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Abstract

Background: The choice of preprocessing pipeline introduces variability in neuroimaging analyses that affects the
reproducibility of scientific findings. Features derived from structural and functional MRI data are sensitive to the
algorithmic or parametric differences of preprocessing tasks, such as image normalization, registration, and segmentation
to name a few. Therefore it is critical to understand and potentially mitigate the cumulative biases of pipelines in order to
distinguish biological effects from methodological variance. Methods: Here we use an open structural MRI dataset (ABIDE),
supplemented with the Human Connectome Project, to highlight the impact of pipeline selection on cortical thickness
measures. Specifically, we investigate the effect of (i) software tool (e.g., ANTS, CIVET, FreeSurfer), (ii) cortical parcellation
(Desikan-Killiany-Tourville, Destrieux, Glasser), and (iii) quality control procedure (manual, automatic). We divide our
statistical analyses by (i) method type, i.e., task-free (unsupervised) versus task-driven (supervised); and (ii) inference
objective, i.e., neurobiological group differences versus individual prediction. Results: Results show that software,
parcellation, and quality control significantly affect task-driven neurobiological inference. Additionally, software selection
strongly affects neurobiological (i.e. group) and individual task-free analyses, and quality control alters the performance for
the individual-centric prediction tasks. Conclusions: This comparative performance evaluation partially explains the
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2 Impact of preprocessing pipelines on cortical surface analyses

source of inconsistencies in neuroimaging findings. Furthermore, it underscores the need for more rigorous scientific
workflows and accessible informatics resources to replicate and compare preprocessing pipelines to address the
compounding problem of reproducibility in the age of large-scale, data-driven computational neuroscience.
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Introduction

Reproducibility, a presumed requisite of any scientific experi-
ment, has recently been under scrutiny in the field of computa-
tional neuroscience [1–7]. Specifically, the replicability and gen-
eralizability of several neuroimaging pipelines and the subse-
quent statistical analyses have been questioned, potentially ow-
ing to insufficient sample size [8], imprecise or flexible method-
ological and statistical a priori assumptions [9–11], and poor
data/code-sharing practices [12, 13]. Broadly speaking, repro-
ducibility can be divided into 2 computational goals [14]. The
first goal is replicability, which implies that a re-executed anal-
ysis on the identical data should always yield the same results.
The second goal pertains to generalizability, which is assessed
by comparing the scientific findings under variations of data
and analytic methods. Typically, findings are deemed general-
izable when similar (yet independent) data and analysis consis-
tently support the experimental hypothesis. This in turn raises
the issue of defining what constitutes “similar” data and ana-
lytic methodology. Nonetheless, traditionally experimental val-
idation on independent datasets has been utilized to assess
generalizability. However, as the use of complex computational
pipelines has become an integral part of modern neuroimag-
ing analysis [15], comparative assessment of these pipelines and
their impact on the generalizability of findings deserves more
attention.

We present a comparative assessment of multiple struc-
tural neuroimaging preprocessing pipelines on the Autism Brain
Imaging Data Exchange (ABIDE), a publicly accessible dataset
comprising healthy controls and individuals with autism spec-
trum disorder (ASD) [16]. A few studies have previously high-
lighted the variability in neuroimaging analyses introduced by
the choice of a preprocessing pipeline for structural MR images
[17, 18]; however, they have not focused on the relative impact of
analysis tools, quality control (QC), and parcellations on the con-
sistency of results. The inconsistencies in the results arise from
several algorithmic and parametric differences that exist in the
preprocessing tasks, such as image normalization, registration,
and segmentation within pipelines. It is critical to understand
and mitigate the cumulative biases of the pipelines to disam-
biguate biological effect from methodological variance. We fur-
ther replicate our findings on the Human Connectome Project
(HCP) data.

For this purpose, we propose a comprehensive investiga-
tion of the impact of pipeline selection on cortical thickness
measures—a widely used (3,129 hits on PubMed and 42,200 hits
on Google Scholar for “cortical thickness” AND “magnetic res-
onance imaging” search query), fundamental phenotype—and
its statistical association with biological age. We limit the scope
of pipeline variation to 3 axes of parameter selection: (i) image-
processing tool, (ii) anatomical priors, and (iii) QC (see Fig. 1).
The effect of the variation is measured on 2 types of statistical
analyses, namely, (i) neurobiological inference carried out using
general linear modelling (GLM) techniques at the group level and
(ii) individual predictions from machine learning (ML) models.

We note that here the focus is on the preprocessing stages of
a computational pipeline, and the effect of dataset and statis-
tical model selection is thus outside of the present scope. Our
goal is not to explain potential differences in results or establish
criteria to rank pipelines or tools but to document the pipeline
effect and provide best-practice recommendations to the neu-
roscience community with respect to pipeline variation, also re-
ferred to as pipeline vibration effects.

