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Objective. In traditional Chinese medicine (TCM), chronic myeloid leukemia (CML) has been attributed to “poisoned bone
marrow,” which is viewed as a loss of Qi or blood, a deficiency in Yin or Yang that causes a complex imbalance between cell growth
and death. Malignant myeloid progenitor cells display excessive growth that is difficult to control without toxicity. More than 60
herbs in TCM have shown efficacy against CML. However, the key molecules and mechanisms involved in the holistic-level
characterization, as well as the effective target associations, are still unknown. Methods. ,e present study employed a com-
putational approach with filtering potential compounds via admetSAR, systems biology-based functional data prediction, and
biochemical and molecular biological validation. Results. We generated 118 bioactive compounds from 11 herbs within four
dialectical therapy groups that are most commonly used to treat CML and predicted 141 potential targets. ,e stilbene resveratrol
and its derivatives were found to be highly related to these targets. Among them, α-viniferin was predicted to target Bcl-2, caspase-
3, 8, and 9, MAPK14, CDK2, HSP90AA1, and others, reflecting CML therapeutic strategies. In vitro, experimental data showed a
nonnecrotic growth limitation of K562 cells caused by α-viniferin, with an IC50 of 13.61 μg·mL− 1 at 24 h. Finally, we validated the
chemotherapeutic effect of α-viniferin in association with a mitochondria-driven apoptotic mechanism and in sequences entailing
mitochondrial dysfunction, which had attributed to the expression of the proapoptotic Bcl-2 protein and executed K562 cell
apoptosis. Conclusions. Our work sheds light on the mechanism of the efficacy of the stilbene α-viniferin in TCM for the
prevention of CML. ,is work also predicts and validates targets in the mitochondrial signaling pathway, providing a novel
strategy for CML treatment.

1. Introduction

Chronic myelogenous leukemia (CML) is a hematologic
malignancy of stem and progenitor cells that accounts for
15% of adult leukemia cases, with a global annual incidence
of 1.6–2.0/10 million [1]. In the Chinese population, CML
accounts for 20% of all cases of leukemia and 95% of cases of
chronic leukemia, with an annual incidence of 0.36/10
million [2].

Currently, the BCR-ABL gene mutation is considered
the main molecular mechanism of CML. ,e translocation
(9;22) q (34;11) entails the movement of the Abl proto-
oncogene to the break-point cluster on the chromosome 22
long arm area (BCR) to form the BCR-ABL fusion gene [3].
,e fusion gene encodes a protein with tyrosine kinase
activity, leading to the expansion of the pool of myeloid
progenitor cells. Myeloid progenitor cells display excessive
growth as a hematologic disorder, which is difficult to treat
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without toxicity. Chemotherapy is the main treatment of
CML, and the tyrosine kinase BCR-ABL is the main target.
BCR-ABL has become the focus of drug research and de-
velopment, of which significant advances have been made.
Drugs such as imatinib, nilotinib, and dasatinib inhibit the
phosphorylation activity of BCR-ABL and activation of
downstream molecules, thus limiting the growth of CML
cells [4]. However, the high costs make many medium- and
low-income people unable to afford it. During chemo-
therapy, the targets of these drugs are associated with serious
gastrointestinal toxicity, severe diarrhea, and blood toxicity.

In order to find new CML treatments, natural products
in traditional Chinese medicine (TCM) have become at-
tractive clinical candidates because of their long-proven
clinical use with therapeutic effects in China [5]. In TCM
theory, CML is viewed as an imbalance of many integral
body processes that coordinate with each other, complement
each other functionally, and influence each other patho-
logically. In long-term TCM clinical practice, a unique
theory has been established for the treatment of hemato-
logical diseases, which is focused on the rebalance of the Qi
and blood and of Yin and Yang. ,us, CML is believed to
result from “poisoned bone marrow,” which is observed as a
loss of Qi or blood or a deficiency in Yin or Yang, resulting in
a complex imbalance [6]. According to the principles of
disease and syndrome classification, the general treatments
and prescriptions for CML are divided into the following
four dialectical therapy groups: “clearing heat and cooling
blood,” “relieving poisoning and detoxification,” “elimi-
nating wind and dispersing wet,” and “supplementing Qi
and nourishing Yin” [7].

