], to test for differences in forest patch configuration.

We used Euclidean nearest neighbor distances because they are

the most widely used connectivity metrics [63]. Differences

between IKONOS and Landsat imagery classifications in patch-

level and connectivity metrics were determined by t-tests.

Linear habitat features, such as riparian corridors, have been

found to be important conduits for species movement, thus,

facilitating landscape-level connectivity [64]. To determine the

effects of imagery resolution on the detection of such narrow

features, we chose 40 random locations in forest widths ranging

from 3.5–100 m from a 1 m panchromatic IKONOS image. We

then tested for differences between IKONOS and Landsat in

detectability of these linear habitat features using a paired t-test,

and the correlation between patch width and its detection using

Pearson’s correlations. All statistical analyses were conducted in

Matlab 6.5.01 (The MathWorks, Inc., 2006).

Extent of Imagery Use by Conservation Biologists
We conducted a literature review of three top-tier conservation

journals (Biological Conservation, Biotropica, and Conservation Biology) to

assess the extent to which satellite imagery is currently utilized in

conservation research. We reviewed all articles published in these

Figure 1. Study location. The site (a) is located in eastern Paraguay at a private forest reserve, Reserva Morombi. Forest patches (b) are shown in
dark, surrounded by a heterogeneous matrix, in the grey-scale Landsat TM image. Comparison of IKONOS- and Landsat-based classification extended
across 43,200 ha, and was based on subsampling (c) using 432 1 km61 km grid cells.
doi:10.1371/journal.pone.0086908.g001

Table 1. Description of land cover classes delineated in this study.

Class Description

Forest Semi-deciduous trees .2 m in height

Agriculture Crop (e.g., maize, soybean, wheat) fields and cattle pasturea

Cleared Barren ground lacking vegetative cover, including roads, and infrastructure such as houses and barns

Wetland 75–100% herbaceous vegetation cover and water-saturated soil

Grassland 75–100% perennial grasses not used for cattle grazing

Water Bodies of water, including lakes and ponds

aAgricultural components (i.e. crop fields, pasture) were combined into one class for general comparisons across the broader land cover classes.
doi:10.1371/journal.pone.0086908.t001

Importance of High-Resolution Satellite Imagery
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three journals for the past two completed calendar years (January

2011 to December 2012), examining the methods to determine if

satellite imagery was used in analyses. We did not include book

reviews, editorials, or letters commenting on previous articles, and

we limited our analysis to studies examining terrestrial (non-

marine) patterns. For those studies utilizing remotely sensed data,

we documented the satellite type (e.g. IKONOS, Landsat), the

spatial resolution of the imagery, the type of analysis (e.g. land

cover change, patch-based metrics), and the scale of analysis (i.e.

global, continental, country, state, local).

Results

Imagery Classification Performance
Overall classification accuracy was 90.3% for IKONOS

(k = 0.89) and 87.9% for Landsat (k = 0.86). For both IKONOS

and Landsat, kappa statistics were lowest for the wetland class

(k = 0.68 and k = 0.54, respectively). The sample within a section of

Reserva Morombi and its environs were dominated by forest,

followed by agriculture, based on both IKONOS and Landsat

classifications (Fig. 2a). Land cover classifications based on the two

satellites, however, significantly differed in area of the six land

cover classes (MANOVA, F6, 857 = 5.53, p,0.001), with significant

differences in cleared (pairwise Tukey test: F1, 862 = 3.88,

p = 0.006), water (F1, 862 = 5.04, p,0.001), and wetland (F1,

862 = 6.21, p,0.001) classes. Land cover based on IKONOS

resulted in a greater number of patches overall for all six cover

types (F6, 857 = 160.69, p,0.001; Fig. 2b) and for all six classes

(Tukey test: p,0.01 for all pairwise comparisons) relative to

Landsat.

In total area, forest comprised 43.2% of the IKONOS image

and 39.8% of the Landsat image, with a difference of 1473.6 ha.

