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Abstract: It is unclear whether niacin nutritional status is a target for improvement of long-term
outcome after renal transplantation. The 24-h urinary excretion of N1-methylnicotinamide (N1-MN),
as a biomarker of niacin status, has previously been shown to be negatively associated with premature
mortality in kidney transplant recipients (KTR). However, recent evidence implies higher enzymatic
conversion of N1-MN to N1-methyl-2-pyridone-5-carboxamide (2Py) in KTR, therefore the need exists
for interpretation of both N1-MN and 2Py excretion for niacin status assessment. We assessed niacin
status by means of the 24-h urinary excretion of the sum of N1-MN and 2Py (N1-MN + 2Py), and
its associations with risk of premature mortality in KTR. N1-MN + 2Py excretion was measured
in a longitudinal cohort of 660 KTR with LS-MS/MS. Prospective associations of N1-MN + 2Py
excretion were investigated with Cox regression analyses. Median N1-MN + 2Py excretion was 198.3
(155.9–269.4) µmol/day. During follow-up of 5.4 (4.7–6.1) years, 143 KTR died, of whom 40 due to an
infectious disease. N1-MN + 2Py excretion was negatively associated with risk of all-cause mortality
(HR 0.61; 95% CI 0.47–0.79; p < 0.001), and infectious mortality specifically (HR 0.47; 95% CI 0.29–0.75;
p = 0.002), independent of potential confounders. Secondary analyses showed effect modification of
hs-CRP on the negative prospective association of N1-MN + 2Py excretion, and sensitivity analyses
showed negative and independent associations of N1-MN and 2Py excretion with risk of all-cause
mortality separately. These findings add further evidence to niacin status as a target for nutritional
strategies for improvement of long-term outcome in KTR.

Keywords: N1-methylnicotinamide; N1-methyl-2-pyridone-5-carboxamide; urinary excretion; niacin
status; renal transplantation; mortality; vitamin B3; tryptophan; dietary intake

1. Introduction

The treatment of choice for end-stage renal disease is renal transplantation, with one-year patient
survival exceeding 90% [1,2]. Despite advances in short-term outcome, kidney transplant recipients
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(KTR) remain at highly increased risk of premature mortality compared to the general population [3,4].
Nutrition is increasingly acknowledged as a modifiable factor to improve prospects in KTR [5]. Many
factors, such as dietary restrictions, stress, medication use, and comorbidities, pose a challenge to
maintain adequate nutrition after renal transplantation [5–10], while adequate nutrition has been
implicated to prevent clinical conditions that adversely affect long-term outcome and premature
mortality in KTR [11–17].

Niacin status is a potential target for improvement of long-term outcome in KTR. Niacin, or vitamin
B3, is the precursor of the nicotinamide nucleotide coenzyme NAD+. An adequate niacin status
is pivotal to supply substrates of NAD+-consuming enzymes, and reducing equivalents for energy
metabolism [18]. NAD+ catabolism proceeds via formation of N1-methylnicotinamide (N1-MN) and
N1-methyl-2-pyridone-5-carboxamide (2Py), respectively, and both products are excreted in urine
(Figure 1) [19]. Although 2Py is the final product of NAD+ catabolism, the 24-h urinary excretion of
N1-MN is the most common and recommended index of niacin nutritional status [20,21]. Importantly,
lower N1-MN excretion has shown to be associated with higher risk of premature all-cause mortality in
KTR [22]. Further evidence on the potential of niacin nutrition for improvement of long-term outcome
in KTR is unrevealed, as previous studies have only addressed pharmacological doses of niacin within
the context of chronic kidney disease and renal transplantation [23–28], and dietary intake of niacin to
reduce frailty and risk of mortality in elderly [29].
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In a recent study, we have demonstrated lower N1-MN excretion to be paralleled by higher 2Py
excretion in KTR, due to putative increased enzymatic conversion of N1-MN to 2Py in conditions
of renal function impairment [30]. Accordingly, it has been suggested that interpretation of N1-MN
excretion alone is of limited value, at least in conditions of renal function impairment, and 2Py should
be additionally interpreted for assessment of niacin status [30].

At present, it is unclear whether niacin status is a potential target for nutritional strategies for
improvement of long-term outcome after renal transplantation. As the presence of increased enzymatic
conversion of N1-MN to 2Py is presumed in KTR, it remains to be determined whether prospective
associations of niacin status with premature all-cause mortality exist when taking into account both
N1-MN and 2Py excretion, and therefore can be fully attributed to niacin status, rather than renal
function and other factors that may affect the conversion of N1-MN to 2Py. Prospective associations of
niacin status may be of particular interest within the context of infectious diseases as a leading cause of
premature mortality in KTR, given the reported benefits of niacin on the inflammatory response during
infections [31–34]. Therefore, the primary aim of this study is to assess the 24-h urinary excretion of
the sum of N1-MN and 2Py (N1-MN + 2Py) in KTR, and to prospectively investigate whether niacin
nutritional status is associated with risk of all-cause mortality in KTR. The secondary aim of this study
is to prospectively investigate whether niacin nutritional status is associated with risk of infectious
mortality in KTR.

2. Materials and Methods

2.1. Study Population

This longitudinal study was conducted in a single-center cohort of 707 KTR (≥18 years) who
visited the outpatient clinic of the University Medical Center Groningen (Groningen, The Netherlands)
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between November 2008 and June 2011. All KTR had a stable graft for at least one year, and none had
a history of drug and/or alcohol abuse [35–37]. Exclusion of subjects with use of niacin supplements or
missing biomaterial left 660 RTR eligible for statistical analyses. All participating subjects provided
written informed consent. The institutional review board (METc 2008/186) approved the study protocol
according to the principles of the Declaration of Helsinki.