,e long history and multiple target effects of Chinese
herbal medicine make the efficacy of TCMmore durable and
milder, with fewer by-effects.,e use of Chinese medicine in
the treatment of leukemia began as early as the 1960s.
Paeonia anomala L., Rheum palmatum L., indigo, and others
have been found to have efficacy for the treatment of leu-
kemia [8–10]. ,e clinical application of TCM has been
accepted for CML treatment in western China because of its
fewer associated adverse reactions and low cost. It is widely
used in local hospitals and has achieved good clinical out-
comes [11, 12]. TCM with active indigo ingredients has been
successfully applied as an antileukemia drug. Although
nearly hundreds of prescriptions for CML treatment have
been recorded, the mechanisms of most TCM drugs remain
unclear.

Recently, network pharmacology, genomics, proteomics,
and metabolomics provide holistic approaches to study the
essence of TCM and the functions of herbal compounds
[13]. Meanwhile, systems biology-based analysis of TCM
and drug-target interaction network approaches has made a
significant contribution to study TCM [14]. ,is approach
provides a possibility for a multitarget model study of TCM
treatment for leukemia. Systems pharmacology studies of
some TCM formulas have shown good results, such as that
for the application of the Chinese herbal Radix Curcumae to
treat cardiovascular disease, and these studies have provided
insights into cardiovascular drug discovery and therapy [15].
,e key molecules and mechanisms underlying CML

treatment must be elucidated on a holistic level. ,us, we
aimed at characterizing the active ingredients and target
associations via both systems pharmacological and molec-
ular biological methods, using an in silico approach com-
bined with an in vitro approach to uncover the mechanism
of TCM therapy in CML.

2. Materials and Methods

2.1. Materials. Hoechst 33258 (cat no. B8030) and RIPA
lysate (cat no. R0010) were purchased from Solarbio Science
and Technology Co., Ltd. (Beijing, China). Acridine orange
(AO), dimethyl sulfoxide (DMSO), and ethidium bromide
(EB) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). RPMI 1640 medium was purchased from Gibco BRL
(Grand Island, NY, USA; cat no. 31800-022). Fetal bovine
serum (FBS) was purchased from Biological Industries
(Israel; cat no. 1413865).,e primary antibody of Bcl-2, Bax,
and β-actin, and its corresponding secondary antibody were
purchased from Boster (China). FITC Annexin V and PI
were purchased from BD Biosciences (Franklin Lakes, NJ,
USA; cat no. 556547).

2.2. Chemical Library Construction. All herbal chemicals
used in the treatment of CML were collected from (1) the
TCMSP database (http://lsp.nwu.edu.cn/tcmsp.php), (2) the
Chinese Academy of Sciences’ Chemistry Database (http://
www.organchem.csdb.cn), (3) the Chinese Herbal Drug
Database, and (4) the literature. And the canonical SMILES
format of all herbal chemicals was collected from the NCBI
PubChem database (http://www.ncbi.nlm.nih.gov/
pccompound).

2.3. In Silico Screening for Potential Active Molecules via
admetSARPrediction. To find the potential active molecules
in CML-related TCM, all collected chemicals in the library
were screened according to the predicted in silico oral
bioavailability records via admetSAR (http://lmmd.ecust.
edu.cn/admetsar1) [16]. ,e compounds with negative pa-
rameters of human intestinal absorption (HIA) and Caco-2
permeability (Caco-2) and negative metabolism parameters
of inhibiting the five major CYP isoforms (CYP450 1A2,
CYP450 2C9, CYP450 2C19, CYP450 2D6, and CYP450
3A4) were discarded, thereby remarkably reducing a great
quantity of primitive chemicals to a smaller group, which
was used to develop a TCM formula [17]. ,e inhibitory
parameters of the five major CYP isoforms which contribute
to the metabolism of drugs were calibrated comprehensively
and calculated with the following equation [18]:

score � Σk(result)(Q). (1)