Although total forest area did not differ greatly between the two

classifications, there were significant differences between IKO-

NOS and Landsat in all six of the patch-level metrics we tested

when analysis included all forest patches (Fig. 3): patch area

(t = 26.94, df = 52,168, p,0.001), patch edge (t = 22.17,

df = 52,168, p = 0.030), shape index (t = 26.20, df = 52,168,

p,0.001), perimeter-area ratio (t = 99.34, df = 52,168, p,0.001),

mean distance from patch centroid to all other patch centroids

(t = 10.34, df = 52,168, p,0.001), and distance from patch

centroid to closest patch’s centroid (t = 2137.23, df = 52,168,

Figure 2. Comparison of imagery performance. IKONOS and Landsat imagery classifications significantly differed in (a) percent land cover and
(b) total number of patches for the six land cover classes found in the study area in Paraguay.
doi:10.1371/journal.pone.0086908.g002
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p,0.001). When we included only forest patches $0.5 ha,

significant differences existed between IKONOS and Landsat in

three of the six patch-level metrics: shape index (t = 8.180,

df = 464, p,0.001), perimeter-area index (t = 15.71, df = 464,

p,0.001), and mean distance from patch centroid to all other

patch centroids (t = 2.90, df = 464, p = 0.004).

Although mean patch size was smaller with IKONOS imagery,

IKONOS had the largest patch (15,565 ha vs. 10,562 ha with

Figure 3. Patch metrics varied with imagery type. IKONOS and Landsat classifications significantly differed in patch metrics for all forest
patches and those $0.5 ha in (a) patch area; (b) patch edge; (c) shape index; (d) perimeter-area ratio; (e) mean distance from patch centroid to all
other patch centroids; and (f) distance from patch centroid to the closest patch’s centroid. Asterisks (*, **, ***) indicate significant differences at
p#0.05, 0.01, 0.001, respectively; with df = 52,168 and df = 464 for all t-tests using data from all patches and from patches $0.50 ha, respectively.
Error bars represent one standard error.
doi:10.1371/journal.pone.0086908.g003
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Landsat) and delineated 55 times more forest patches than did

Landsat, most of which were ,0.5 ha. IKONOS correctly

detected 95% of linear forest fragments 3.5 m –100 m in width,

while Landsat detected only 45% of these same patches (Fig. 4a).

IKONOS successfully detected 100% of forest fragments .6 m in

width, while Landsat only correctly detected 70.8% of the

fragments .30 m wide; even when fragments were .50 m,

Landsat correctly identified only 85.7% of the fragments. This

difference in detectability of narrow forest features was significant

(t = 6.25, df = 39, p,0.001), and was correlated with the width of

the forest fragment for both IKONOS (R = 20.32, p = 0.046) and

Landsat (R = 20.68, p,0.001). For example, unlike in the

IKONOS classification (Fig. 4b), long, linear features, such as a

narrow forest corridor of 9–64 m in width, was primarily missed

with Landsat (Fig. 4c). Only ,30% of patches (72 of 229

IKONOS patches and 237 Landsat patches) matched one-to-one

between the two classifications.

Satellite Imagery in Conservation Research
1064 articles were reviewed in the three target conservation

journals (Biological Conservation, Biotropica, Conservation Biology), of

which 14.8% used land cover data in analyses. Of these 157

articles using land cover data, 26.8% used primary satellite

imagery, while 73.2% used paper maps, aerial photos, Google

Earth, or land cover data previously published by other authors.

Of the 42 studies that analyzed satellite imagery, mean resolution

was 84.4 m, with 66.7% and 10.4% using imagery $30 m and

#5 m, respectively (Fig. 5a). Landsat was the most common

satellite (51.0% of articles), followed by SPOT (14.3%), and

Terra/MODIS (10.2%); additional data sources (e.g. IKONOS,

QuickBird, Lidar, CBERS, ASTER; Table 2) each were

represented in ,5% of the articles. Most studies (67.4%) analyzed

a geographic area of 500,000 ha or smaller (Fig. 5b).

Of the 42 studies that classified land cover from satellite

imagery, 28.6% solely performed habitat classification, while

59.5% also calculated land cover change and/or patch-based

metrics, and 11.9% also calculated vegetation height, primary

productivity, or soil moisture, or identified invasive species

occurrence. Of 10 studies examining land cover change since

1990 or earlier, 90% used Landsat (launched in 1972 as Earth

Resources Technology Satellite) and 10% used SPOT (launched

in 1986) (Table 2). Of 33 studies quantifying recent land cover

(since 2000), 61.8% used imagery $30 m resolution, and 37.5%

did so to quantify small geographic areas (#100,000 ha).