2.2. Data Collection

Baseline data were gathered during morning visits to the outpatient clinic. Subjects collected
a 24-h urine sample according to strict protocol prior to their visit. In this protocol, subjects were
instructed to discard the first morning void, to collect all subsequent urine throughout the next 24 h,
and to include the next first morning void of the day of the visit to the outpatient clinic. Upon
completion of the 24-h urine sample collection, fasting blood samples were drawn. Directly after
sample collection, laboratory measurements were performed with routine clinical laboratory assays
based on spectrophotometry (Roche Diagnostics, Rotkreuz, Switzerland). Samples were stored at
−80 ◦C. Parameters on hemodynamics and body composition were measured according to a protocol
described previously [35]. Proteinuria was defined as total urinary protein excretion of ≥0.5 g/day.
Diabetes was defined as use of antidiabetic medication or fasting plasma glucose of ≥7.0 mmol/L.
Proteinuria was defined as total urinary protein excretion of ≥0.5 g/day. As KTR have previously been
reported to be commonly deficient in vitamin B6 [12] as an essential cofactor in de novo biosynthesis of
niacin [38], vitamin B6 status was assessed by means of plasma vitamin B6 as its principal, metabolically
active form pyridoxal-5′-phosphate using a high-performance liquid chromatography method (Waters
Alliance, Milford, MA, USA) with fluorescence detection (JASCO, Inc., Easton, MD, USA) [12].

Semiquantitative food frequency questionnaires (FFQs), validated for KTR as reported
previously [36], were used for assessment of dietary intake [39,40]. The questionnaires, inquiring
on 177 food items over the last month, were self-administered and filled out at home. FFQs were
checked for completeness and consistency by trained researchers during the visit to the outpatient
clinic [36]. The Dutch Food Composition Table of 2006 was used to convert dietary data into daily
nutrient intake [41]. Intake of niacin equivalents was calculated by adding up the intakes of niacin and
one-sixtieth of tryptophan. Subjects using niacin supplements were excluded. Separate questionnaires
were used for assessment of smoking behavior [11]. Medical records were used to obtain data on
medical history, and use of vitamin supplements and medication [11].

The combined creatinine and cystatin C-based Chronic Kidney Disease Epidemiology
Collaboration equation was used for calculation of the estimated glomerular filtration rate (eGFR) [42],
being the most accurate equation in KTR [43].

2.3. Assessment of N1-MN and 2Py Excretion

N1-MN and 2Py concentrations were measured with a validated liquid chromatography (Luna
HILIC column; Phenomenex, Torrance, CA, USA) isotope dilution-tandem mass spectrometry (Quattro
Premier; Waters, Milford, MA, USA) (LC-MS/MS) method, as reported previously [22,30,44]. The
24-h urinary excretion of N1-MN and 2Py (µmol/day) was calculated by multiplying concentrations
(µmol/L) by total urine volume calculated from weight (L/day).

2.4. Clinical Endpoints

The primary endpoints of this study were all-cause mortality and infectious mortality, and the
secondary endpoint was noninfectious mortality. Infectious mortality was defined as death due to
an infectious disease according to the International Classification of Diseases, Ninth Revision (ICD-9)
codes 001–139. Noninfectious mortality was defined as death due to cardiovascular, malignant, or
other (miscellaneous) diseases. Information on survival status and causes of death was obtained by
linking the patient number to the database of the Central Bureau of Statistics and then cause of death
as reported by physicians. Up-to-date information on survival status and causes of death was ensured
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through the continuous surveillance system of the outpatient program [17]. Endpoints were recorded
until 30 September 2015 with no loss of subjects to follow-up.

2.5. Statistical Analysis

Normally distributed, skewed, and nominal data are presented as the mean ± SD, median
(interquartile range (IQR)), and absolute number (percentage), respectively. The corresponding
frequency distribution and Q-Q plots were visually judged to check for normality assumptions.

For cross-sectional analyses, baseline characteristics of KTR were divided into tertiles of N1-MN +

2Py excretion stratified by sex (T1, T2, and T3). Linear regression analyses were used to investigate
associations of 2-base log-transformed N1-MN + 2Py excretion with baseline characteristics, with
adjustment for sex. Pearson correlation was used to investigate the correlation of N1-MN + 2Py
excretion with dietary intake of niacin equivalents.

For prospective analyses, Kaplan–Meier curves were plotted with log-rank tests to estimate the
difference between sex-stratified tertiles of N1-MN + 2Py excretion for all-cause mortality, infectious
mortality, and noninfectious mortality outcomes. Subsequently, Cox proportional hazards regression
models were fitted to N1-MN + 2Py excretion as a continuous variable adjusted for sex (model 1)
for all-cause mortality, infectious mortality, and noninfectious mortality, as well as a sex-stratified
tertile-based categorical variable for all-cause mortality. Potential confounders were included as
covariates in regression models to control for confounding. Crude associations were adjusted
cumulatively for age and body surface area (model 2) and, in subsequent models, additively for
high-sensitivity C-reactive protein (hs-CRP) (model 3), plasma vitamin B6 (model 4), renal function
parameters (model 5), medication use (model 6), and intake of alcohol and energy (model 7). Potential
confounders were included additive rather than cumulative to prevent overfitting by inclusion of
a larger number of variables in a single model than allowed for by the number of outcome events
during prospective follow-up. By inclusion of a maximum number of six variables with regard to
the number of infectious mortality events (n = 40) as a primary outcome, the Cox regression models
comply with the rule of thumb for the number of outcome events per variable that is set at a minimum
of 5 to preferably 20 outcome events per variable [45–47]. Variables that could lie in the causal
pathway of N1-MN + 2Py excretion and all-cause mortality were not included in regression models,
because adjustment for potential mediators might introduce bias in the estimation of the total effect of
exposure on outcome [48]. Kaplan–Meier plots of the survival and the log-survival function entering
the sex-stratified N1-MN + 2Py excretion tertile group variable were visually judged to check for the
proportionality of hazards and the linearity of log-hazards assumptions.

In secondary prospective analyses, effect modification was assessed by including the cross product
term of each potential confounder included in models 2–7 and 2-base log-transformed N1-MN + 2Py
excretion in the Cox regression model adjusted for sex (model 1). Subsequent stratified analyses were
performed for subgroups of significant effect modifiers on the associations of N1-MN + 2Py excretion
with premature mortality. In addition, potential associations of N1-MN + 2Py excretion with death
due to cardiovascular, malignant, and other (miscellaneous) diseases were separately investigated in
addition to noninfectious mortality as a whole. Finally, possible nonlinearity of associations of N1-MN
+ 2Py excretion with all-cause mortality and infectious mortality was investigated by including the
quadratic and cubic terms of N1-MN + 2Py excretion in addition to its linear term in the Cox regression
models 1–7.