Equation (1) adds together the results and overall pre-
dictive accuracy (Q) of each compound, with five major CYP
isoforms (index k). ,e overall predictive accuracies (Q) of
five major CYP isoforms (CYP450 1A2, CYP450 2C9,
CYP450 2C19, CYP450 2D6, and CYP450 3A4) were 0.8147,
0.8018, 0.8551, 0.8054, and 0.6450, respectively [19].
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2.4. Activities of Target Molecules and Network Construction.
To identify CML-specific target, we collected CML targets
from TCMSP, DisGeNET (http://210.107.182.61/geneSearch/),
and the Online Mendelian Inheritance in Man (OMIM) da-
tabase [20]. To elucidate the effects of drugs, we collect
compound targets to study compound-target interactions.,e
corresponding targets are obtained from TCMSP database
searching by compound name and PubChem database on
Document Mining. In addition, the predicted targets are
further screened using the sysDTdrug target prediction model
[21]. To explain the relationship between candidate com-
pounds and predicted targets and disease, we established
“candidate compound-candidate target network (cC-cT net-
work),” and “target-disease network” (T-D network), and all
target networks were created by Cytoscape (http://www.
cytoscape.org/). In the network, compounds and targets are
represented by nodes, and interactions between two nodes are
represented by edges [22]. ,e degree of a node is the number
of edges connected to the node. ,e greater the degree is, the
more nodes in the network that are directly related to the node,
indicating that the node is more important in the network.

2.5. Cell Culture. ,e human CML K562 cell line was ob-
tained from Cancer Cell Repository (Shanghai Cell Bank,
Shanghai, China). K562 cells were cultured in RPMI-1640
containing 10% fetal bovine serum and 100 U·mL− 1 each of
penicillin and streptomycin in a humidified atmosphere
maintained at 37°C and 5% CO2.

2.6. Analysis of Cell Viability. ,e cells were inoculated with
4×104/mL per well in a 96-well culture plate, and the
volume of the culture medium was 200 μL. Different con-
centrations of α-viniferin were added and cells were cultured
at 37°C for 12, 24, and 48 h. 20 μL of MTT solution (5 g/L)
was added to each well, the cells were continued to culture
for 4 h and centrifuged at 1000 r/min for 10min, and the
supernatant was discarded and 150 μL of DMSO was added.
After shaking for 10min, a plate reader (Varioskan Flash
3001, USA) detects the A value of each well at 490 nm and
calculates the cell proliferation inhibition rate according to
the following formula:

inhibition rate (%) �
(control groupA value − experimental groupA value)

control groupA value
× 100%. (2)

2.7. Sub-Intracellular Structure Observation. ,e cells were
inoculated with a density of 5×105 cells/well in 6-well plates
and treated with or without α-viniferin for 24 h at 37°C.
Other steps are as follows: (1) fixation: cells were fixed by
glutaraldehyde 2.5% at 4°C for several weeks and they were
rinsed gently with 0.1mol·L− 1 phosphate-buffered saline
(PBS). ,en, cells were fixed with 1% osmium tetroxide for
3 h and they were rinsed gently with PBS; (2) dehydration:
cells were dehydrated by serial dilution of ethanol (50, 70, 90,
and 100%, 30 minutes each time, and 100% three times); (3)
embedding: cells were embedded in epoxy resin; (4) curing
and slice; (5) 3% uranyl acetate-lead lead citrate double
staining; and (6) transmission electron microscope (JEM-
1230; Jeol, Tokyo, Japan) observation.

2.8. Analysis of Cell Apoptosis. To detect morphological
changes in nuclear chromatin of apoptotic cells using
Hoechst 33258 and AO/EB staining, K562 cells treated with
drugs or untreated were collected and washed with PBS.
,en, the cells were stained with either 10mg·mL− 1 Hoechst
33258 or 100mg·mL− 1 AO/EB double staining in PBS.
Fluorescence microscopy (Axio Observer A1; Zeiss, Ger-
many) was used to record apoptotic and necrotic cells.