Although here we do not focus on identifying biological dif-
ferences between ASD case and control groups, we use the case-
control samples to gain insight into the effect of diagnosis on re-
producibility analysis—which is a critical evaluation for clinical
applications. Additionally, we use a data sample from the HCP
as a validation dataset (Van Essen et al. [19]) to assess whether
our findings can be replicated on an independent dataset. Note
that the scope of this secondary analysis is limited to a proof-of-
concept dataset comparison.

We organize our comparative assessments on the ABIDE
dataset as follows. We report comparisons across the 3 afore-
mentioned axes of variation. This comprises 5 neuroimaging
preprocessing tools: (i) FreeSurfer (FS) 5.1, (ii) FS 5.3, (iii) FS 6.0,
(iv) CIVET 2.1.0, and (v) ANTS; 3 anatomical priors (i.e., cortical
parcellations): (i) Desikan-Killiany-Tourville (DKT), (ii) Destrieux,
and (iii) Glasser; and 5 QC procedures: (i) no QC, (ii) manual
lenient, (iii) manual stringent, (iv) low-dimensional automatic
outlier detection (i.e., <500 regions of interest [ROIs]), and (v)
high-dimensional automatic outlier detection (i.e., >100,000 ver-
tices). The entire combinatorial set of comparisons (5 software ×
3 parcellations × 5 QC) is not feasible owing to practical limita-
tions (described later), and therefore we report results for 5 tool
procedures and 3 atlases across 5 QC procedures (5 software + 3
parcellations) × 5 QC, as shown by the connecting arrows in Fig.
1. We use these 40 variations of preprocessed data with 4 types
of statistical analyses based on a method type (i.e., task-free vs
task-driven) and an inference objective (neurobiological vs in-
dividual), as described in detail in the Materials and Methods
section.

Materials and Methods
Participants

Participants from the ABIDE dataset were used for this study [16].
The ABIDE 1 dataset comprises 573 controls and 539 individu-
als with autism spectrum disorder (ASD) from 16 international
sites. The neuroimaging data of these individuals were obtained
from the ABIDE preprocessing project [20], the Neuroimaging
Tools and Resources Collaboratory (NITRC) [21], and the Data-
Lad repository [22]. Different subsets of individuals were used
for various analyses based on (i) specific image-processing fail-
ures, (ii) need for a common sample set for software tool com-
parison, and (iii) QC procedures. The demographic description
of these subsets is provided in Table 1 and Fig. 2. The complete
lists of participants can be obtained from the code repository
[23].

https://github.com/neurodatascience/compare-surf-tools
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Figure 1: MR image-preprocessing pipeline building blocks. Each block comprises several potential choices for a typical structural MR image analysis. Only a subset of

the possible pipeline variations is analyzed, as shown with arrows. Manual quality control and automatic outlier detection are shown as auxiliary tasks, which can be
performed at various stages.

Table 1: Participant demographic characteristics for different analyses

Comparisons QC Diagnosis
Number of

Participants Age: mean (SD) Sex (M/F)

Software tools No QC (N = 778) Controls 415 17.8 (7.7) 346/69
ASD 363 18.3 (8.7) 320/43

Lenient manual (N = 748) Controls 407 17.8 (7.6) 338/69
ASD 341 18.4 (8.8) 300/41

Stringent manual (N = 194) Control 113 15.6 (5.5) 93/20
ASD 81 16.2 (5.8) 71/10

Auto QC low-dimensional (N = 683) Controls 371 16.2 (5.4) 309/62
ASD 312 15.9 (5.0) 276/36

Auto QC high-dimensional (N = 662) Controls 356 15.6 (5.0) 293/63
ASD 306 15.7 (4.9) 269/37

Parcellations No QC (N = 1,047) Controls 552 17.0 (7.5) 456/96
ASD 495 17.1 (8.4) 436/59

Lenient manual (N = 975) Controls 525 17.1 (7.5) 430/95
ASD 450 17.4 (8.6) 395/55

Stringent manual (N = 240) Controls 137 15.0 (5.6) 112/25
ASD 103 16.1 (6.3) 91/12

Auto QC low-dimensional (N = 961) Controls 516 15.6 (5.6) 422/94
ASD 445 15.0 (5.1) 390/55

Auto QC high-dimensional (N = 912) Controls 483 15.0 (4.9) 393/90
ASD 429 14.9 (4.9) 377/52

The subsets of individuals are based on (i) specific image-processing failures, (ii) need for a common sample set for software tool comparison, and (iii)
quality control (QC) procedures.

