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Abstract

Wearable sensors are already impacting healthcare and medicine by enabling health monitoring 

outside of the clinic and prediction of health events. This paper reviews current and prospective 

wearable technologies and their progress toward clinical application. We describe technologies 

underlying common, commercially available wearable sensors and early-stage devices and outline 

research, when available, to support the use of these devices in healthcare. We cover applications 

in the following health areas: metabolic, cardiovascular and gastrointestinal monitoring; sleep, 

neurology, movement disorders and mental health; maternal, pre- and neo-natal care; and 

pulmonary health and environmental exposures. Finally, we discuss challenges associated with 

the adoption of wearable sensors in the current healthcare ecosystem and discuss areas for future 

research and development.
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Wearable devices (wearables) are already revolutionizing biomedicine through mobile and 

digital health by enabling continuous, longitudinal health monitoring outside of the clinic. 

Previously geared toward consumer health enthusiasts, healthcare practitioners are now 

beginning to adopt wearables for patient monitoring. Wearables also facilitate algorithm 

development for automated health event prediction, prevention and intervention. New 

wearables-based analytic platforms are coming online at an unprecedented rate and are 

transforming quality and accessibility of healthcare everywhere from hospital intensive care 

units (ICUs) to in-home chronic disease management to resource-limited field settings. 

Improved ICU alarms, continuous arrhythmia detection outside of the clinic and rural neo-

natal temperature monitoring are just a few of the many recent advancements made possible 

by wearables. Here, we discuss major innovations in wearable sensing for healthcare, touch 

upon limitations of existing work and explore future directions (Figure 1A).
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Typical wearable devices with applications in health

Many nonimplantable wearable sensors exist for use in consumer health and medical 

research and some devices are already being integrated into standard clinical practice 

(Figure 1C). Some common devices are summarized in Table 1. These sensors can generally 

be classified into three main categories: mechanical, physiological and biochemical (Figure 

1B) [1]. The sensor grades range from consumer to clinical to research-grade devices 

(Figure 1B). Data from these sensors have been used in a wide range of tasks, including, 

for example, tracking gait, detecting atrial fibrillation and monitoring blood glucose, 

respectively.

Wearable mechanical sensors usually utilize parts of inertial measurement units (IMUs) to 

estimate a subject’s translational and rotational motion, applied forces and surrounding 

magnetic field. IMUs use biaxial or triaxial accelerometers to measure planar or 3D 

movement, respectively, gyroscopes to measure rotation and magnetometers to measure 

relative position. Accelerometers are most common in wearables, but gyroscopes are 

appropriate when it is necessary to differentiate acceleration due to gravity versus 

acceleration due to movement [39]. To obtain exact positioning in space during movement, 

global positioning systems and altimeters can be used to continually correct for drift errors. 

Wearable pressure sensors have also become increasingly common to track forces either 

exerted on or by the body.

Although mechanical sensors usually use piezoelectric components to convert mechanical 

motion into electrical signals, physiological sensors use optical, electrical, acoustic or 

thermal sensing components to measure biological signals including vital signs (e.g., heart 

rate, temperature, BP, blood oxygen saturation), bodily functions (gut and respiratory 

activity) and bioelectrical activity (e.g., bioimpedance and electrodermal activity, ECG, 

electromyography, electroencephalography). Photoplethysmography (PPG) is a common 

sensor used to detect heart rate via changes in light absorbance through thin tissues. 

Bioimpedance sensors are thought to be useful for detecting stress and emotion through 

changes in electrical resistance of tissues related to neural activity.

Wearables that are most commonly related to clinical applications include biochemical 

sensors. Biochemical sensors have a wide range of uses including glucose, alcohol, 

electrolyte, pH, oxygenation/gas and humidity sensing. Biochemical sensors combine a 

chemically sensitive layer and transducer to convert a chemical or biological analyte into an 

electrical signal. These sensors are used to measure both internal and external chemical and 

biochemical species for health monitoring.

Wearable devices used for general health management

Wearable devices provide opportunities to improve healthcare in a variety of settings, from 

in-hospital and in-clinic care, to ambulatory care in the home and in remote geographical 

settings including rural areas and low-resource environments (Figure 2A). One of the major 

challenges in the wide adoption of wearable biosensor technologies for healthcare is the 

extraction of useful and actionable health-related information from the large volume of 
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data. To address this data deluge, we and others have recently developed algorithms to 

automatically process and interpret wearables data in order to present evidence-based health 

insights such as detection of inflammation or prediction of cardiometabolic health based on 

activity habits [40-43]. This emerging work is anticipated to grow in scope and dramatically 

revolutionize the healthcare landscape around the globe by providing opportunities for 

automated detection of health events and deployment of mobile interventions (Figure 2E).

Mobile health technologies also offer an opportunity to scale physiological monitoring 

studies to uncover new uses for wearables in healthcare. Data analysis methods, including 

machine learning, show promise to expand the use of wearables into clinical applications 

that range from detection of acute health events (e.g., infection/inflammation) to monitoring 

and management of chronic diseases (e.g., cardiovascular disease and diabetes) (Table 

2) [40,41]. In our study on the utility of wearable sensors for managing health and 

diagnosing disease, participants wore devices including consumer fitness trackers. These 

devices measured physical activity, heart rate, skin and ambient temperature, electrodermal 

activity, blood oxygen saturation and radiation exposure [41]. We concomitantly performed 

comprehensive clinical and biomolecular measurements including multi-omics as a part 

of the Integrative Personal Omics Profiling study [40,44-46]. Encouragingly, using only 

measurements from a consumer smart watch, we were able to predict clinical measurements 

of inflammation, infection and insulin sensitivity status based only on measurements from 

a consumer smart watch [40]. Others have also demonstrated the utility of consumer fitness 

trackers for health-related insights and personalized interventions. Examples include the 

correspondence of wearables-derived resting heart rate and activity with cardiovascular and 

metabolic disease markers, and wearables data utility in designing behavioral coaching 

[40,42,43]. Building upon the idea of multimodal wearable sensor data integration, industry 

players have begun developing platforms in this space. PhysIQ is one example of a platform 

that detects subtle changes from a patient’s baseline using biosensing devices to provide 

real-time health insights [47].