Discussion

Differences in satellite imagery resolution are not trivial, and

can manifest into stark differences in land cover classifications and

resulting patch-level metrics (i.e. habitat size, shape, and connec-

tivity). Ultimately these discrepancies are likely to influence

interpretations of fragmentation patterns of a landscape, which

can directly impact species and ecosystem modeling and conser-

vation management plans. Many types of satellite imagery are

available to conservation practitioners, but based on our literature

review, most current conservation research does not take full

advantage of either high-resolution or low-resolution imagery.

Although high-resolution imagery can be difficult to obtain,

primarily due to cost [5], we found that such imagery is critical for

the detection of small, narrow forest fragments (Fig. 4). Mapping

small, linear habitat features, such as riparian corridors, and

potential stepping-stone patches is critical to ecological studies, as

these features may serve important roles in landscape connectivity

Figure 4. Detection of linear forest features varied between IKONOS (4 m resolution) and Landsat (30 m resolution). IKONOS
correctly identified more narrow forest fragments than Landsat (a) as evident in one example from the study area with (b) IKONOS preserving small
forest fragments and forested corridors better than (c) Landsat.
doi:10.1371/journal.pone.0086908.g004

Importance of High-Resolution Satellite Imagery
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[64], [65]. Furthermore, high-resolution imagery could greatly aid

in the refined detection of forest loss and in the design and

monitoring of potential biological corridors (e.g. Mbaracayú-San

Rafael conservation corridor [66]). In Paraguay, forest loss can be

dramatic, yet much of the monitoring of such loss is done

primarily with Landsat data [48], [49], [67], [68]. Access to high-

resolution imagery is invaluable and timely, given the ongoing and

rapid deforestation in Paraguay [67], [68], and elsewhere globally

[20].

Our review of current articles in Biological Conservation, Biotropica,

and Conservation Biology revealed that more than 70% of studies

quantifying land cover used previously published material, aerial

photos, paper maps, or Google Earth as their main resources,

instead of satellite imagery (of any resolution). When satellite

imagery was used, Landsat (30 m resolution) was most common

(Fig. 5a). Although Landsat imagery is important in its historical

longevity and can be appropriately used to assess large geographic

regions and coarse-scale phenomena, we found that studies

classifying recent (since 2000) land cover of smaller areas

(,100,000 ha) still relied primarily on coarse imagery (i.e.

$30 m resolution) (Fig. 5b). High-resolution imagery has thus

not been used to its full extent in conservation, yet the differences

in classification and resulting landscape and patch metrics could be

critical for land cover assessments. For example, Rosa et al. [69],

found that 73% of the deforestation in the Brazilian Amazon in

2009 was the result of small clearings (,50 ha), thus, may go

undetected by regional assessments commonly based on low

resolution imagery.

Our literature review aimed to highlight the application of high-

resolution imagery in studies published in journals that target

Figure 5. Limited use of high-resolution imagery for conservation. Out of 1064 articles in Conservation Biology, Biological Conservation, and
Biotropica (2011–2012), 157 utilized primary satellite imagery and analyzed land cover predominantly based on (a) satellite imagery of 30 m
resolution and (b) quantified geographic areas #1000 km2 (equivalent to #100,000 ha).
doi:10.1371/journal.pone.0086908.g005

Importance of High-Resolution Satellite Imagery
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conservation biologists. We found the usage of high-resolution

imagery to be minimal. Moreover, most studies used previously

published data sets, and some were found to use land cover data

from .14 years prior to the field data collection. Although

conservation biologists are not limited to these journals, conser-

vation practitioners may not be reached by the remote-sensing,

physical geography, informatics, and ecology journals that often

focus on the applications of satellite imagery (see reviews by [2],

[4], [36–44]). Furthermore, these journals do not necessarily focus

on conservation applications, and therefore the utility and

relevance of high-resolution imagery may be missed by conserva-

tion scientists. Even within the field of ecology, there has been a

disconnect between ecologists, who may not fully utilize imagery

because of the perception that it is useful at only relatively coarse

spatial scales, and remote sensing specialists who tend to focus on

technological issues of remote-sensing applications [36]. With

increasing availability of higher-resolution imagery, however,

spatial scale is no longer a limiting factor. Our findings reinforce

that high-resolution imagery is important for conservation

applications, but that many conservation biologists are not taking

full advantage of this resource.