MRI processing and cortical thickness measurements

FreeSurfer
FS delineates the cortical surface from a given MRI scan and
quantifies thickness measurements on this surface for each
brain hemisphere [24, 25]. The default pipeline consists of (i)
affine registration to the MNI305 space [26]; (ii) bias field cor-
rection; (iii) removal of skull, cerebellum, and brainstem regions
from the MR image; (iv) estimation of white matter (WM) sur-
face based on MR image intensity gradients between the WM
and grey matter (GM); and (v) estimation of pial surface based
on intensity gradients between the GM and cerebrospinal fluid.
The distance between the white and pial surfaces provides the
thickness estimate at a given location of cortex. For detailed de-
scription refer to [27]. The individual cortical surfaces are then

projected onto a common space (i.e., fsaverage) characterized by
163,842 vertices per hemisphere to establish interindividual cor-
respondence.

In this work, the cortical thickness for each MR image was
computed using FS 5.1, 5.3, and 6.0 versions. The FS5.1 mea-
surements were obtained from the ABIDE preprocessing project
[20]. The standard recon-all pipeline with “-qcache” flag was
used to process and resample the images onto common (fsav-
erage) space. The FS5.3 measurements were extracted using
the standard ENIGMA cortical thickness pipeline [28]. Last, the
FS6.0 measurements were obtained using the standard recon-
all pipeline with -qcache flag as well. Compute Canada [29] and
CBRAIN [30] computing infrastructures were used for processing
of FS5.3 and FS6.0 data.
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Figure 2: (A) Age distributions for sample subsets used for software comparison

analysis. (B) Age distributions for sample subsets used for parcellation compar-
ison analysis. See Table 1 for sample sizes. (C) Failed QC participants overlap
across the four (manual and automatic outlier detection) procedures. (D) Distri-
bution of total failures across the four QC (manual and automatic outlier detec-

tion) procedures. This shows that most data failed QC by at least one QC proce-
dure, but only a small number were rejected by two or three QC procedures.

CIVET
CIVET 2.1 [31] preprocessing was performed on the data ob-
tained from NITRC. The standard CIVET pipeline consists of
(i) N3 bias correction [32]; (ii) affine registration to the MNI
ICBM 152 stereotaxic space; (iii) tissue classification into WM,
GM, and cerebrospinal fluid; (iv) brain splitting into left and
right hemispheres for independent surface extraction; and (v)
estimation of WM, pial, and GM surfaces. The cortical thick-
ness is then computed using the distance (i.e., Tlink met-
ric) between WM and GM surfaces at 40,962 vertices per
hemisphere.

ANTS
The MRI dataset preprocessed with ANTS (ANTS - Advanced
Normalization ToolS, RRID:SCR 004757) version May-2017 was
obtained from the ABIDE preprocessing project [20]. The detailed
description of the ANTS cortical thickness pipeline can be found
here [17]. Briefly, the ANTS pipeline consists of (i) N4 bias correc-
tion [33], (ii) brain extraction, (iii) prior-based segmentation and
tissue-based bias correction, and (iv) diffeomorphic registration-
based cortical thickness estimation [34]. One key differentiating
aspect of ANTS is that it uses quantification of cortical thick-
ness in the voxel-space, unlike FS or CIVET, which operate with
vertex-meshes.

Cortical parcellations

The regions of interest (ROIs) were derived using 3 commonly
used cortical parcellations, namely, (i) DKT [35], (ii) Destrieux
[36], and (iii) Glasser [37]. DKT parcellation consists of 31 ROIs
per hemisphere and is a modification of the Desikan–Killiany
protocol [38] to improve cortical labeling consistency. DKT label
definitions are included in all 3 FS, CIVET, and ANTS pipelines,
which allows the comparison of cortical phenotypic measures
across these tools. The Destrieux parcellation is a more detailed
anatomical parcellation proposed for a precise definition of cor-
tical gyri and sulci. The Destrieux parcellation comprises 74
ROIs per hemisphere and is also available in the FS pipeline.
In contrast to these structural approaches, the Glasser parcel-
lation was created using multimodal MR acquisitions from 210
HCP participants [39] with 180 ROIs per hemisphere. Glasser la-
bel definitions are available in the “fsaverage” space [40], i.e.,

the common reference space used by FS, allowing comparisons
across multiple parcellations.

Quality control

We used manual (i.e., visual) and automatic (statistical outlier
detection) procedures to investigate the effect of QC on thick-
ness distributions derived from combinations of the different
software tools and cortical parcellations. The manual QC checks
were performed on the extracted cortical surfaces by 2 indepen-
dent expert raters [41, 42]. The 2 raters used different criteria for
assessing the quality of surface delineation. This in turn yielded
2 lists of QC-passed participants from “lenient” and “stringent”
criteria. We note that these lenient and stringent QC lists were
generated independently using FS and CIVET images, respec-
tively, and then applied to all pipeline variations. The automatic
QC was performed using an outlier detection algorithm based
on a random min-max multiple deletion (RMMMD) procedure
(Barry et al. in preparation). The RMMMD algorithm is a high-
dimensional extension of the Cook influence measure to iden-
tify influential observations. The outlier detection method was
applied separately to high-dimensional vertex-wise output and
low-dimensional aggregate output based on cortical parcella-
tions for each software and parcellation choice.