For sensitivity analyses, the 24-h urinary excretion of N1-MN and 2Py, urinary ratio of 2Py
to N1-MN (2Py/N1-MN), and dietary intake of niacin equivalents were separately assessed, and
prospectively investigated for associations with risk of all-cause mortality in Cox regression analyses.
In further sensitivity analyses, the first half of KTR that died during follow-up (i.e., during ≤3.17 years
of follow-up; n = 72 events) was excluded for assessment of the association of N1-MN + 2Py excretion
with risk of all-cause mortality and infectious mortality in Cox regression analyses, to make it unlikely
that associations of N1-MN + 2Py excretion with outcome are driven by reverse causation. Finally, both
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in the full cohort and the subgroup of KTR that died during >3.17 years of follow-up (n = 71 events),
the association of N1-MN + 2Py excretion with risk of all-cause mortality and infectious mortality was
adjusted cumulatively for sex; age; body surface area; use of proliferation inhibitors, acetylsalicylic
acid, and proton pump inhibitors; intake of alcohol and energy in Cox regression analyses.

Statistical significance was considered to be indicated by a two-sided p-value of less than 0.05 and
SPSS Statistics version 23.0 (IBM, Armonk, NY, USA) was used as software for all statistical analyses.

3. Results

3.1. Baseline Characteristics and Cross-Sectional Analyses

Baseline characteristics of KTR across sex-stratified tertiles of N1-MN + 2Py excretion (M: 181.3,
181.3–261.2, and >261.2 µmol/day; F: <147.7, 147.7–216.9, and >216.9 µmol/day in T1, T2, and T3,
respectively) are shown in Table 1. At inclusion (5.6 (2.0–12.0) years after transplantation), mean age
was 53.0 ± 12.7 years, and 57% were male. Median N1-MN + 2Py excretion was 198.3 (155.9–269.4)
µmol/day.

Sex-adjusted associations of N1-MN + 2Py excretion with baseline characteristics are shown
in Table 1. Body mass index (BMI), body surface area, alcohol consumption, plasma vitamin B6,
high-sensitivity C-reactive protein (hs-CRP), eGFR, and use of proliferation inhibitors were positively
associated with N1-MN + 2Py excretion, while age and use of acetylsalicylic acid and proton pump
inhibitors were negatively associated with N1-MN + 2Py excretion. Medications that are known to
potentially affect niacin status, including cyclosporine, azathioprine, and anticonvulsants, used by 253
(38%), 112 (17%), and 19 (3%) of KTR, respectively, were not associated with N1-MN + 2Py excretion.
N1-MN + 2Py excretion was positively correlated with dietary intake of niacin equivalents (r = 0.23;
p < 0.001).

Table 1. Baseline characteristics of kidney transplant recipients (KTR) across tertiles of N1-MN + 2Py
excretion stratified by sex 1,2.

Variable
Sex-Stratified Tertiles of N1-MN + 2Py Excretion Std. β p-Value
T1 n = 219 T2 n = 221 T3 n = 220

Males, µmol/day <181.3 181.3–261.2 >261.2 - -

Females, µmol/day <147.7 147.7–216.9 >216.9 - -

Demographics
Male, n (%) 126 (58) 127 (58) 126 (57) - -
Age, years 54.3 ± 12.6 52.3 ± 13.4 52.4 ± 12.1 −0.10 0.01
BMI, kg/m2 25.4 ± 4.5 26.7 ± 4.5 27.8 ± 5.1 0.19 <0.001

Body surface area, m2 1.9 ± 0.2 1.9 ± 0.2 2.0 ± 0.2 0.28 <0.001
Current smoker, n (%) 24 (12) 24 (12) 30 (15) 0.04 0.34

Alcohol consumption, g/day 1.0 (0.0–7.8) 3.2 (0.1–12.0) 5.1 (0.2–17.7) 0.18 <0.001

Nutrition
Energy intake, kcal/day 2098 ± 619 2248 ± 718 2198 ± 576 0.06 0.17

Plasma vitamin B6, nmol/L 27.0 (15.0–41.0) 26.0 (17.0–42.0) 41.0 (22.0–66.0) 0.30 <0.001

Glucose homeostasis
Glucose, mmol/L 5.2 (4.8–5.7) 5.3 (4.8–6.0) 5.3 (4.8–6.2) 0.08 0.05

HbA1c, (%) 5.8 (5.5–6.1) 5.8 (5.5–6.2) 5.8 (5.5–6.3) −0.003 0.95
Diabetes, n (%) 46 (21) 51 (23) 55 (25) 0.05 0.23

Antidiabetic, n (%) 32 (15) 34 (15) 30 (14) 0.007 0.86

Lipid homeostasis
Total cholesterol, mmol/L 5.2 ± 1.2 5.1 ± 1.1 5.0 ± 1.1 −0.03 0.40

LDL, mmol/L 3.0 ± 1.0 3.0 ± 0.9 3.0 ± 0.9 0.009 0.82
HDL, mmol/L 1.3 (1.1–1.7) 1.3 (1.1–1.6) 1.3 (1.1–1.6) 0.05 0.23

Triglycerides, mmol/L 1.6 (1.2–2.3) 1.7 (1.3–2.3) 1.6 (1.2–2.2) −0.03 0.39
Statin, n (%) 111 (51) 122 (55) 116 (53) −0.02 0.61
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Table 1. Cont.

Variable
Sex-Stratified Tertiles of N1-MN + 2Py Excretion Std. β p-Value
T1 n = 219 T2 n = 221 T3 n = 220

Hemodynamic
Systolic blood pressure, mmHg 138 ± 18 135 ± 16 135 ±17 −0.08 0.05
Diastolic blood pressure, mmHg 82 ± 12 82 ± 11 83 ± 11 0.01 0.72
Mean arterial pressure, mmHg 108 ± 16 107 ± 14 107 ± 15 −0.05 0.22

Heart rate, beats per minute 68 ± 12 69 ± 13 68 ± 12 −0.006 0.87
Antihypertensive use, n (%) 196 (90) 193 (87) 192 (87) −0.04 0.25

Inflammation
Hs-CRP, mg/L 1.3 (0.5–3.5) 1.6 (0.7–4.4) 1.9 (0.9–5.6) 0.10 0.007

Renal function
eGFR, ml/min/1.73 m2 44.7 ± 20.0 46.0 ± 18.5 46.6 ± 17.7 0.09 0.03