Our results highlight that small or narrow patches in a

landscape may fail to be delineated with coarser imagery.

Although the total area of a particular land cover class (e.g.,

forest) may not substantially increase, higher-resolution imagery is

more likely to discern small and linear habitat features, which may

be vital to landscape connectivity. Given that human activities

have caused the conversion of more than 50% of the world’s

terrestrial surface [70], most landscapes have lost the vast majority

of their historic, native habitat. Such habitat loss necessitates our

ability to design conservation plans and strategies that are able to

reconnect or improve the functionality of remaining land cover

[71]. For example, in the human-modified landscapes of

Paraguay, narrow forest patches may serve as valuable corridors

between core habitat areas (as outlined in [66]) for megafauna (e.g.

jaguar, Panthera onca [72]; tapir, Tapirus terrestris [73]), medium-

sized rare mesocarnivores (e.g. bushdog, Speothos venaticus [74];

oncilla, Leopardus tigrinus [75]; margay, Leopardus wiedii [75]), or

arboreal species (e.g. howler monkey, Alouatta caraya [76]; capuchin

monkey, Sapajus cay [77]). They may also provide important

conduits of movement for pollinators and seed dispersers, which

help ensure ecosystem functioning and forest regeneration and

succession [78–81]. Therefore, research linking remotely-sensed

land use change with species movement and persistence is

particularly important in Paraguay given that much of what is

known regarding the country’s fauna is from approximate

distributions or preliminary field data [82]. Recent and notewor-

thy species records for Paraguay [83], including records of rodent

[82], [84], [85], and bat [86] species in the Interior Atlantic Forest,

exemplify the need for further field studies in the region. We

propose that future conservation studies would be enhanced by

access to low-cost, high-resolution imagery.

Additionally, high-resolution imagery will be valuable for more

precise evaluation of habitat area and edge in landscapes. While

species-area relationships have been widely used for conservation

[87–92], improved imagery will help to better understand the

effects of patch area, edge, shape, and configuration, as well as the

matrix, on biodiversity. These patterns are species-specific, may

vary across systems, and are often complex [93–97]. In Paraguay,

for example, small mammal diversity increased toward the edges

of large forest remnants [98]; therefore high-resolution imagery

could help in precisely defining these edges and any area-to-edge

(shape) relationships.

Classification using IKONOS imagery improved the delinea-

tion of forest fragments, with smaller mean size than fragments

delineated using Landsat imagery. These differences were not

surprising, however, given the smaller pixel size of IKONOS.

Unexpectedly, however, the IKONOS-based classification led to a

delineation of fewer forest patches (229) than did Landsat (237

patches) for patches $0.5 ha. While a difference of 8 patches may

seem trivial, a classification using higher resolution imagery is

expected to result in a greater number of patches (not less), due to

a greater ability to distinguish smaller features. In contrast, we

found that Landsat missed detecting several small forest fragments

and narrow riparian corridors that connected other habitat

patches, thus resulting in a classification of more disjunct,

Table 2. Characteristics of satellites and their sensors used in studies classifying land cover in manuscripts published in
Conservation Biology, Biological Conservation, and Biotropica 2011–2012.

Satellite/Sensor First launch Resolution (m)a Current status

Advanced Land Observation Satellite (ALOS)/Advanced Visible and
Near Infrared Radiometer type 2 (AVNIR-2)

2006 10 Retired

China-Brazil Earth Resources Satellite (CBERS) 1999 20–80 Active

Earth-Observing 1/Advanced Land Imager (ALI) 2000 30 Active

European Remote-Sensing Satellite (ERS) 1991 25 Retired

IKONOS 1999 4 Active

Landsat/TM, ETM+/OLI/TIRS 1972 80 (1970s); 30 (1982– present) Active

Light Detection and Ranging (Lidar)b Multiple systems exist variable Active

QuickBird 2001 2.4 Active

Systėme Pour l’Observation de la Terre (SPOT) 1986 8–20 Active

Shuttle Radar Topography Mission (SRTM)b 2000 30–90 Active

Terra/Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER)

1999 15–90 Active

Terra/Moderate-Resolution Imaging Spectroradiometer (MODIS) 1999 250–500 Active

aResolutions are noted for the multispectral bands. Satellite information includes multiple versions (i.e. Landsat 5, Landsat 8).
bNot a satellite but is included here due to its use in some conservation studies.
doi:10.1371/journal.pone.0086908.t002
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parcellated patches instead of one larger, interconnected patch.