Clinical biomarkers are measurable indicators of biological state that can aid in disease 

diagnosis, prognosis and treatment effects. Wearables can also generate such indicators. 

Digital biomarkers are digitally collected data, such as heart rate from a wearable device, 

that are transformed through fmathematical models into indicators of health outcomes 

like prediabetes (Table 2). Some digital biomarkers have been found to outperform 

traditional clinical methods, for example, for arrhythmia detection, because of their ability to 

continuously monitor patients outside of the clinic. The most successful digital biomarkers 

have been developed based on supervised, unsupervised and semi-supervised machine 

learning models. One major obstacle of using supervised machine learning for digital 

biomarker discovery is the amount of costly labeled data required to train a supervised 

model [41]. A semi-supervised method that reduces the amount of labeled wearables 

data needed for training digital biomarker models by tenfold was developed to address 

this challenge. This method incorporates pretraining a long short-term memory sequence 

autoencoder with unlabeled wearables data [41]. Cardiogram’s DeepHeart platform also 

takes advantage of a semi-supervised approach. A partnership between Cardiogram and 

the University of California San Francisco Health eHeart study explored detecting clinical 

conditions from wearables data in 14,011 wearable-equipped participants. This team has 
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demonstrated early success in detecting Type II diabetes (85% accuracy), atrial fibrillation 

(97% accuracy), sleep apnea (90% accuracy), hypertension (82% accuracy) and more 

recently, cardiovascular risk using the DeepHeart platform [42,48]. VitalConnect (CA, USA) 

has also built successful sleep apnea and fall detection algorithms using respiratory rate and 

accelerometry [48-51].

Wearable biosensors revolutionizing in-clinic/hospital care

Wearables with continuous data collection, real-time analytics and presentation of actionable 

health insights provide unprecedented opportunities for revolutionizing care in clinical and 

hospital settings. Historical device data collected prior to patient presentation in a clinic or 

emergency department (ED) facilitate rapid triaging to provide immediate care to those 

patients most in need. Researchers have received favorable feedback on the perceived 

usefulness of wearable monitoring in emergency room settings from patients and nurses 

[52].

Recent studies explored the utility of vital signs for automated triage of ED patients. Levin 

et al. built a machinelearning-based system called e-triage that uses incoming patient vital 

signs, chief complaint and active medical history to automate ED triage. In a multisite 

retrospective study of 172,726 ED visits, e-triage predictions had areas under the receiver 

operating characteristic curve ranging from 0.73 to 0.92. E-triage is currently implemented 

at Johns Hopkins Medicine for prospective validation studies [53]. Moreno et al. extended 

this concept by developing wearable bracelets for patients admitted to the ED, although 

these devices have not yet been tested for efficacy of patient triage [53,54].

For hospital inpatient care, continuous monitoring has been used for decades through 

multiparameter patient vital signs monitors (e.g., BP, blood oxygen saturation [SpO2], heart 

rate, respiration rate) [55]. However, continuous monitoring of nonbedridden patients is 

more challenging because patients must travel around the hospital with bulky monitoring 

devices [22]. The wireless nature of new wearable sensors that measure the aforementioned 

vital signs as well as additional parameters (e.g., movement, skin conductance, food intake, 

self-care and bathroom habits, etc.) provide an unprecedented opportunity to dramatically 

improve patient monitoring in clinical and hospital settings while also improving patient 

comfort and mobility [22].

ICUs are already benefiting from algorithms that synthesize multimodal sensor data and 

tailor alarm systems and medical decision support systems. By continuously monitoring 

for dynamic changes to patient status, warning signs prior to health event escalation 

may provide the opportunity for early interventions to prevent severe health events [22]. 

Another critical area this can addresses is alarm fatigue in the ICU. In a recent feasibility 

study, the Fitbit Charge (CA, USA) was used to monitor post-ICU convalescence in 50 

stable ICU patients over 24 h. Heart rate, arrhythmia detection and sleep measurements 

from the Fitbit were compared against clinical gold standards. Tachycardia detection had 

69.5% sensitivity and 98.8% specificity [22]. To improve the positive predictive value of 

ICU alarms, Aboukhalil et al. developed a novel method for suppressing false arrhythmia 

alarms in the ICU using continuous ECG and arterial BP waveforms [56]. CDSs are 
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software aids for clinical decision making (e.g., Medtronic VitalSync, MN, USA) [57,58]. 

Integration of wearables data in CDS can improve their utility and outcomes. Challenges 

of integrating wearables into CDS include utilizing training data that is appropriate for the 

patient population, testing implementation of the CDS for specific clinical outcomes and 

summarizing and retuning results to clinicians and patients [59-62]. Wearables can also 

revolutionize telemedicine by providing information to remote physicians that enhances the 

clinical snapshot collected while the patient is in the hospital.

To implement wearables in the clinic, methods must be developed to integrate wearables 

data in a meaningful way into the electronic health record. Recent efforts include 

partnerships announced since 2014 between companies that aggregate wearable device data 

with electronic health record/interoperability companies. These partnerships include Apple 

Healthkit and Epic, Validic and Cerner, the MyCarolinas Tracker App and Canopy, AliveCor 

(CA, USA) and Practice Fusion, Medable and Redox, Healow and eClinicWorks, and 

NantHealth, American Well and Allscripts. At this time, most integration/interoperability 

apps aggregate data from hundreds of different wearables with their partnered electronic 

health record systems. With this integration comes advances in defining and transporting 

protected health information from wearables and smart phone apps to electronic health 

records, and improvements in clinical trial systems. For example, Precision Digital Health 

has developed the SUMMA platform, which uses standards from the Health Level 7 Fast 

Healthcare Interoperability Resource to integrate wearables with electronic health records 

to improve clinical trial design and outcomes. Electronic health record integration raises 

challenges surrounding interpretation of wearables data by clinicians, development of real-

time interventions, maintenance of data privacy and security, approval by the US FDA and 

on-off-label use of the data, and initiation and maintenance of patient participation.

Wearable biosensors revolutionizing specific fields of healthcare outside of 

the hospital & clinic

Outside of the clinic, wearable sensors have found utility in a variety of healthcare-related 

applications, including general wellbeing, broad medical care, condition-specific monitoring 

and mobile health interventions. In the following section, we discuss wearables used outside 

of the clinic for metabolic, cardiovascular and gastrointestinal monitoring; neurology and 

mental health; maternal, pre- and neo-natal care; and pulmonary health and environmental 

exposures (Figures 1A&C&2C).