Statistical analysis

We categorize the downstream statistical analyses into a 2 × 2
design. The first factor consists of either (i) unsupervised, task-
free (TF) analyses or (ii) supervised, task-driven (TD) analyses.
The second factor corresponds to either (i) neurobiological (N)
tasks investigating the biological effect across groups of indi-
viduals or (ii) individual (I) tasks predicting individual-specific
states (see Table 2). The task-free, neurobiologically oriented
analyses (TF-N) aim at quantifying similarity of preprocessed
features (i.e., ROI-wise cortical thickness values) without the ex-
plicit constraint of an objective function. Task-driven, neurobio-
logically oriented analyses (TD-N) quantify feature similarity in
the context of a GLM framework. Individually oriented analyses
formulate the duality of neurobiological analyses, with a focus
on individual similarity in task-free (TF-I) and task-driven (TD-I)
contexts.

Previous work has reported varying degrees of association
and predictability of age from cortical thickness measures in
neurotypical and ASD cohorts [43–47]. We therefore selected bi-
ological age as our objective for the TD analyses. Although other
clinical variables (e.g., diagnosis) could be used, the availability
and unambiguity of age quantification across datasets simplifies
comparison of the different analyses.

For TF-N analysis we evaluate the pairwise correlation and
covariance of features using the Pearson r metric. For TF-I analy-
sis, we assess individual similarity using t-distributed stochastic
neighbour embedding (t-SNE) and hierarchical clustering with
Euclidean distance and Ward linkage metrics. For TD-N analy-
sis, we build a GLM to associate cortical thickness and biologi-
cal age with sex and data collection site as covariates. For TD-I
analysis, we train a random forest (RF) model for age prediction
using cortical thickness, sex, and data collection site as predic-
tors. Of note, we also assess the importance assigned to cortical
features by the RF model. ML model performance and feature
importance is assessed within 100 iterations of a shuffle-split
cross-validation paradigm.

We also note that not all pipeline variations can be assessed
easily within this to 2 × 2 statistical analyses design. As men-

https://scicrunch.org/resolver/RRID:SCR_004757
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Table 2: Types of analysis performed for each axis of variation

Axis of variation Analysis type Neurobiology (N) Individual (I)

Software Tool Task-Free (TF) Feature correlations and covariance Individual embeddings and clustering
Task-Driven (TD) ROI ∼Age + coviariates Age ← ROIs + coviariates

Cortical Parcellation Task-Free (TF) N/A N/A
Task-Driven (TD) ROI ∼Age + coviariates Age ← ROIs + coviariates

Quality control Task-Free (TF) N/A N/A
Task-Driven (TD) ROI ∼Age + coviariates Age ← ROIs + coviariates

N/A: not applicable.

tioned before we only analyze a subset [(5 + 3) × 5] of possi-
ble pipeline variations, and compare the 5 software tools using
common DKT parcellation. Tool comparison with Destrieux and
Glasser parcellations is not trivial owing to their unavailability
for CIVET and ANTS. This also limits our comparison across 3
parcellations solely with FS 6.0. We do however compare all 5 QC
procedures with these combinations. The analyses performed in
this work are provided in Table 2. The code used for the analyses
is available at [23].

Validation study

The T1w images of 1,108 individuals from the HCP dataset [19]
were successfully preprocessed using FS 6.0 and CIVET 2.1, re-
spectively, and mean cortical thickness measurements in the
DKT ROIs were obtained. Identical to the ABIDE analysis, we
evaluated the pairwise correlations and covariance of features
between CIVET 2.1 and FS 6.0 using the Pearson r metric, then we
compared it using the same approach as for the ABIDE dataset.

Results
Task-free neurobiological (TF-N) analysis

Feature comparisons across the 5 software tools are performed
using common DKT parcellation. The pairwise comparisons be-
tween software tools are performed on the basis of the ROI-wise
Pearson correlations between thickness measures produced by
each tool (see Fig. 3, Table 3). The pairwise comparisons between
FS, CIVET, and ANTS tools show very little similarity, with cor-
relation values averaged over all regions remaining low (rε[0.39,
0.52]). The comparisons between different versions of FS show
relatively better average correlation performance (rε[0.83, 0.89]).
Stratifying comparisons by diagnosis does not improve correla-
tion. ROI-specific performance shows the lowest median corre-
lation for the left rostral-anterior-cingulate (r = 0.27) and left and
right isthmus-cingulate (r = 0.29,0.31) regions and the highest
median correlation for the left cuneus (r = 0.63), right postcentral
(r = 0.63), and left caudal-middle-frontal (r = 0.62) regions across
all software pairs. The pairwise thickness distributions for 3 ran-
domly selected exemplar ROIs corresponding to different levels
of median correlations across software tools are shown in Fig. 3.
The exemplar ROI comparison suggests that ROIs with high cor-
relation levels tend to have lower overlap between the pairwise
thickness distributions.