To analyze apoptosis, K562 cells were stained with FITC
Annexin V and PI and a flow cytometer was used (Calibur; BD
Biosciences, Franklin Lakes, NJ, USA) tomeasure fluorescence.

2.9. Determination of Mitochondrial Membrane Potentials.
For JC-1 analysis, the K562 cells were treated with or without
different α-viniferin concentrations for 24 h. We analyzed

mitochondrial membrane potentials by JC-1. We analyzed
samples by measuring the fluorescence value of flow
cytometry (FACS Calibur; BD Biosciences).

2.10. Evaluation of Bcl-2 Family Gene Expression. To analyze
the gene expression levels of the Bcl-2 family, the total RNA
was extracted from cells using a commercial kit (Sangong
Co., Shanghai, China). RNA quality was assessed using the
A260/A280 ratio and 1.5% agarose gel electrophoresis. RNA
was converted to cDNA using a PrimeScript 1st strand
cDNA Synthesis Kit according to the manufacturer’s in-
structions (Takara Bio Inc., Japan).,e PCR primers [23, 24]
were synthesized by Sangong Co. Ltd. (Shanghai, China),
and the forward and reverse primer sequences were as
follows: 5′-GTTCCAGATCCCAGAGTTTG-3′ and 5′-
CCTCCATGATGGCTGCTG-3′ for Bad, 5′-TTTCTCAC-
GGCAACTTCAAC-3′ and 5′-GGAGGAAGTCCAATGT-
CCAG-3′ for Bax, 5′-GAGGATTGTGGCGTTCTTT-3′ and
5′-CCCAGCCTCCGTTATCCT-3′ for Bcl-2, 5′- ACA-
TCCCAGCTCCACATCAC-3′ and 5′-CGATCCGACT-
CACCAATACC-3′ for Bcl-xL, and 5′- TCAACGA-
CCACTTTGTCAAGCTCA-3′ and 5′-GCTGGTGGT-
CCAGGGGTCTTACT-3′ for GAPDH.

Detection of Bcl-2 family gene expression was carried
out using quantitative real-time RT-PCR (qRT-PCR), which
was performed using a single-tube SYBR Green Kit (QIA-
GEN, Valencia, CA, USA), a Rotor-Gene Q Real-Time PCR
System (Rotor-Gene Q, QIAGEN), and specific primer sets.
Bcl-2 family mRNA expression was calculated by the 2− △△Ct

method, and glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) was used as an endogenous control.
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2.11. Evaluation of Bcl-2 Family Protein Expression. K562
cells were treated with or without different α-viniferin
concentrations for 24 h, and then RIPA lysate was used to
extract protein. ,e levels of Bcl-2 and Bax were analyzed
using western blotting with the primary antibody (1 : 400)
and its corresponding secondary antibody (1 :10000)
according to the manufacturer’s instructions [25].

2.12. Statistical Analyses. All data were used as the
mean± SD of at least three independent experiments and
assessed by ANOVA. Student’s t-test for multiple com-
parisons was used to identify differences between groups.
P< 0.05 was considered to be statistically significant value.