Metabolic, cardiovascular & gastrointestinal health

Metabolic syndrome is marked by a cluster of conditions including high BP and blood sugar, 

abdominal obesity and abnormal cholesterol or triglyceride levels that often occur together 

and increase the risk of cardiovascular disease, stroke and diabetes [31].

As diabetes and metabolic syndrome increase in prevalence, methods to continuously 

monitor blood glucose have improved dramatically. The first continuous glucose monitor 

(CGM) for retrospective patient analysis (MiniMed) earned FDA approval in 1999. The 

leading CGMs on market today are Dexcom (CA, USA), Medtronic (MN, USA) and Abbott 
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(IL, USA) devices [2-5,19,31]. All are wearable but invasive to some extent (through 

a subdermal needle or flexible filament insertion). Still on the horizon are noninvasive 

CGMs which provide promise for individuals with prediabetes or noninsulin-dependent 

Type II diabetes for chronic disease management and prevention, as well as for Type I 

diabetics for integration with insulin pumps to create an ‘artificial pancreas’. Noninvasive 

CGMs undergoing research on longer horizons include smart watches and contact lenses 

[6-8]. Two established partnerships pursuing the tear-based glucose sensing market include 

Verily/Alcon (CA, USA) and Noviosense/Gentag/Mayo Clinic/Fraunhofer Institute for 

Microelectronic Circuits and Systems. GlucoWise (London, UK) is another device under 

development promising noninvasive CGM by transmitting high frequency, low-power radio 

waves through a thin section of skin with high blood flow (e.g. earlobe or area between the 

thumb and forefinger).

Wearables have been highly successful for exploring cardiac health and detecting 

arrhythmias outside of the clinic. Improvements upon Holter monitoring, the standard of 

care for ambulatory monitoring for cardiac events outside of the clinic since 1965, include 

replacing lead-based monitoring to improve adherence and data collection and extending the 

time period of continuous monitoring with alternative form factors, although the data types 

and accuracy may be different [9]. The most successful replacement technologies to date 

include three form factors: temporary passive monitoring (usually 1–2 weeks) using a patch 

(e.g., iRhythm’s ZioPatch, Preventice’s Bodyguardian Heart, VitalConnect’s VitalPatch), 

continuous but impassive monitoring (e.g., AliveCor’s Kardia-Mobile or KardiaBand or 

continuous passive monitoring using optical heart rate sensors (e.g., smart watch PPG sensor 

combined with an analytics engine like cardiogram, which has atrial fibrillation detection of 

97% accuracy) [10-14,29,30,63-65]. AliveCor’s KardiaBand is a ECG-capable smart watch 

band that can be paired with smartwatch PPG for continuous, passive atrial fibrillation 

monitoring [15]. Kardia’s 30-s ECG is initiated by the user and is not continuously or 

passively collected. A recent trial comparing AliveCor’s technology with routine care (n = 

1001) resulted in a nearly fourfold increase in atrial fibrillation diagnosis [15]. Companies 

like Zoll (MA, USA) have combined arrhythmia detection technology with an interventional 

wearable defibrillator, called LifeVest, to automatically revive patients in the case of a 

cardiac event [38]. LiveVest showed comparable outcomes to implantable cardiac devices 

in a 3-year study (n = 3569) with acute event survival at 99.2% [38]. To improve cardiac 

rehabilitation, a smart phone system was developed to recommend exercise intensity by 

comparing real-time wearable heart rate data with a predefined target heart rate zone, 

enabling patients and their care providers to monitor recovery and general cardiovascular 

health over time [66].

Hypertension affects at least one in three US adults and is a growing problem around the 

world [67]. Diagnosis and monitoring of hypertension and treatment efficacy is difficult 

for a few reasons: a single blood pressure (BP) measurement in the clinic often does not 

capture true average BP, BP fluctuates throughout the day based on circadian rhythms 

and daily activity, and the ‘white coat syndrome’ can lead to higher BP measurements 

in the clinic [68-73]. In order to measure BP continuously over the course of the day 

and longitudinally over time, work is being done to replace current technologies that 

require cuff-based oscillometric measurements [74]. Small and affordable BP monitors 
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like table-top (e.g., Omron) and cuff-based wearable ambulatory BP monitors (e.g., Qardio 

Arm) enable in-home monitoring, but are neither continuous nor passive. New devices that 

promise to change the current paradigm of hypertension monitoring use either inflating 

wristband cuffs (e.g., Omron HeartGuide, currently undergoing clinical testing) or optical 

pulse wave-based metrics of BP [75,76]. If FDA approved, these devices will pioneer the 

field of continuous BP monitoring. Other BP monitoring methods used non-FDA-approved 

oscillometric methods or case prediction algorithms based on heart rate and steps [32].

Gastrointestinal diseases often co-occur with metabolic syndrome, but the two conditions 

may also occur independently [77,78]. Digestive disorders and gastrointestinal diseases 

affect the GI tract, liver, pancreas and gallbladder and can affect individuals in an acute 

or chronic manner. The total direct and indirect cost of care for gastrointestinal disorders 

is estimated at $142 billion a year [79]. Wearable technologies to detect, diagnose and 

manage gastrointestinal conditions are limited. The Gastrointestinal Logic AbStats system 

(CA, USA) provides real-time digestive telemetry via noninvasive vibration and sound 

sensing to assess postsurgery GI tract re-engagement [23]. G-tech (Mountain View, CA, 

USA) takes a different approach to gastric myoelectric activity monitoring via electrodes 

that measure motor activity of the stomach, small intestine and colon [24,25]. Researchers 

at the University of California San Diego have significantly expanded the potential for 

gastric monitoring via electrogastrogram [80-82]. An early-stage ingestible sensor is being 

explored to diagnose gastrointestinal slowdown or monitor food intake via gastrointestinal 

movement [83]. This device adheres to the stomach wall or intestinal lining, where it 

can measure the rhythmic contractions of the digestive tract. The devices described above 

provide new sensing and potential therapeutic modalities and are expected to dramatically 

improve gastrointestinal care.