The covariance matrix of ROIs and subsequently derived
structural network metrics reveal several software-specific dif-
ferences. First, the covariance matrix shows large variation of
patterns across software tools (see Fig. 4 [middle]). All software
tools show strong bilateral symmetry evidenced by the high cor-

relation values on the diagonal representing hemispheric ROI
pairs. Interestingly, CIVET features show stronger intrahemi-
spheric correlation between ROIs compared to the interhemi-
spheric values. The DKT ROIs are grouped on the basis of their
membership in the Yeo resting state networks [48] to compute
graph theoretic metrics. Figure 4 shows the variation in the 2
commonly used metrics. Figure 4 (top) shows the impact of cor-
relation threshold, typically used for denoising graph edges, on
the fundamental measure of graph density. The 3 FS versions
show relatively similar performance for all resting state net-
works, with somatomotor and default mode exhibiting high-
est and lowest densities, respectively. Compared to FS values,
ANTS and CIVET show different magnitudes and/or rankings of
graph densities across networks. These differences are further
amplified in the graph degree-centrality measurements across
networks. Figure 4 (bottom) shows high intranetwork regional
variance in degree-centrality for FS versions. This variance is
relatively smaller for ANTS and CIVET, but these software tools
generally showdifferent magnitudes of centrality, particularly in
limbic and default mode networks.

Comparison across QC procedures did not show any sub-
stantial effect on correlation values. Feature comparison for a
given software tool (e.g., FS6.0) across different parcellations is
not trivial owing to the lack of correspondence between various
parcellation schemes.

Task-free individual (TF-I) analysis

Individual comparisons using thickness measures from DKT
parcellation are performed across the 5 software tools with an
identical set of participants. Commonly used 2D t-SNE embed-
dings show strong similarity between participants for a given
software tool (see Fig. 5). The 3 FS versions are much more sim-
ilar to each other than any FS version is to CIVET or ANTS, re-
flecting that the different versions of FS share methodological
and technical components. Individual covariance is quantified
using clustering consistency (CC), which measures the fraction
of pairs of individuals assigned to the same cluster with 2 dif-
ferent feature sets (e.g., ANTS vs CIVET). Based on the CC met-
ric, hierarchical clustering with Euclidean distance similarity
and Ward linkage criterion shows poor stability (CC∈[0.52, 0.61])
across software tools and between FS versions (see Table 4). In
contrast, hierarchical clustering with correlation metric and av-
erage linkage criterion shows highly stable cluster membership
(CC∈[0.962, 0.997]).

Comparison across QC procedures did not show any substan-
tial impact on t-SNE representations or CC values. Individual
comparisons across different parcellations for a given software
tool (e.g., FS6.0) are not particularly informative owing to the lack
of correspondence between various parcellation spaces.



6 Impact of preprocessing pipelines on cortical surface analyses

Figure 3: Task-free neurobiological (TF-N) analysis. (Top) Correlation between cortical thickness values for software pairs measured independently over ROIs for control
and ASD groups. The vertical lines represent the mean correlation across all ROIs. The ROIs are defined using Desikan-Killiany-Tourville (DKT) parcellation. (Bottom)

Distribution of cortical thickness values of exemplar ROIs with lowest, average, and highest median correlation across software pairs.

Table 3: Mean ROI correlations between software pairs for control and ASD cohorts

Controls ASD

ANTS CIVET FS5.1 FS5.3 FS6.0 ANTS CIVET FS5.1 FS5.3 FS6.0

ANTS 1 0.43 0.45 0.48 0.44 1 0.39 0.39 0.46 0.41
CIVET 1 0.48 0.52 0.52 1 0.44 0.48 0.49
FS5.1 1 0.89 0.84 1 0.87 0.83
FS5.3 1 0.89 1 0.88
FS6.0 1 1

Table 4: Clustering consistency between software pairs

Similarity: Euclidean distance, linkage: Ward method Similarity: correlation, linkage: average

ANTS CIVET FS5.1 FS5.3 FS6.0 ANTS CIVET FS5.1 FS5.3 FS6.0

ANTS 0.797 0.5 0.521 0.517 0.522 0.991 0.970 0.962 0.972 0.972
CIVET 0.717 0.5 0.5 0.5 0.994 0.982 0.992 0.992
FS5.1 0.78 0.609 0.529 0.997 0.990 0.985
FS5.3 0.703 0.499 0.997 0.995
FS6.0 0.619 0.997

The diagonal shows expected overlap based on 100 bootstrap samplings of features (31 ROIs) for a given software tool.
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Figure 4: Task-free neurobiological (TF-N) analysis. (Top) Graph density for different correlation cut-off thresholds used for constructing a structural network. The
error bars show variation due to the QC procedures. (Middle) Structural covariance of each software tool measured as inter-ROI correlation with cut-off value of 0.5. For

simplicity, the covariance plot is generated with original data. The covariance patterns are grouped on the basis of Yeo resting state networks membership. (Bottom)
Distribution of regional degree-centrality metric per Yeo network for each software with different QC procedures. Note that frontoparietal and dorsal attentional
networks are excluded from some analyses owing to the small number of DKT ROIs in these networks.