Proteinuria, n (%) 47 (22) 47 (21) 38 (17) −0.06 0.14

Immunosuppressive medication
Prednisolon dose, mg/day 7.5 (7.5–10) 7.5 (7.5–10) 7.5 (7.5–10) 0.02 0.54
Calcineurin inhibitor, n (%) 131 (60) 127 (58) 115 (48) −0.05 0.23

Tacrolimus, n (%) 38 (17) 49 (22) 33 (15) −0.02 0.54
Cyclosporine, n (%) 93 (43) 78 (35) 82 (37) −0.03 0.46

Proliferation inhibitor, n (%) 172 (79) 183 (83) 193 (88) 0.10 0.01
Azathioprine, n (%) 35 (16) 32 (15) 45 (21) 0.04 0.36

Mycophenolic acid, n (%) 137 (63) 151 (68) 148 (67) 0.05 0.21

Nonimmunosuppressive medication
Acetylsalicylic acid, n (%) 55 (25) 34 (15) 38 (17) −0.08 0.03

Anticonvulsant, n (%) 9 (4) 4 (2) 6 (3) −0.02 0.59
Proton pump inhibitor, n (%) 122 (56) 99 (45) 105 (48) −0.09 0.03

Diuretic, n (%) 95 (43) 76 (34) 90 (41) −0.05 0.21

Renal transplantation
Time since transplantation, years 5.9 (2.6–13.4) 5.1 (1.4–10.7) 5.8 (2.4–12.2) −0.02 0.65

Donor
Age, years 44 (28–53) 47 (33–56) 44 (31–54) 0.002 0.97
Male, n (%) 108 (50) 114 (52) 104 (50) −0.04 0.31

Post mortem status, n (%) 150 (69) 133 (61) 142 (66) 0.04 0.36

Primary renal disease
Primary glomerular disease, n (%) 57 (26) 68 (31) 61 (28) 0.01 0.81

Glomerulonephritis, n (%) 15 (7) 17 (8) 18 (8) 0.06 0.14
Tubulointerstitial disease, n (%) 26 (12) 28 (13) 23 (11) −0.02 0.54
Polycystic renal disease, n (%) 41 (19) 42 (19) 54 (25) 0.02 0.59

Dysplasia and hypoplasia, n (%) 10 (5) 10 (5) 8 (4) −0.01 0.79
Renovascular disease, n (%) 15 (7) 8 (4) 13 (6) −0.04 0.29
Diabetic nephropathy, n (%) 14 (6) 13 (6) 8 (4) −0.03 0.46

Other or unknown cause, n (%) 40 (18) 35 (16) 35 (16) −0.005 0.90
1 Normally distributed, skewed, and nominal data are presented as mean ± SD, median (IQR), and absolute number
(percentage), respectively. 2 Cross-sectional associations of N1-MN + 2Py excretion with baseline variables were
investigated with linear regression analyses, with adjustment for sex, of which std. β and p-value are presented. BMI,
body mass index; eGFR, estimated glomerular filtration rate; HbA1c, hemoglobin A1c; HDL, high-density lipoprotein;
hs-CRP, high-sensitivity C-reactive protein; LDL, low-density lipoprotein; N1-MN, N1-methylnicotinamide; KTR,
kidney transplant recipients; std. β, standardized β; 2Py, N1-methyl-2-pyridone-5-carboxamide; 2Py/N1-MN, ratio
of 2Py to N1-MN.

3.2. Primary Prospective Analyses

During a median follow-up time of 5.4 (4.7–6.1) years, 143 (22%) KTR died, of whom 40 (6%) due
to an infectious disease, and 103 (16%) due to noninfectious diseases, comprising cardiovascular (56
(9%)), malignant (26 (4%)), and other (miscellaneous) diseases (21 (3%)). Survival curves according
to sex-stratified tertiles of N1-MN + 2Py excretion for all-cause mortality, infectious mortality, and
noninfectious mortality are shown in Figure 2. Rates of all-cause mortality, infectious mortality, and
noninfectious mortality increased with decreasing sex-stratified tertiles of N1-MN + 2Py excretion
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(Log-rank: p < 0.001, p = 0.01, and p = 0.02, respectively) (Figure 2). Cox regression analyses exposed
a negative association of N1-MN + 2Py excretion with all-cause mortality (Model 2: HR 0.61; 95%
CI 0.47–0.79; p < 0.001), and higher risk of all-cause mortality for KTR in the lowest (T1) and middle
sex-stratified tertiles of N1-MN + 2Py excretion (T2) compared to those in the highest tertile (T3) as
reference (Model 2: HR 2.03; 95% CI 1.31–3.15; p = 0.002 and HR 1.45; 95% CI 0.92–2.30; p = 0.11,
respectively) (Table 2). Cox regression analyses furthermore exposed a negative association of N1-MN
+ 2Py excretion with infectious mortality (Model 2: HR 0.47; 95% CI 0.29–0.75; p = 0.002) (Table 3).
Prospective associations with all-cause mortality and infectious mortality, and less so noninfectious
mortality, were independent of potential confounders, including sex, age, body surface area, plasma
vitamin B6, renal function parameters, medication use, and intake of alcohol and energy.
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Table 2. Association of N1-MN + 2Py excretion with risk of all-cause mortality in KTR 1.