Sleep, neurology, mental health & movement disorders

Early diagnoses and improved patient monitoring for sleep, neurology and mental health 

are becoming possible with continuous monitoring afforded by wearable sensing. 70 million 

Americans experience chronic sleep problems. Polysomnography, the current gold standard 

for sleep monitoring, often conflicts with subjective self-reports of sleep and is difficult 

to monitor longitudinally [84]. Wearable sensors show promise for monitoring sleep and 

related outcomes. The Oura ring (FIN) compared with polysomnography had a 96% 

sensitivity to detect sleep, and agreement of 65, 51 and 61%, in detecting ‘light sleep’, 

‘deep sleep’ and REM sleep, respectively. Specificity in detecting wake was 48%. Similar 

to PSG, ‘deep sleep’ detected with the Oura ring was negatively correlated with advancing 

age [35]. Obstructive Sleep Apnea (OSA), one of the most common sleep disorders, is 

estimated to affect up to 7% of adults in the USA [85,86]. Wearables have been successful 

in detecting OSA in a variety of ways, including with personalized machine learning 

algorithms based on similarity to other OSA patients (detection accuracies between 90 and 

93.6%) [41,87]. Sleep impacts chronic illness, neurological conditions and acute cognitive 

function including memory and mood [22,88-90]. Diminished motor-skill coordination from 

lack of sleep leads to accidents and injury, and chronic sleep deprivation is linked to chronic 

illness such as heart disease, obesity, diabetes and depression [85]. To explore the use of 

wearable devices to detect drowsiness, one recent pilot study (n = 10) used a single-channel 
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electroencephalogram and IMU sensor to detect five different levels of drowsiness with an 

average of 95.2% accuracy [91]. In our recent study monitoring physiological changes using 

wearables during flight, we found that SpO2 directly corresponds to drowsiness level [40].

Mood disorders are top medical causes for disability [92]. Prevalence of depressive disorders 

increased 30% from 1990 to 2010 and one in three veterans experience symptoms of 

depression [92,93]. Mobile apps provide a means to more accurately record symptoms 

(e.g., depressive mood, anxious mood or fatigue) through real-time assessments that can be 

administered outside of the clinic and accurate recall and time of recording [94,95]. Still a 

challenge is the dependence on active patient participation and the semi-quantitative nature 

of the measurements. Continuous, passive wearables monitoring can lower dependence on 

participant interaction and increase the volume of data that can be collected over time. 

Additional relevant data types can also be collected. A study on the relationship between 

mood and physical activity using wearable actigraphs (n = 85) showed that distinct activity 

patterns correspond with worsening depressive symptoms [96]. Bipolar Disorder (BD) 

mood states including depression, mixed, mania and euthymia were accurately classified 

(68–85%) using a support vector machine trained on features of heart rate variability and 

previous mood (n = 8) [97]. Wearables may also differentiate between disorders that have 

shared symptoms which may cause delays in diagnosis or treatment, imprecise treatment 

or misdiagnosis (e.g., hyperactivity shared by BD and ADHD). By tracking additional 

metrics like diurnal activity and circadian amplitude and dysregulation using wearable 

sensors, researchers could distinguish BD and non-BD conditions, such as ADHD, with 83% 

accuracy (92% specificity and 64% sensitivity) [98].

With the ability to more accurately track acute and chronic neurologic and mental 

health symptoms, the opportunity for real-time intervention follows. Artificial intelligence 

platforms can learn and predict effective interventions for an individual using a combination 

of personal historical data and population-level data to optimize treatment type and timing. 

One example is Sentio Solutions’ Feel wristband (San Francisco, CA, USA), which is 

anticipated to deliver personalized interventions to the wearer according to their mood state 

based on their proprietary neural network model that can accurately detect 70–75% of 

relaxed, anxious, excited and fun mood states using features of heart rate variability and 

skin conductance (n = 224) [37]. Another example is a platform for emotion self-regulation 

for individuals with Autism Spectrum Disorder. Using physiological and movement metrics 

from a smartwatch to infer outburst patterns, real-time, self-regulation exercises are sent as 

smartwatch notifications as a just-in-time intervention. In a recent study, 33 and 43% of 

the alerts successfully engaged the participant in the self-regulation exercise and resulted 

in de-escalation of a potential episode, respectively [99]. Technological limitations include 

noisy heart rate during periods of high intensity activity. Other nonwearable technologies for 

Autism Spectrum Disorder interventions include computer vision monitoring [100].

Several neurologic disorders include motor control dysregulation. Epilepsy, which can 

develop at any stage of life, affects more than 50 million globally [101,102]. The Empatica 

Embrace (MA, USA), a smartwatch that evolved out of the MIT Media Lab, can detect 

seizures using electrodermal activity and accelerometry and can also notify emergency 

contacts [20,21,103]. In a study of 80 pediatric patients with varying degrees of epilepsy, 
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Embrace detected 94% of GTC seizures with less than one false alarm per 24-h period 

[20]. Orpyx Medical Technologies, Inc. (AB, CAN) designed the SurroGait Rx shoe insole 

and vest system to measure and correct gait in multiple sclerosis (MS) patients. The 

system senses and converts pressure produced on the insole during walking to the vest 

with a built-in vibrotactile array to re-teach multiple sclerosis patients to walk (n = 7, 16 

weeks) [33]. This device has also been successful for pressure-offloading alerts to prevent 

diabetic foot ulcers, which cost the US$81.7 billion in 2012 [104,105]. Gait analysis is 

also used to assess Parkinson’s Disease (PD) patients and generally requires video-based 

motion-capture in a specialized laboratory [34]. IMUs affixed to shoes were recently 

found to result in comparable diagnoses with gold standard video-based assessments to 

distinguish gait differences between PD and unaffected patients and for longitudinal tracking 

of gait changes in PD (n = 291) [78]. Wearable sensors have been highly successful in 

fall detection [50,106,107]. A study on VitalConnect’s HealthPatch wearable found that a 

tri-axial accelerometer worn at any location of a participant’s body, and in any orientation, 

could detect falls with a sensitivity of 99% and specificity of 100% (n = 25) [50].