Figure 5: Task-free individual (TF-I) analysis. 2D t-SNE representation of all individuals (no QC). The colours indicate the software tool used, and the marker style, the
diagnostic group.

Task-driven neurobiological (TD-N) analysis

The mass-univariate regression models per ROI region sug-
gest cortex-wide association between age and thickness values
for all software tools, with the exception of the CIVET-based
analysis, which excludes bilateral insular regions (see Fig. 6).

QC procedures seem to have varying impact on the significant
regions depending on the software tool. The aggregate rank-
ing suggests higher variation in significant regions for ANTS
and CIVET. In contrast the FS versions offer relatively similar
performance—with consistent exclusion of entorhinal regions.
The stringent manual QC sample severely reduces the number
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Figure 6: Task-driven neurobiological (TD-N) analysis. (A) GLM β maps for each software tool with the “no QC” sample. Apart from Enenrhinal cortex and insular
regions (CIVET), cortical thickness at all other cortical regions is negatively associated with age. (B) Comparison of significant ROIs with various software a toolsnd QC

levels. T Aolored square implies r that theegion was significant. Significance levels are corrected for multiple comparisons using the Bonferonri procedure. The last
panel (Aggregate) shows ROI rank based on performance agreement among 5 software antools d 5 QC procedures (row sums).

of significant regions, which may be due to reduced statistical
power.

Parcellation comparisons for FS 6.0 reaffirm cortex-wide as-
sociation between age and thickness values across the 3 parcel-
lation schemes, with some exclusions in the medial and supe-
rior temporal gyri for Destrieux and in entorhinal cortex (EC), su-
perior temporal gyrus region a (STGa), piriform cortex (PIR), TGd,
TGv, PHA1, and perirhinal ectorhinal cortex (PeEC) for Glasser
(see Fig. 7). Lenient QC does not seem to change the distribution
of significant regions. However, results based on stringent and
automatic QC additionally exclude regions from precentral gyri
for all 3 atlases.

Task-driven individual (TD-I) analysis

The RF model–based predictions show consistent root mean
square error (RMSE) performance (5.7–7.2 years) across soft-
ware tools, with FS versions showing marginally lower error (see
Fig. 8). All model performances are statistically significant when
compared against a null model. The mean RMSE for the con-
trol cohort is lower than for the ASD cohort; as expected per the
null model, however, the difference is statistically insignificant.
Lenient QC does not have an effect on RMSE distributions. Strin-
gent QC reduces the mean RMSE for all software tools (3–5 years)

and the null model. Automatic QC reduces the average RMSE, as
well as its variance, for all software tools (3.8–4.7 years). Interest-
ingly with the automatic QCs (low- and high-dimensional), the
null models’ expectations are reversed because the mean RMSE
for ASD participants is now lower than that of controls.

Parcellation-based comparisons show similar RMSE perfor-
mance despite the differences in granularity of regions and the
consequent number of input features to the ML models (see Fig.
9). The RMSE trends with respect to QC are also consistent, with
both stringent and automatic QC reducing the mean RMSE and
the latter yielding a much tighter distribution of error. The null
model shows lower expected error for the control cohort com-
pared to the ASD, except for the analyses based on automatic
QC, where this expectation is reversed.

ROI importance from random forest

The cross-validated recursive feature elimination (RFE) proce-
dure yields drastically different feature sets across software
tools (see Fig. 10). Overall all software tools require a small num-
ber of features for age prediction of control participants (nε[3,
20]) compared to ASD participants (nε[41, 60]). RFE seems to be
very sensitive to the QC procedures as these yield different fea-
ture sets with no apparent consistent trends for controls or ASD
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A

B

Figure 7: Task-driven neurobiological (TD-N) analysis. (A) GLM β maps for each parcellation with the “no QC” sample. (B) Comparison of significant ROIs with various

parcellations and QC levels. A coloured square implies that the region was significant. Significance levels are corrected for multiple comparisons using the Bonferroni
procedure.

cohorts. The parcellation comparisons also show varied selec-
tion of features. Despite the larger number of regions for De-
strieux and Glasser parcellations, the number of predictive fea-
tures remains relatively small. The sensitivity to QC procedure
appears to be reflected in the parcellation analysis as evidenced
by large spikes in feature counts for both control and ASD co-
horts.