Model

N1-MN + 2Py Excretion (log2) As
Continuous Variable

n = 660

Sex-Stratified Tertiles of N1-MN + 2Py Excretion 2

T1
n = 219

T2
n = 221

T3
n = 220

HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value Reference HR

1 3 0.55 (0.43–0.71) <0.001 2.28
(1.49–3.49) <0.001 1.52

(0.96–2.39) 0.07 1.00

2 4 0.61 (0.47–0.79) <0.001 2.03
(1.31–3.15) 0.002 1.45

(0.92–2.30) 0.11 1.00

3 5 0.60 (0.46–0.78) <0.001 2.13
(1.37–3.33) 0.001 1.51

(0.95–2.40) 0.08 1.00

4 6 0.65 (0.49–0.86) 0.003 1.85
(1.17–2.94) 0.009 1.36

(0.84–2.18) 0.21 1.00

5 7 0.67 (0.52–0.87) 0.003 1.93
(1.23–3.02) 0.004 1.32

(0.82–2.12) 0.25 1.00

6 8 0.69 (0.53–0.90) 0.006 1.74
(1.12–2.72) 0.02 1.42

(0.90–2.25) 0.13 1.00

7 9 0.70 (0.52–0.94) 0.02 1.71
(1.05–2.79) 0.03 1.39

(0.84–2.29) 0.20 1.00

Events (n) 143 66 46 31
1 The association of N1-MN + 2Py excretion with risk of all-cause mortality in KTR was investigated with Cox
regression analyses, with adjustment for potential confounders. 2 N1-MN + 2Py excretion was <181.3, 181.3–261.2,
and >261.2 µmol/day for males, and <147.7, 147.7–216.9, and >216.9 µmol/day for females in T1, T2, and T3,
respectively. 3 Model 1: not adjusted in sex-stratified tertiles of N1-MN + 2Py excretion, adjusted for sex in
continuous analyses. 4 Model 2: adjusted as for model 1 and for age and body surface area. 5 Model 3: adjusted
as for model 2 and for serum hs-CRP. 6 Model 4: adjusted as for model 2 and for plasma vitamin B6. 7 Model 5:
adjusted as for model 2 and for eGFR, proteinuria, and primary renal disease. 8 Model 6: adjusted as for model
2 and for use of proliferation inhibitors, acetylsalicylic acid, and proton pump inhibitors. 9 Model 7: adjusted as
for model 2 and for intake of alcohol and energy. CI, confidence interval; eGFR, estimated glomerular filtration
rate; HR, hazard ratio; hs-CRP, high-sensitivity C-reactive protein; N1-MN, N1-methylnicotinamide; KTR, kidney
transplant recipients; 2Py, N1-methyl-2-pyridone-5-carboxamide.
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Table 3. Association of N1-MN + 2Py excretion with risk of infectious mortality and noninfectious
mortality in KTR 1.

Model
N1-MN + 2Py Excretion (log2) As Continuous Variable

n = 660

HR (95% CI) p-Value

Infectious Mortality

1 2 0.42 (0.27–0.66) <0.001
2 3 0.47 (0.29–0.75) 0.002
3 4 0.47 (0.29–0.75) 0.002
4 5 0.51 (0.31–0.86) 0.01
5 6 0.54 (0.34–0.86) 0.009
6 7 0.54 (0.33–0.88) 0.01
7 8 0.54 (0.32–0.91) 0.02

Events (n) 40

Noninfectious Mortality

1 2 0.62 (0.46–0.83) 0.001
2 3 0.68 (0.50–0.93) 0.02
3 4 0.67 (0.49–0.92) 0.01
4 5 0.72 (0.51–1.00) 0.05
5 6 0.74 (0.54–1.01) 0.06
6 7 0.75 (0.55–1.03) 0.08
7 8 0.79 (0.55–1.12) 0.18

Events (n) 103
1 The association of N1-MN + 2Py excretion with risk of infectious mortality and noninfectious mortality in KTR
was investigated with Cox regression analyses, with adjustment for potential confounders. 2 Model 1: adjusted
for sex. 3 Model 2: adjusted as for model 1 and for age and body surface area. 4 Model 3: adjusted as for model 2
and for serum hs-CRP. 5 Model 4: adjusted as for model 2 and for plasma vitamin B6. 6 Model 5: adjusted as for
model 2 and for eGFR, proteinuria, and primary renal disease. 7 Model 6: adjusted as for model 2 and for use of
proliferation inhibitors, acetylsalicylic acid, and proton pump inhibitors. 8 Model 7: adjusted as for model 2 and for
intake of alcohol and energy. CI, confidence interval; eGFR, estimated glomerular filtration rate; HR, hazard ratio;
hs-CRP, high-sensitivity C-reactive protein; N1-MN, N1-methylnicotinamide; KTR, kidney transplant recipients; 2Py,
N1-methyl-2-pyridone-5-carboxamide.

3.3. Secondary Prospective Analyses

Secondary analyses revealed significant effect modification of hs-CRP on the negative association
of N1-MN + 2Py excretion with all-cause mortality (p = 0.02). Given the significant interaction of the
association of N1-MN + 2Py excretion with risk of all-cause mortality for hs-CRP, subsequent stratified
analyses for subjects in subgroups of hs-CRP were performed. The negative association of N1-MN +

2Py excretion with all-cause mortality was clearly present for subjects in the subgroup with serum
hs-CRP ≤3 mg/L (Model 2: HR 0.48; 95% CI 0.34–0.68; p < 0.001), but to a lesser extent in the subgroup
with serum hs-CRP >3 mg/L (Model 2: HR 0.79; 95% CI 0.52–1.20; p = 0.27) (Table 4). The same held for
the negative association of N1-MN + 2Py excretion with infectious mortality, being clearly present for
subjects in the subgroup with serum hs-CRP ≤3 mg/L (Model 2: HR 0.38; 95% CI 0.21–0.67; p = 0.001),
but to a lesser extent in the subgroup with serum hs-CRP >3 mg/L (Model 2: HR 0.71; 95% CI 0.30–1.65;
p = 0.43) (Table 4), and less so with noninfectious mortality. In addition, prospective associations of
N1-MN + 2Py excretion with cardiovascular mortality, malignant mortality, and other (miscellaneous)
mortality were less clearly present (Table S1). Moreover, N1-MN + 2Py excretion was associated with
all-cause mortality and infectious mortality in a linear fashion, rather than a nonlinear fashion (all
p > 0.05) (Table S2).
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Table 4. Association of N1-MN + 2Py excretion with risk of mortality in subgroups of serum hs-CRP in
KTR 1.

Model
Hs-CRP ≤ 3 mg/L Hs-CRP > 3 mg/L

HR (95% CI) p-Value HR (95% CI) p-Value

All-Cause Mortality

1 2 0.46 (0.34–0.64) <0.001 0.64 (0.44–0.95) 0.03
2 3 0.48 (0.34–0.68) <0.001 0.79 (0.52–1.20) 0.27
3 4 0.49 (0.35–0.68) <0.001 0.80 (0.53–1.21) 0.29
4 5 0.50 (0.35–0.72) <0.001 0.89 (0.57–1.39) 0.61
5 6 0.58 (0.42–0.82) 0.002 0.83 (0.54–1.26) 0.37
6 7 0.57 (0.41–0.81) 0.002 0.83 (0.54–1.27) 0.38
7 8 0.56 (0.38–0.83) 0.003 0.90 (0.57–1.42) 0.64