Maternal, pre- & neo-natal care

There are approximately six million pregnancies each year in the USA and pregnancy-

related complications are common: one in ten infants in the USA are born preterm and 

there has been a steady increase in pregnancy-related complications and mortality from 

1987 to 2013 [108-113]. Further, 6.2% of women and 11.5% of men of reproductive age 

have impaired fertility [114,115]. Improved screening methods are under development, and 

studies show that remote monitoring and telemedicine-based approaches greatly improve 

care access for women with newborns [116-118]. Here we summarize devices on market for 

fertility tracking and pre-, neo-natal and maternal monitoring (Figure 1C, right).

To improve odds of conception, fertility tracking devices have been developed specifically 

for use in women to track ovulation based on physiological changes like body temperature. 

The Ava wristband (San Francisco, CA, USA) is FDA approved for fertility tracking and 

measures nine physiological parameters including resting pulse rate, skin temperature, heart 

rate variability, sleep, breathing rate, movement, perfusion, bioimpedance and heat loss. In 

a recent study of 91 women, a significant increase of the fertile-window sleeping pulse 

rate compared with the menstrual phase (an average of 2.1 beat-per-minute) measured via 

PPG was found [17]. Among wearable temperature trackers, the Yono earbud (CA, USA) 

and Tempdrop underarm armband (ISR) measure basal body temperature at night to track 

ovulation cycles. These technologies are also being explored for contraception, for example, 

paired with algorithms like Natural Cycles [119].

Several devices exist for tracking fetal heart rate and movement, although none had been 

FDA approved at the time of this review. The Bloomlife Smart Pregnancy Tracker (CA, 

USA), a wearable device for tracking contractions in the third trimester of pregnancy, 

was shown to have an 87% success rate in predicting delivery within 24-h using 

electrohysterography and HR [18,120]. Their labor risk score was developed based on in-

hospital data from 55 pregnant women and was evaluated on recordings from 142 pregnant 

women in free-living conditions. The Moodo, a wearable device, and the Bellabeat Shell, 
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a nonwearable smart phone attachment, record and amplify sounds to track fetal heart rate 

and count fetal kicks. Neo-natal and infant physiologic monitoring to assist parents and 

caregivers come in many different form factors to accurately monitor infant respiration, 

pulse rate and blood oxygen saturation, and to generate alarms for apnea, tachycardia, 

bradycardia and desaturation [121]. Bempu is a neonatal bracelet used in low-resource 

settings to monitor premature infant temperature to detect hypothermia [122]. Physiologic 

monitors that include sensing for pulse rate, respiratory motion and/or pulse oximetry 

include the Baby Vida and Owlet smart socks, the Mimo onesie, the MonBaby and Snuza 

Pico button/clip, and the Sproutling leg band. Such devices have caused frustration in the 

pediatric medical community due to unsubstantiated claims that may encourage parents to 

use these devices to monitor infants for medical conditions such as sudden infant death 

syndrome and potentially deliver unecessary or even harmful interventions [123].

Pulmonary health & environmental exposures

Pulmonary disease wearables take advantage of the fact that most airway abnormalities can 

be characterized by the abnormal sounds (adventitious sounds). Health Care Originals, Inc. 

(NY, USA) originally designed a multisensor asthma detection system and later simplified to 

a single audio-recording system for respiratory assessment in an effort to extend battery life 

for more practical use [26]. Studies demonstrate that the wearable chest device, ADAMM, 

can be used to track adolescent asthma [26-28]. In a recent validation study, 84 teens 

between the ages of 13 and 17 were monitored for 1 week during which the ADAMM 

device collected audio data to assess the number of cough events, ultimately demonstrating 

an asthma detection accuracy of 71% [26]. This study established the device’s utility for 

detection and a modest potential to predict near-future disease progression. Follow-up 

studies have distinguished asthma, chronic obstructive pulmonary disease, pneumonia, 

congestive heart failure and lung fibrosis using ADAMM. Wheezing, characterized by 

narrowing airway and limited airflow, is linked to both asthma and chronic obstructive 

pulmonary disease while fine crackling, caused by ‘explosive opening of small airways,’ is 

linked with pneumonia, congestive heart failure and lung fibrosis [124]. Based on collective 

results of 16 studies, wheeze and crackle event classification had accuracies between 

75.78–100% and 89–98.15%, respectively [124]. Airway obstruction caused by anaphylaxis 

may also soon be detectable through wearable sensors. Project Abbie is a collaborative 

effort between Harvard’s Wyss Institute and the KeepSmilin4Abbie Foundation to develop 

a wearable device that would be able to detect early reaction signs and automatically 

administer an injection of epinephrine in response [125].

The large number of potentially important environmental exposures makes developing a 

single ‘exposome’ device challenging [126]. Toward the inclusion of multiple sensors to 

improve the accuracy of pulmonary disease efforts, low-power solutions for integrating 

personal ozone exposure and volatile organic compound measures are beginning to 

appear [127]. Other environmental exposure detection devices include patches to measure 

ultraviolet light and radiation exposure [128].
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Regulatory oversight & economic impact

FDA oversight on digital health includes categories such as mobile health (mHealth), health 

information technology, wearable devices, telehealth and telemedicine, and personalized 

medicine. In September 2017, the FDA announced a digital health software precertification 

pilot program to focus on software design, validation and maintenance by digital health 

technology companies. The nine companies selected to participate in this program include 

Apple (CA, USA), Fitbit, Johnson & Johnson (CA, USA), Pear Therapeutics (CA, USA), 

Phosphorous (NY, USA), Roche (CA, USA), Samsung (SKR), Tidepool (CA, USA) and 

Verily. Wireless medical devices are overseen jointly by the Federal Communications 

Commission and the FDA to regulate the convergence of medical devices with connectivity 

and consumer technology and by the Centers for Medicare and Medicaid Services (CMS) 

to determine costs and market regulation [129]. An abundance of standards are in place and 

accessible via the FDA Recognized Consensus Standards database [129,130]. Most devices 

described in this review are regulated as Wireless Medical Telemetry Systems. The FDA 

describes Wireless medical telemetry as a system generally used to monitor a patient’s 

vital signs (e.g., pulse and respiration) using radio frequency communication, which has the 

advantage of allowing patient movement without restricting patients to a bedside monitor 

with a hard-wired connection.