Validation analysis

For the HCP dataset, the feature comparisons based on DKT par-
cellation yielded a mean Pearson correlation of 0.66 between
CIVET2.1 and FS6.0 (ABIDE: r = 0.52). The regions exhibiting low
correlations were also consistent with ABIDE analysis, and com-
prised cingulate regions, orbitofrontal regions, EC, pericalcarine,
and insula.

Discussion

In this work, we aimed to assess the reproducibility of pheno-
typic features and subsequent findings subjected to preprocess-
ing pipeline variation along 3 axes: (i) image-processing tool,
(ii) anatomical priors, and (iii) QC. We emphasize that the goal
here is not to deliberate specific biological and individual inter-
pretation from the analyses but rather to highlight the differ-
ences among the findings themselves, a key piece of information

for the large community of researchers using anatomical brain
imaging in their studies.

In the TF-N analysis, we observe a weak ROI-wise correlation
across software pairs (see Fig. 3). Although software-specific bi-
ases are expected in biological phenotypic estimates, the level
of diminished correlation is striking. One can explain this per-
formance for the comparisons involving ANTS because it is
the only software that operates in the voxel (volume) space.
However, a similarly poor performance is seen with CIVET and
FS, both of which operate in a vertex (surface) space for cor-
tical thickness estimation. Because individual ROI-based mea-
sures are frequently used in the downstream mass-univariate
models, the lack of consensus across software tools is likely to
yield different results. Moreover, the varying ROI covariance pat-
terns across the software tools (see Fig. 4) suggest weak mul-
tivariate similarity, which again strongly increases the depen-
dence of findings and biological interpretations on the soft-
ware choice. This variability can be potentially explained by the
differences in underlying biological assumptions that dictate
several software-specific metrics. For instance, there are sev-
eral ways to estimate cortical thickness as distance between
GM and WM surfaces. It appears that the algorithmic speci-
ficities of CIVET give rise to more symmetric patterns within
cortical ROIs as seen in Fig. 4. Last, the lack of impact from
QC suggests that these effects are systemic and not driven by
outliers.
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Figure 8: Task-driven individual (TD-I) analysis. Individual age prediction with
various software tools and QC levels stratified by diagnosis. Performance (mea-
sured by Root Mean Square Error, RMSE) is cross-validated using a random forest
model over 100 shuffle-split iterations.

Figure 9: Task-driven individual (TD-I) analysis. Individual age prediction with
various parcellations and QC levels stratified by diagnosis. Performance (mea-
sured by Root Mean Square Error, RMSE) is cross-validated using a random forest
model over 100 shuffle-split iterations.

In the TF-I analysis, software tool–specific t-SNE similarity
is encouraging and expected. The t-SNE embeddings also high-
light stronger differences between software tools compared to
the differences in diagnostic groups (see Fig. 5). This partly ex-
plains the high difficulty in training generalizable ML models
across studies using different preprocessing pipelines. The poor
CC with the commonly used Ward linkage criterion is alarm-

Figure 10: Predictive feature set count with various (A) software and (B) parcel-
lations for different QC levels stratified by diagnosis. Optimal predictive features
are selected using cross-validated recursive feature elimination procedure.

ing (see Table 4). Given that data-driven clustering is a typical
practice to identify subgroups of patients or define meaningful
biomarkers [49, 50], clustering membership that is highly sen-
sitive to the preprocessing pipeline may go undetected by the
stability tests performed on the final set of processed features.

In the TD-N analysis, the software and parcellation compar-
isons show relatively consistent spatial associations for the age
regression models (see Figs 7and 8). There are some software-
specific regional peculiarities: e.g., cortical thickness of entorhi-
nal regions seems to have significant association with age for
ANTS and FS5.1 but not in other software. Then, CIVET uniquely
shows lack of association at insular regions. ANT and CIVET also
show much higher sensitivity to QC procedures. These sensitivi-
ties should be noted because they could suggest methodological
limitations or bias in the software. The overall cortex-wide asso-
ciation of thickness with age is expected because various stud-
ies have reported the same in healthy and ASD populations [44,
46, 51–53]. Direct comparison with other studies is challenging
owing to differences in the underlying statistical models, which
produce varying topologies of widespread associations, and the
direction of change in the cortical thickness. The results in this
work suggest that the lack of strong ROI (univariate) correlation
between a pair of software tools does not affect the task-driven
mass-univariate analysis. However, we note that this is highly
specific to the task at hand, as well as model selection proce-
dures, which are beyond the scope of this work. We speculate
that localized effects are likely to be more sensitive to the uni-
variate pairwise relationships, and therefore a novel biological
finding must be reported with high scrutiny to exclude pipeline
specificities. Towards this cause, reporting findings with mul-
tiple parcellations defined with different underlying assump-
tions (biological: DKT, Destrieux vs data-driven: Glasser) offering
a range of spatial granularities can help to reaffirm the regional
effects.