Events (n) 81 62

Infectious Mortality

1 2 0.35 (0.20–0.60) <0.001 0.60 (0.28–1.32) 0.21
2 3 0.38 (0.21–0.67) 0.001 0.71 (0.30–1.65) 0.43
3 4 0.39 (0.22–0.67) 0.001 0.70 (0.30–1.64) 0.41
4 5 0.38 (0.21–0.70) 0.002 0.97 (0.39–2.43) 0.95
5 6 0.47 (0.27–0.83) 0.009 0.79 (0.34–1.84) 0.58
6 7 0.45 (0.25–0.81) 0.008 0.77 (0.31–1.89) 0.56
7 8 0.40 (0.20–0.78) 0.008 0.79 (0.34–1.81) 0.58

Events (n) 25 15

Noninfectious Mortality

1 2 0.53 (0.36–0.78) 0.001 0.66 (0.42–1.02) 0.06
2 3 0.54 (0.36–0.83) 0.005 0.82 (0.51–1.31) 0.41
3 4 0.54 (0.36–0.83) 0.005 0.84 (0.52–1.34) 0.46
4 5 0.57 (0.37–0.90) 0.02 0.87 (0.52–1.44) 0.58
5 6 0.65 (0.42–0.98) 0.04 0.84 (0.51–1.37) 0.48
6 7 0.64 (0.42–0.97) 0.04 0.82 (0.51–1.31) 0.41
7 8 0.66 (0.42–1.05) 0.08 0.95 (0.55–1.65) 0.87

Events (n) 56 47
1 The association of N1-MN + 2Py excretion with risk of all-cause mortality, infectious mortality, and noninfectious
mortality in KTR was investigated with Cox regression analyses, with adjustment for potential confounders.
2 Model 1: adjusted for sex. 3 Model 2: adjusted as for model 1 and for age and body surface area. 4 Model 3:
adjusted as for model 2 and for serum hs-CRP. 5 Model 4: adjusted as for model 2 and for plasma vitamin B6.
6 Model 5: adjusted as for model 2 and for eGFR, proteinuria, and primary renal disease. 7 Model 6: adjusted as for
model 2 and for use of proliferation inhibitors, acetylsalicylic acid, and proton pump inhibitors. 8 Model Model 7:
adjusted as for model 2 and for intake of alcohol and energy. CI, confidence interval; eGFR, estimated glomerular
filtration rate; HR, hazard ratio; hs-CRP, high-sensitivity C-reactive protein; N1-MN, N1-methylnicotinamide; KTR,
kidney transplant recipients; 2Py, N1-methyl-2-pyridone-5-carboxamide.

3.4. Sensitivity Analyses

The 24-h urinary excretion of N1-MN and 2Py, urinary 2Py/N1-MN, and dietary intake of niacin
equivalents, and associations with risk of all-cause mortality are shown in Tables 5 and 6, respectively.
The 24-h urinary excretion of N1-MN and 2Py were 22.0 (15.8–31.8) µmol/day and 178.1 (130.3–242.8)
µmol/day, respectively (Table 5). Urinary 2Py/N1-MN was 8.7± 3.8. Dietary intake of niacin equivalents
was 35.6 ± 9.2 mg/day. The minimum recommended daily intake of niacin equivalents of 6.6 niacin
equivalents per 1000 kcal is complied with by all KTR (≥9.6 mg/1000 kcal, respectively) [21]. Sensitivity
analyses revealed the presence of independent prospective associations of the 24-h urinary excretion
of N1-MN and 2Py separately (Model 2: HR 0.57; 95% CI 0.46–0.72; p < 0.001 and HR 0.65; 95% CI
0.51–0.84; p = 0.001, respectively) (Table 6), both in line with the findings on N1-MN + 2Py excretion
(Table 2). Prospective associations of urinary 2Py/N1-MN and dietary intake of niacin equivalents with
all-cause mortality were dependent on renal function parameters (Model 5: HR 1.00; 95% CI 0.95–1.04;
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p = 0.85) and intake of alcohol and energy (Model 7: HR 0.77; 95% CI 0.43–1.38; p = 0.38) (Table 6).
When separately adjusted for in sensitivity analyses, prospective associations of urinary 2Py/N1-MN
and dietary intake of niacin equivalents with all-cause mortality were mainly dependent on eGFR
(Model 5: HR 1.00; 95% CI 0.95–1.05; p = 0.94), rather than proteinuria (Model 5: HR 1.05; 95% CI
1.01–1.09; p = 0.02) and primary renal disease (Model 5: HR 1.06; 95% CI 1.02–1.10; p = 0.007), and
intake of energy (Model 7: HR 0.98; 95% CI 0.94–1.01; p = 0.18), rather than intake of alcohol (Model 7:
HR 0.98; 95% CI 0.95–1.00; p = 0.04), respectively.

Table 5. Urinary excretion of N1-MN + 2Py, N1-MN, 2Py and 2Py/N1-MN, and dietary intake of niacin
equivalents across tertiles of N1-MN + 2Py excretion stratified by sex in KTR 1,2.

Variable
Tertiles of Sex-Stratified N1-MN + 2Py Excretion Std. β p-Value

T1
n = 219

T2
n = 221

T3
n = 220

Urinary excretion
N1-MN + 2Py, µmol/day 131.5 (110.5–150.9) 203.6 (181.5–225.6) 313.8 (274.2–382.8) - -

N1-MN, µmol/day 14.7 (10.9–19.4) 21.5 (17.6–27.7) 34.7 (26.1–45.3) 0.74 <0.001
2Py, µmol/day 114.5 (94.0–131.6) 178.2 (155.6–198.3) 280.0 (242.1–340.4) 0.99 <0.001

2Py/N1-MN 7.8 (6.0–9.7) 8.3 (6.5–10.4) 8.8 (6.4 –11.5) −0.16 <0.001

Dietary intake
Niacin equivalents intake, mg/day 33.1 ± 8.5 36.6 ± 9.7 36.9 ± 9.1 0.18 <0.001

1 Normally distributed, skewed, and nominal data are presented as mean ± SD, median (IQR) and absolute number
(percentage), respectively. 2 Cross-sectional associations of urinary excretion of N1-MN, 2Py and 2Py/N1-MN, and
dietary intake of niacin equivalents with N1-MN + 2Py excretion were investigated with linear regression analyses,
with adjustment for sex, of which std. β and p-value are presented. N1-MN, N1-methylnicotinamide; KTR, kidney
transplant recipients; std. β, standardized β; 2Py, N1-methyl-2-pyridone-5-carboxamide; 2Py/N1-MN, ratio of 2Py
to N1-MN.