Commercially available motion sensing, physiological and biochemical wearable sensors 

have been adopted for use in both consumer and clinical healthcare. Although consumer-

grade research devices have been primarily adopted for fitness, medical professionals are 

beginning to find utility in information collected by these devices. Currently, there is a wide 

effort to integrate information from these devices into electronic health records. Several 

devices that have been recently approved by the FDA or that are currently undergoing FDA 

approval have the potential to dramatically change healthcare landscape given their potential 

for use in and out of the clinic for health and disease management.

With the global wearable devices market anticipated to reach $19.5 billion in 2021 

[131], wearable technology has the momentum to dramatically alter our current healthcare 

economics landscape. Replacing just one in five outpatient consultations and home health 

visits with digital visits would alone save $40 billion a year in healthcare costs [132]. 

In a study involving patients with implantable cardiovascular devices (n = 43), remote 

monitoring decreased healthcare costs for those patients by 25% [133]. If wearables were 

to replace even a few of the many costly, gold standard tests and services mentioned in this 

review, it becomes clear that this kind of combined savings could effectively reduce much of 

the healthcare burden.

Conclusion

Wearable sensors have an extremely broad variety of applications to specific areas of 

medicine, enabling monitoring of acute and chronic conditions and overall health both 

in and outside of the clinical setting. Ongoing studies are exploring ways in which this 

longitudinal data can be used to change the paradigm of medicine from a reactive to a 

proactive health system. The Precision Medicine Initiative, the Google Baseline Project, 
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MyHeartCounts, the Stanford Azumio Activity Inequality study and the Health ePeople 

study are four large-scale initiatives to collect longitudinal wearable device data alongside 

other types of biomedical data, including clinical and biomolecular information about 

an individual [16,134-136]. The hope is that these studies will uncover new ways in 

which we can use wearable device data to improve healthcare. As described above, 

there are already several findings to support the use of wearable sensors combined with 

tailored algorithms for continuous, longitudinal monitoring, for example, for detection of 

abnormal heart conditions, hypertension, diabetes, for example (Figure 1C). Further, these 

tools can be used in specific settings to target extreme healthcare costs, for example, by 

reducing emergency room visits and hospital readmission rates, improving postsurgical and 

rehabilitation outcomes, assisting with aging in-home, and preventing serious, preventable 

and costly medical events (deemed ‘never events’ by CMS) (Figure 2A) [137]. Wearables 

can inform ongoing or new symptoms, such as medication side effects or interactions, 

and may be able to provide automated just-in-time interventions. Additional benefits of 

wearable sensors in the field setting include their applicability in environments where 

rapid medical care is needed and often not readily available, for example, at the scene of 

accidents, in military settings, athletics and in resource-constrained environments (Figure 

2) [36,138-140]. Wearable and environmental sensors promise to improve information 

collection and transfer rapidly, potentially to off-site experts and specially designed 

algorithms enable automated and real-time medical decision support in time- and resource-

constrained environments (Figure 2B).

Challenges & future directions

There are several limitations to the use of wearable technology in healthcare (Figure 2D). 

High device cost is a concern that may hinder the accessibility of this consumer healthcare 

technology to benefit only those who can afford the devices. Further, many devices are 

not compatible across platforms (e.g., iOS and Android smart phone operating systems) 

and there is a lack of data standards which limits their broad use and ubiquity. The time 

needed to choose and properly set up a device, and remembering to charge the device are 

also potential barriers to proper use. The acceptability of these devices and potential stigma 

associated with them varies by community and may also be a factor in dividing who benefits 

from these technologies [141].

Most importantly, the accuracy of the devices and evidence that they do in fact improve 

health outcomes must be established with large clinical and field trials. It is common 

to find unsubstantiated scientific claims with no reference to peer-reviewed studies on 

commercial wearable device company websites and advertising materials that can set a 

dangerous precedent if inaccurate or misinterpreted data is factored into medical decision 

making. False negatives can cause a potentially fatal condition to be missed while false 

positives can lead to overtreatment and/or anxiety. Inaccuracy of activity trackers may also 

lead individuals to overestimate their level of physical activity, limiting their effectiveness 

for lifestyle interventions [142,143]. Shcherbina et al. demonstrated that most wrist-worn 

devices adequately measure HR in laboratory-based activities, but poorly estimate energy 

expenditure and caution the use of those measurements as part of health improvement 

programs [144]. Leth et al. demonstrated that step counts are most accurate at slow walking 
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speeds [145]. While useful for just-in-time interventions, real-time delivery of results should 

be carefully considered to ensure that accurate data is presented at the right way and at 

the appropriate time to avoid potentially harmful interventions and patient confusion and 

anxiety. Training should be provided to health practitioners to increase awareness of the 

utilities and limitations of wearable technologies [146]. New tools should be developed 

to assist with the interpretation of wearable device data in a clinical setting. Finally, it is 

important to further evaluate the emotional burden and increased distraction and technology 

addiction that wearables can inflict, potentially causing more harm than good.

New and extremely novel wearable sensors are being developed that build upon movement, 

physiological and biochemical sensors in existence to improve disease detection and 

prognostication through changes in physiology over time or as a result of a specific 

treatment or intervention. Mechanical properties of soft tissues were recently monitored 

via wearables to determine spatiotemporal changes in viscoelasticity of basal cell carcinoma 

lesions [147]. Wearable oxygen diffusion sensors have been used to track wound healing, 

and moisture sensors can inform better timing of wound dressing changes [148,149]. 

Within 5–10 years, we expect that biochemical sensing technologies for continuous biofluid 

analysis (sweat, tears, breath vapor, etc.) will dramatically improve based on a number of 

early-stage wireless and sufficiently miniaturized devices that demonstrate high potential as 

wearable sensors.

Kulkarni et al. developed a rapid (down to 0.1 s) and sensitive (down to 1 part per billion) 

nanoelectric graphene vapor sensor that can continuously monitor a wide range of vapor 

analytes (e.g., nitric oxide, oxygen) from breath or the environment to monitor for illness 

or harmful environmental exposures [150,151]. The form factor is expected to be a badge 

that can be worn on clothing. BreathLink is another breath analysis technology to identify 

women with breast cancer and pulmonary tuberculosis, but this technology is not yet in a 

wearable form factor [152,153]. Wristbands to detect environmental exposures have been 

successful but require off-site analysis using gas chromatography on returned wristbands 

[154]. The need for off-site analysis and replacement devices or device cartridges has posed 

a limitation for longitudinal studies using exposome devices. There are some exposome 

devices, however, that are beginning to address that [155]. The BACtrack Skyn (CA, USA) 

comes in the form of either a BACtrack smart watch or a wristband for an Apple watch; 

both offer continuous blood–alcohol content monitoring through transdermal sensors that 

measure ethanol vapor at the skin’s surface [155].