In the TD-I analysis, age prediction with RF is stable subject
to software and parcellation variations (see Figs 8 and 9). The
RMSE performance of 3.8–4.7 years is comparable to the similar
previous age prediction studies [17, 43, 44], which report RMSE
in ranges of 6–12 years or mean absolute error of 1.7–1.95 years.
The stability of performance could potentially be attributed to
the relatively large sample sizes. It is encouraging to see that bi-
ological noise does not induce large variations into individual
predictions. It is also important to note the impact of QC on the
model performance and the null distributions for a given pop-
ulation (i.e., controls vs ASD). These alterations in the expected
null performance need to be reported in order to fairly evaluate
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the improvements offered by a novel model on a given sample.
Although RF seems to be stable for individual predictions, the
feature importance assessments by the same model are highly
variable (see Fig. 10). One explanation for this behaviour could
be that in the presence of noisy biological features, ML models
assign a relatively flat distribution of importance to the features.
Variation in feature sets or sample sizes, as dictated by the se-
lected preprocessing pipeline, would thus yield a drastically dif-
ferent feature ranking in a given iteration of the analysis. This
needs to be taken into account if ML models are used to make
biological inferences.

The validation analysis with HCP allowed us to replicate our
feature correlation findings on an independent dataset. Similar
to the ABIDE analysis, HCP data showed consistent low corre-
lation between the ROI thickness values produced by FS6.0 and
CIVET2.1. Moreover, there is a large overlap in the regions (i.e.,
cingulate regions, orbitofrontal regions, EC, and insula) exhibit-
ing the low correlations. This suggests that the low correlations
are mainly driven by the algorithmic differences and not by the
dataset. The pericalcarine was the exception to this common re-
gional subset, having a low correlation only in the HCP dataset,
possibly due to dataset-specific peculiarities. Nevertheless this
highlights the need for larger meta-analyses to identify tool-
specific and dataset-specific variability in findings.

Limitations

Although in this work we aimed at assessing the impact of
pipeline vibration along 3 different axes, we only considered a
subset of permutations in the analysis. This was primarily due
to practical reasons such as the lack of availability of common
parcellation definitions for all software tools. Therefore we could
not compare software tools with Destrieux and Glasser parcel-
lations. We also note that we did not disambiguate effect mea-
surement noise, typically estimated with a test-retest subsam-
ple in a dataset. This is because the previous studies have shown
high reliability of cortical thickness measures and subsequent
derived features [54, 55]. We also limited the scope of this work
to structural features and did not consider functional or diffu-
sion measures. With the increasing popularity of sophisticated,
derived measures from highly flexible functional preprocessing
pipelines with a multitude of design parameters, it is critical to
understand and quantify the inherent variability and its impact
on downstream findings. We defer this endeavour to future stud-
ies and refer to Bowring et al. [6] for some progress in this direc-
tion.

Conclusions

This work highlights the variability introduced by preprocess-
ing pipelines, which is only a part of the larger issue of re-
producibility in computational neuroimaging. We understand
that the computational burden of comparative analyses such
as described here can be infeasible in many studies. This ne-
cessitates undertaking of large meta-analytic studies to under-
stand software-specific biases for various populations stratified
by demographic characteristics and diseases. At the single-study
level, we encourage the community to process data with dif-
ferent tools as much as possible and report variation of the
results. We also propose to systematically report positive and
negative results with different parcellations. This will improve
the level of confidence in the findings and help to better eluci-
date the spatial granularity associated with the effect of interest,
while facilitating comparisons of common atlases across tools.

Last, we also recommend assessing the sensitivity of findings
against varying degrees of stringency for the QC criteria. Only
with widespread adoption of rigorous scientific methodology
and accessible informatics resources to replicate and compare
processing pipelines can we address the compounding problem
of reproducibility in the age of large-scale, data-driven computa-
tional neuroscience. The availability of containerized and well-
documented pipelines, together with the necessary computing
resources, will mitigate the variability of results observed and
direct the community towards understanding these differences,
as well as further develop methodological validation and bench-
marking.

Data Availability

All supporting material, including csv data and code to generate
the figures, can be found at [23]. See also sections Participants,
CIVET, ANTS, and Freesurfer for the exact version and location
of these publicly available datasets and software. Snapshots of
our code and other supporting data can be openly found in the
GigaScience respository, GigaDB [56].

Additional Files

Supplementary Figure S1: TF-N analysis for the HCP dataset.
Correlation between cortical thickness values for CIVET2.1 and
FS6.0 measured independently over ROIs for control and ASD
groups. The vertical lines represent the mean correlation across
all ROIs, defined using DKT parcellation.
Supplementary Figure S2: . TF-I analysis for the HCP dataset. t-
SNE plot showing difference between individual embeddings for
CIVET2.1 and FS6.0 software.
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