Table 6. Association of urinary excretion of N1-MN, 2Py and 2Py/N1-MN, and dietary intake of niacin
equivalents with risk of all-cause mortality in KTR 1.

Model
Urinary Excretion Dietary Intake

Niacin Equivalents,
mg/day 2N1-MN, µmol/day 2Py, µmol/day 2Py/N1-MN

HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value

1 3 0.53 (0.43–0.65) <0.001 0.59 (0.47–0.75) <0.001 1.06 (1.02–1.10) 0.003 0.58 (0.42–0.81) 0.001
2 4 0.57 (0.46–0.72) <0.001 0.65 (0.51–0.84) 0.001 1.06 (1.02–1.10) 0.005 0.61 (0.43–0.87) 0.006
3 5 0.58 (0.47–0.73) <0.001 0.64 (0.49–0.82) 0.001 1.05 (1.01–1.10) 0.02 0.65 (0.46–0.93) 0.02
4 6 0.61 (0.48–0.77) <0.001 0.69 (0.53–0.91) 0.009 1.06 (1.01–1.10) 0.01 0.65 (0.45–0.93) 0.02
5 7 0.73 (0.57–0.92) 0.009 0.69 (0.53–0.89) 0.004 1.00 (0.95–1.04) 0.85 0.69 (0.48–0.98) 0.04
6 8 0.63 (0.50–0.78) <0.001 0.73 (0.57–0.94) 0.02 1.06 (1.02–1.10) 0.007 0.64 (0.45–0.91) 0.02
7 9 0.64 (0.50–0.82) <0.001 0.74 (0.56–0.98) 0.04 1.07 (1.02–1.12) 0.006 0.77 (0.43–1.38) 0.38

1 The association of urinary excretion of N1-MN, 2Py and 2Py/N1-MN, and dietary intake of niacin equivalents with
risk of all-cause mortality in KTR was investigated with Cox regression analyses, with adjustment for potential
confounders. 2 HRs per 15 mg increase in dietary intake of niacin equivalents are presented. 3 Model 1: adjusted
for sex. 4 Model 2: adjusted as for model 1 and for age and body surface area. 5 Model 3: adjusted as for model 2
and for serum hs-CRP. 6 Model 4: adjusted as for model 2 and for plasma vitamin B6. 7 Model 5: adjusted as for
model 2 and for eGFR, proteinuria, and primary renal disease. 8 Model 6: adjusted as for model 2 and for use of
proliferation inhibitors, acetylsalicylic acid, and proton pump inhibitors. 9 Model 7: adjusted as for model 2 and for
intake of alcohol and energy. CI, confidence interval; eGFR, estimated glomerular filtration rate; HR, hazard ratio;
hs-CRP, high-sensitivity C-reactive protein; N1-MN, N1-methylnicotinamide; KTR, kidney transplant recipients; 2Py,
N1-methyl-2-pyridone-5-carboxamide; 2Py/N1-MN, ratio of 2Py to N1-MN.

Prospective associations of N1-MN + 2Py excretion with all-cause mortality and infectious
mortality remained present in the subgroup of KTP that died during >3.17 years of follow-up (Model 2:
HR 0.56; 95% CI 0.39–0.82; p = 0.002 and HR 0.28; 95% CI 0.14–0.55; p < 0.001, respectively) (Table S3),
indicating robustness of the present findings. Finally, prospective associations of N1-MN + 2Py
excretion remained present independent of cumulative adjustment for sex; age; body surface area;
use of proliferation inhibitors, acetylsalicylic acid, and proton pump inhibitors; intake of alcohol and
energy for all-cause mortality (HR 0.75; 95% CI 0.56–0.99; p = 0.04) and, to a lesser extent, infectious
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mortality (HR 0.62; 95% CI 0.37–1.04; p = 0.07) in the full cohort of KTR; and for both all-cause mortality
(HR 0.68; 95% CI 0.46–1.00; p = 0.05) and infectious mortality (HR 0.40; 95% CI 0.19–0.84; p = 0.02) in
the subgroup of KTR that died during >3.17 years of follow-up.

4. Discussion

To the best of our knowledge, this is the first study to assess and prospectively investigate niacin
nutritional status by means of the 24-h urinary excretion of the sum of N1-MN and 2Py in stable KTR.
In cross-sectional analyses, we assessed the 24-h urinary excretion of N1-MN + 2Py. In prospective
analyses, we investigated associations of niacin nutritional status with risk of all-cause mortality, and
infectious mortality specifically. Importantly, we found that the 24-h urinary excretion of N1-MN + 2Py
was negatively associated with higher risk of all-cause mortality, and infectious mortality specifically,
independent of potential confounders adjusted for in separate models. Secondary analyses revealed
effect modification of hs-CRP on the negative prospective association of N1-MN + 2Py excretion, and
sensitivity analyses revealed negative and independent associations of N1-MN and 2Py excretion with
all-cause mortality separately.

The potential of niacin nutrition for improvement of long-term outcome relies on the assessment
of niacin status rather than dietary intake of niacin equivalents due to their differing bioavailability as
NAD+ precursors [49]. In current literature and guidelines, the 24-h urinary excretion of N1-MN as
a breakdown product of NAD+ is conceived the gold standard biomarker for assessment of niacin
status [20,21]. Considerable evidence has, however, implied this biomarker to be responsive to
multiple physiological and pathological factors [50–55], and most recently to renal function [30], and
noted opposing shifts of 2Py excretion in parallel to N1-MN excretion [30,54]. Given the furthermore
presumed presence of increased enzymatic conversion of N1-MN to 2Py in conditions of renal function
impairment [30,55,56], additional interpretation of 2Py, rather than N1-MN alone, is indicated to
address niacin status in KTR. Noteworthy, other conditions inherent to renal function decline, such as
aging [57,58], may superimpose the latter proposition. In the present study, prospective associations of
urinary 2Py/N1-MN and dietary intake of niacin equivalents were indeed confounded by renal function
parameters (eGFR) and dietary intake (energy), respectively, while those of the urinary excretion of
N1-MN and 2Py separately aligned with the urinary excretion of N1-MN + 2Py and therefore support
the present conclusions.