Several research groups have recently developed mechanically flexible and fully integrated 

wearable sweat sensors (in wristband, temporary tattoo, eyeglasses, mouthguard) for 

analysis of biofluid metabolites and electrolytes (e.g., glucose, lactate, sodium, potassium) 

and pH sensing [156-160]. The wristband device also measures skin temperature for 

calibration, and that data is also useful in analyzing health as described earlier [126,156]. 

This device was recently tested for cystic fibrosis diagnosis and preliminary investigation of 

the blood/sweat glucose correlation [161].

Integrating data collection, analytics and intervention onto one device platform is one of 

the ultimate goals to develop a fully integrated and independently operating medical device 
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system (Figure 2E). This type of device has been explored most recently through closed-

loop insulin delivery systems for Type 1 diabetics, and broader applications are forthcoming 

[162]. Wearable systems enabling stimulus-induced drug delivery (with the stimulus being 

mechanical changes or signals based on biosensor data analysis) that enable a dose- and 

spatiotemporally controlled sustained release of therapeutics have been recently explored 

[163]. Microneedle arrays for transcutaneous administration of small drugs, hormones or 

vaccines to the body are just a few examples of how this technology may be employed for 

just-in-time interventions [164].

Although immense progress has been made over the past several decades in wearable 

sensing technologies and even more recently toward their applications in healthcare, 

significant limitations must be addressed for wearable biosensing to achieve its full potential 

of seamless integration into healthcare.

Improvements in sensor accuracy through hardware and software will enable more accurate 

detection of health changes over time. Improved battery life and wireless communication 

(e.g., direct communication to wireless networks) will enable longer monitoring periods, 

increased utility in resource-limited settings, higher sampling rates (when demonstrated to 

be necessary for specific applications) and increased participation in the broader population 

because device charging will become a less frequent need (Figure 2B).

On the regulatory side, more strict oversight has been called for to prevent potentially 

harmful consequences that can arise from device misuse, inaccurate data or misinterpretation 

of data from these devices (Figure 2D) [121]. The lack of publicly available evidence 

supporting the safety, accuracy, effectiveness or role of these monitors hinders their use in 

clinical and healthcare settings. This can be addressed by vetting of wearable technologies 

through randomized controlled trials with results available in peer-reviewed publications 

as well as FDA approval prior to use in consumer health or the clinic. Unsubstantiated 

claims that overstate the testing accuracy and indications for the device are commonly 

made by wearable device companies to improve sales, and further regulations are needed to 

ensure their appropriate use and to evaluate the potential harm that may result from medical 

interventions or overdiagnosis based on the use of these devices. In Table 1, we demonstrate 

a variety of wearable devices and cite references to peer-reviewed studies, where available. 

FDA-regulated devices like CGMs have substantially more clinical trials establishing the 

safety and efficacy of these devices in healthcare (only the most recent/impactful studies 

are referenced for brevity), but consumer-grade FDA devices have limited evidence of their 

utility in healthcare.

The tripartite regulation of wearable devices by the federal government through the FDA, 

Federal Communications Commission and CMS creates challenges for device manufacturers 

and vendors whereby regulations can be difficult to adhere to due to the different, and 

sometimes divergent, objectives of these agencies. Importantly, it will be necessary for CMS 

to define the reimbursement structure for these devices once CMS determines that the device 

provides ‘reasonable and necessary’ care.
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On the hardware side, improvements in technology are needed to enhance the usability 

of devices. There are often conflicting technological constraints in device design. 

Pantelopoulos and Bourbakis created a scoring system from the perspective of the patient/

wearer, the manufacturer and supervising physician for wearables found that many systems 

score low on wearability, because sensor, battery and on-body hardware size tends to be 

too bulky in weight and size [165]. Improved battery life/energy scavenging technologies/

energy utilization and multiplexing of sensing modalities and the development and scalable 

manufacturing of flexible form factors (e.g., stretchable sensing materials, smart textiles) 

will continue to address this challenge [166]. Further, ensuring that the sensors are tuned 

to capture physiologically relevant ranges of data and are placed on the appropriate body 

location for capturing that information will improve utility of the data and will also reduce 

power consumption from the collection of irrelevant data [167]. In considering human 

factors, the method of collecting and accessing information from the device should be 

continuous and passive so that there is no obtrusive user interaction required, which limits 

user engagement and compliance with the device and user retention, and so that data is 

collected in the appropriate setting for detecting physiological phenomena of interest.

On the software and data use side, algorithms must be improved to ensure that actionable 

insights can be derived from the device data. Challenges to addressing this include 

the wide range of device and system architectures and the proprietary nature of many 

analytic platforms which limit their generalizability. By creating data collection and transfer 

standards and developing more generalizable analytic platforms that can send useful 

information for the patient and physician directly to the electronic health record, it will 

become easier to use wearable sensor data in a meaningful way in the clinic and to develop 

closed loop intervention systems [168]. The further integration of wearable devices into the 

Internet of Things will improve the clinical interpretation and actionability of the device 

data in the broader context of an individual’s lifestyle (Figure 2B & E). Proper encryption 

and authentication mechanisms are needed to ensure that privacy is maintained for protected 

health and personal information.

Addressing all of the above challenges will improve utility and expand the market of these 

devices and will ultimately will improve long-term health monitoring outside of the clinic as 

well as healthcare access in low-resource settings and marginalized communities.
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Executive summary

Typical wearable devices with applications in health

• A broad range of consumer, clinical and research-grade wearable sensors exist 

today that are already revolutionizing the healthcare landscape.

Wearable devices used for general health management

• Wearable sensors are currently being used to improve care both inside and 

outside of the hospital.