These findings have important consequences when evaluating

fragmentation effects, especially in the case of heterogeneous and

complex landscapes where habitat patches may be irregular and/

or linear in shape, and where corridors may be critical for the

movement of individuals and populations of a variety of species.

Although our findings are site-specific to eastern Paraguay, like

Masuoka et al. [27], we found that Landsat classified total areas of

common cover types comparable to IKONOS but the latter is

only able to capture smaller habitat patches. Similarly, Kennedy

[30], found that Landsat data (unlike IKONOS) failed to capture

the majority of native forest patches within the karst countryside in

central Jamaica, which is characterized by small forested hilltops,

often ,10 ha in size, but that support extensive native bird

assemblages in the region [99] as well as maintain essential

landscape-level connectivity (inter-patch recolonization) [100].

Landsat has also been found to insufficiently quantify selective

logging due to its low resolution [7]. These findings stress the

importance of using high-resolution imagery to monitor land cover

change, classify small, linear, or irregularly-shaped remnants,

detect narrow corridors, and delineate areas of disturbance within

a larger habitat patches. Many of the protected areas and reserves

in eastern Paraguay are relatively small in size: Reserva Ecológica

de Capiibary (3,082 ha), Monumento Natural Macizo Acahay

(2,500 ha), Reserva para Parque Nacional Ñacunday (2,000 ha),

and Monumento Cientı́fico Moisés Bertoni (199 ha). Yet, despite

their size, we would expect these areas to provide critical refugia

for Atlantic Forest species, and increasingly so if current rates and

patterns of land-cover transformation continue. Thus, being able

to effectively monitor fine-scale habitat changes in these important

yet small reserves and parks has increasing conservation impor-

tance in Paraguay (e.g. via management projects like Paraguay

Biodiversidad, [101]), as well as in other tropical regions

undergoing rapid change [20].

Although free data sets and free satellite imagery are available

online [40], many of these resources are at lower resolutions (e.g.

MODIS, Landsat), limited by the dates available (e.g. 4-m

multispectral OrbView-3 data are available for free, but only

from 2003–2007 without full global coverage) and/or not

modifiable (e.g. Google Earth). When using lower-resolution

imagery to analyze land cover without field verification of the

modeling results, evaluations of connectivity and appropriate

corridors may be incorrect and/or misleading [102]. We agree

with Arponen et al. [103], that analyses using high-resolution data

are feasible and important, especially when assessing connectivity

of habitat. Alongside the need to match spatial resolution

appropriately with spatial problems, we emphasize the need to

use an appropriate temporal scale and to be cautious in

extrapolating from imagery and land cover data that are

temporally distant from field data. Access to a variety of imagery

dates is also important as seasonality can impact land cover

classification accuracy [104], and land cover change can occur

quickly.

High-resolution imagery, as well as long-term, time-series data

(e.g. Landsat), are essential for conservation, economic, and social

research and applications [52]. Although various governments and

private satellite companies (e.g. GeoEye, DigitalGlobe) have

provided much-needed access to satellite imagery for environ-

mental research, access to these products should increase [17],

[20]. A recent call by Lynch et al. [105] to governments to use

satellites for monitoring illegal logging highlights the importance of

this issue. Habitat conversion can happen quickly and covertly

[106], and at times illegally; therefore, high-resolution imagery

needs to be available for regular ecosystem monitoring. Informa-

tion derived from satellite imagery should also be shared in user-

friendly formats with environmental policy groups [1], as well as

conservation and education leaders. To better ensure the

prevalence of satellite image analyses for conservation purposes,

we recommend increasing interdisciplinary training and collabo-

ration among conservation, environmental, and remote-sensing

fields [4], [13], and improving the accessibility to high-resolution

imagery at low (or no) cost.
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