Prospective studies on niacin nutrition are scarce, as the prevailing dietary intake of niacin
equivalents is considered to meet the baseline requirements for NAD+ synthesis in developed
countries [29,59]. Niacin equivalents comprise the root substrates of NAD+ biosynthetic pathways,
being nicotinamide, nicotinic acid, and nicotinamide riboside for salvage pathways, and tryptophan for
the de novo nicotinamide pathway [31]. There is a substantial body of evidence, however, that greater
NAD+ availability from its dietary sources may be beneficial in various pathological conditions [18],
including those that precipitate premature mortality among KTR [60,61]. Accordingly, the 24-h urinary
excretion of N1-MN as breakdown product of NAD+ has shown to be negatively associated with
premature all-cause mortality in KTR [22]. In the present study, this association remains when taking
into account 2Py as the consecutive and final breakdown product of NAD+ additionally, and may
therefore be solely attributed to niacin status.

The adherence to the recommended daily intake of niacin equivalents is undisputed in KTR.
NAD+ availability from its dietary sources is, however, subject to secondary factors that may interfere
with the enzymatic activities of NAD+ metabolic pathways. Indeed, the profound cross-sectional
associations of N1-MN + 2Py excretion with vitamin B6 status and alcohol consumption are most likely
explained by their implication in the de novo nicotinamide pathway [19] and NAD+ catabolism [62,63],
respectively. Of note, these secondary factors did not appear to underlie the prospective associations
of niacin status in KTR.

Evidently, the protective effect of niacin status on premature mortality in KTR is most likely
explained by its ability to prompt NAD+ biosynthesis. In fact, NAD+ homeostasis has been linked
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to increased resistance to diseases that are the main contributors to premature mortality in KTR:
cardiovascular, infectious, and malignant diseases [60,61]. In the present cohort, the preponderance of
cardiovascular, infectious, and malignant diseases as leading causes of premature mortality after renal
transplantation is unabated, accounting for 56 (40%), 40 (28%), and 26 (18%) out of 143 mortality cases
separately, respectively, adding up to 122 (85%) collectively. Furthermore, within the context of renal
diseases, beneficial effects of niacin in pharmacological doses have at least partly been explained by its
native function to fuel NAD+ biosynthesis in previous studies [31].

In pathological conditions, NAD+ is presumed to drive benefits by its role as redox coenzyme, but
also by the reciprocal activities of NAD+-consuming enzymes: sirtuins, poly(ADP-ribose) polymerases
(PARPs), and cyclic ADP ribose synthases (CD38 and CD157). Sirtuins are implicated in longevity and
protection of organs including the kidneys specifically, via deacetylation of factors related to apoptosis,
senescence, and inflammation [64]. PARPs, however, deplete NAD+ to the point of impeding sirtuin
activity in response to immune-related oxidative (DNA) damage [31]. Given the predominance of
inflammatory and oxidative stress in KTR [65], higher niacin status may preserve NAD+-dependent
sirtuin activity as a protective factor in this population.

The reciprocal activities of NAD+-consuming enzymes may also hold for the negative association
of N1-MN + 2Py excretion with risk of infectious mortality specifically. Sirtuins inhibit proinflammatory
factors, such as NF-kB and p53 [66], which is key in the supposed antioxidant and anti-inflammatory
properties of niacin during infections [32–34]. Oppositely, PARPs not only attenuate anti-inflammatory
sirtuin activity by limiting NAD+ levels, but also activate proinflammatory factors directly [67]. Benefits
of niacin on the inflammatory response and survival have been exemplified during sepsis, and were
likewise attributed to downregulation of intracellular signaling [32–34], mediated by sirtuins.

Alterations in NAD+ homeostasis may be apparent due to the prevalence of low-grade chronic
inflammation in KTR. Tryptophan is quantitatively the most important NAD+ precursor, and its flux
through the nicotinamide pathway is upregulated by indoleamine 2,3-dioxygenase in response to
inflammatory cytokines during chronic inflammation [19]. Indeed, we found N1-MN + 2Py excretion
to be positively associated with serum hs-CRP as a biomarker of low-grade chronic inflammation.
In view of this, one can speculate upon tryptophan being shunted away from other pathways that
use tryptophan as a precursor, including protein biosynthesis, to fuel NAD+ biosynthesis [19,68].
Such a shift may amplify pre-existing protein catabolism and negative protein balance [7,9], and
accordingly add to the risk of premature mortality with lower niacin status in KTR. Therefore, although
the protective effect of niacin status on mortality is stronger for individuals in the subgroup with lower
serum hs-CPR in the present study, future studies may point out whether those in the subgroup with
higher serum hs-CRP will profit from niacin nutrition exceeding their present status.

Strengths of the present study include the large sample size of KTR, the long follow-up time, and
the comprehensive characterization of KTR to control for confounding and effect modification. In
addition, 24-h urine collection takes into account the large diurnal variation of NAD+ catabolism [69,70],
rather than single time-point sampling such as single-void urine or plasma collection. Importantly, the
assessment of 2Py excretion in addition to N1-MN excretion by means of the 24-h urinary excretion of
N1-MN + 2Py eliminates the presence of increased conversion of N1-MN to underlie the prospective
associations of niacin status in KTR. Limitations of this study include its observational nature which
inherently prohibits causal inferences. Similarly, the observational nature of this study precludes
further elucidation of the biological mechanisms underlying the protective effect of niacin status in
KTR. Although many potential confounders were adjusted for in separate models, one cannot rule out
the presence of additional or unmeasured confounding. Furthermore, the conclusions of this study are
based on single baseline measurements, although under- and over-collection of 24-h urine is accounted
for by strict protocol and sensitivity analyses, as described previously [11], and the urinary excretion of
NAD+ catabolites is stable within individuals over time [70]. Last, the overrepresentation of Caucasian
subjects from a single center may compromise the generalizability of the conclusions of this study.
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5. Conclusions

The 24-h urinary excretion of N1-MN + 2Py is negatively associated with risk of premature
all-cause mortality, and infectious mortality specifically, independent of potential confounders. As the
interpretation of both N1-MN and 2Py excretion is indicated for assessment of niacin status in KTR,
these findings reinforce niacin status as a potential target for nutritional strategies for improvement
of long-term outcome after renal transplantation. However, future studies are warranted to address
causal inferences and biological mechanisms underlying the protective effect of niacin nutritional
status in KTR.
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