Wearable biosensors revolutionizing specific fields of healthcare outside of the 
hospital & clinic

• Ambulatory, remote monitoring using wearable sensors is being used 

for longitudinally tracking conditions related to metabolic, cardiovascular 

and gastrointestinal disorders; sleep, neurology, movement disorders and 

mental health; maternal, pre- and neo-natal care; and pulmonary health and 

environmental exposures.

Challenges & future directions

• Many technical and regulatory hurdles remain, that when addressed, will 

improve the adoption of wearable sensors for healthcare.
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Figure 1. A wide variety of wearable devices facilitate personalized healthcare.
(A) Overview diagram of review paper showing major topics covered. (B) The three 

major wearable sensor types (red) and sensor grades (blue). (C) Wearable devices for use 

in metabolic, cardiovascular and gastrointestinal monitoring; sleep, neurology, movement 

disorders and mental health; maternal, pre- and neo-natal care; and pulmonary health 

and environmental exposures. IMU: Inertial measurement unit; CGM: Continuous glucose 

monitoring.
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Figure 2. The wearables landscape may impact their adoption in clinical care.
(A) Settings where wearables can provide or improve healthcare. (B) Flow of data 

from wearables to health decision-makers. (C) Areas of healthcare that currently existing 

wearables can target (some with strong evidence supporting their use and others are newer). 

(D) Challenges and limitations for the adoption of wearable technology in healthcare. (E) 
A single platform integrating wearable device data collection, analytics and intervention 

delivery will constitute a complete operating healthcare monitoring system.
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Table 1.
Examples of common consumer, clinical and research-grade wearable sensors.

Manufacturer Model Market Cost (USD) Form factor Sensors US FDA
status

Ref.

Abbott Libre Ambulatory 
diabetes 
monitoring

149.98 (cost 
for reader and 
10-day sensor)

Semi-invasive CGM Approved [2-4]

AliveCor Kardia Band Consumer 199 Wristband ECG Cleared [3-14, 
15]

Apple Watch Series 3 Consumer 329 Watch Accel, ambient 
light sensor, 
BALT, Gyro, PPG 
HR, GPS

Precertified [3-16]

Ava Science, Inc. Ava Wristband Consumer 249 Wristband Accel, EDA, PPG 
HR, temperature 
sensors

Approved [17]

BACtrack Skyn Pre-Market – Wristband or 
watch

Transdermal –

Bloomlife Smart Pregnancy 
Tracker

Consumer 
(rental)

20/week Abdominal 
patch

Accel, 3-channel 
AFE

– [17,18]

Dexcom G5 Mobile Ambulatory 
diabetes 
monitoring

1016 (cost for 
transmitter, 
receiver, 4-
pack of 
replaceable 
sensors)

Semi-invasive CGM Approved [2,19]

Empatica Embrace Consumer 249 Watch Accel, EDA, 
Gyro, peripheral 
temperature 
sensor

Approved [20,21]

Fitbit Charge Consumer 149.95 Watch Accel, PPG HR Precertified [22]

Gl Logic AbStats Premarket – Abdominal 
device

Vibration, acoustic – [23]

G-Tech Medical G-Tech Medical Premarket – Abdominal 
patch

EMG – [24,25]

Health Care 
Originals

ADAMM-RSM Premarket – Chest patch Acoustic, HR, 
temperature

– [26-28]

iRhythm Ziopatch Ambulatory 
cardiac 
monitoring

Ordered 
through 
physician, 
billed directly 
to insurance

Chest patch ECG Cleared [29,30]

Med/Wise Gluco Wise Premarket – Clip (thumb, 
forefinger or 
earlobe)

CGM Radio wave 
sensor

–

Medtronic Enlite Ambulatory 
diabetes 
monitoring

– Semi-invasive CGM Approved [5,31]

Motiv Motiv Ring Consumer 199 Ring Accel, PPG HR –

Omron Heart Guide Premarket – Watch Accel, PPG HR, 
oscillometric 
blood pressure

– [32]

Orpyx Surro Gait Rx Ambulatory 
gait 
monitoring

Ordered 
through 
physician

Watch, shoe 
insert, shoe 
pod

Pressure – [33

Per Med. Author manuscript; available in PMC 2025 July 25.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dunn et al. Page 29

Manufacturer Model Market Cost (USD) Form factor Sensors US FDA
status

Ref.

]Orpyx Surro Sense Rx Ambulatory 
gait 
monitoring

Ordered 
through 
physician

Watch, shoe 
insert, shoe 
pod

Pressure Cleared [34]

Oura Oura Ring Consumer 299–999 Ring Accel, Gyro, PPG 
HR, skin 
temperature

– [35]

Preventice Bodyguardian 
Heart

Ambulatory 
cardiac 
monitoring

Ordered 
through 
physician 
billed directly 
to insurance

Chest patch Accel, ECG Cleared [36]

Sentio Solutions Feel Premarket 149 Wristband EDA, PPG HR, 
skin temperature

– [37]

Tempdrop Tempdrop Consumer 150 Underarm 
armband

Thermometer –

Verily Alcon Premarket – Smart lens CGM –

VitalConnect Vital Patch Premarket – Chest patch Accel, ECG, 
thermistor

Cleared [11]

Yono Earbud Consumer 149.99 Earbud Thermometer –

Zoll Lifevest Ambulatory 
cardiac 
monitoring/
intervention 
(rental)

3–4k Vest ECG Approved [38]

Accel: Accelerometer; AFE: Analog front end; BALT: Barometric altimeter; CGM: Continuous glucose monitor; ECG: Electrocardiography: 
EDA: Electrodermal Activity; EMG: Electromyography; GPS: Global positioning system; Gyro: Gyroscope; HR: Heart rate; PPG: 
Photoplethysmography; Therm: Thermometer.
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Table 2.
Digital biomarkers of disease developed from wearable sensor data.

Lyme disease Respiratory viral infection Insulin resistance Atrial fibrillation

Wearable 
device sensors

Resting HR (PPG) Resting HR (PPG) Diumal HR difference (PPG) HR (AliveCor ECG)

Skin temperature (Thermopile) Skin temperature (Thermopile) Physical activity 
(accelerometer)

HR (PPG)

SpO2 (Pulse Oximeter)

ML algorithm Peak detection; logistic 
regression

Sliding window peak detection; 
logistic regression

Multiple regression Deep neural network

HR: Heart rate; PPG: Photoplethysmography.
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