3. Results

3.1. Compounds Collecting and Sorting in CMLHerbs. In the
Chinese ethnopharmacological system, CML treatments can
be divided into four dialectical therapy groups according to
syndrome differentiation, and they are highly connected to
imbalances in the following four elements: Qi, blood, Yin,
and Yang [26]. According to the four dialectical therapy
groups, we collected prescriptions for treating CML (Sup-
plemental Table 1), from the database of traditional Chinese
medicine prescriptions (https://db.yaozh.com/fangji) and
Chinese prescription database in National Scientific
Data Sharing Platform for population and health (http://
cowork.cintcm.com/engine/outline?page�2&channelid�37595&
ispage�yes). ,e databases contain the information of pre-
scriptions contained in Treatise on Typhoid Fever, Synopsis
of the Golden Chamber, Criteria of Syndrome and Treat-
ment, Orthodox Surgery, and other books. ,e 11 most
frequently used herbs in CML treatments are classified as
follows: clearing heat and cooling blood (“Rheum palmatum
L., Reynoutria japonica Houtt.,Moutan officinalis (L.) Lindl.
& Paxton, cortex, Paeonia anomala L.”); relieving poisoning
and detoxifying (“Smilax China L., Smilax glabra Roxb.”);
eliminating wind and dispersing wet (“Notopterygium
incisumK.C.Ting ex H.T.Chang,Morus alba L., twig, dry and
Eucommia ulmoides Oliv.”); and nourishing Yin and in-
vigorating Yang (“Stemona sessilifolia (Miq.) Miq. and
Ginkgo biloba L., leaf, dry”). Recently, there has been in-
creasing attention on validating and explaining the com-
bined principles of TCM by modern approach. In those
studies, a systems pharmacology method has been intro-
duced and applied to investigate TCM, which may allow for
the understanding of the combined effects of herbal for-
mulas from the ADMET in silico, active chemical, target
protein, and disease network perspectives [5]. We predicted
the absorption and metabolism-associated properties of all
compounds via admetSAR.

,e absorption showed positive results for 121 of 981
chemicals (12.33%) based on HIA and Caco-2 models. Of
these herbs, Ginkgo biloba L. (23 compounds), Notop-
terygium incisum K.C.Ting ex H.T.Chang (22 compounds),
and Rheum palmatum L. (17 compounds) possessed the
most compounds with good absorption (Supplemental
Table 2). ,irty-two candidate compounds also met the

positive metabolic properties and pharmacokinetic data
(Table 1).

3.2. Candidate Compounds-Candidate Targets (cC-cT)
Networks. Systems pharmacology can also provide new
approaches for drug discovery for complex diseases. By
considering drug actions in the context of the regulatory
networks within which the drug targets and disease gene
products function, network analysis has the potential to
greatly increase our knowledge of the mechanisms under-
lying the multiple actions of drugs [27]. Here, we used a
systems pharmacology method to determine the active
components of TCM in the treatment of CML. ,e cC-cT
network has 259 nodes including 118 candidate compounds
and 141 candidate targets (Figure 1). ,e targets in the outer
circle exhibited considerably fewer interactions with the
candidate compounds than those in the inner circles (the
green circles indicate a high degree, whereas the blue circles
indicate a low degree). In this result, there were many
candidate targets connected to one or two candidate com-
pounds; however, some candidate targets could be affected by
multiple compounds rather than a single compound. In the
inner circles, the number of targets (degree≥ 10) was 46 (32%
of the total number of targets).,e other targets (degree< 10,
68% of the total number of targets) were likely less related to
leukemia. ,e results indicate that, under the network
pharmacology research paradigm, candidate compounds and
their candidate targets exhibit a relationship in which
multiple compounds are acting on multiple targets [5].

3.3. T-D Network Analysis. In this section, target-related
diseases were searched from GeneCards (http://www.
genecards.org) and TTD websites (http://bidd.nus.edu.sg/
group/TTD/ttd.asp) and used to construct a T-D network
(Figure 2). According to ICD-10 records in Medical Subject
Headings (MeSH, http://www.nlm.nih.gov), 139 diseases
were classified into 24 groups. For instance, acute mye-
logenous leukemia and chronic myelogenous leukemia
belong to both Neoplasm Diseases (C04) and Hemic and
Lymphatic Diseases (C15). To identify the CML disease-
associated targets, 1526 targets were collected from TCMSP,
DisGeNET, and OMIM. After mapping the disease targets-
candidate targets network, we identified 50 targets related to
CML (Supplemental Table 3), and twelve of them belong to
46 potential targets in the inner circles in Figure 1.

We selected 121 chemicals with positive absorption as a
prerequisite for analysis. Among them, proapoptotic ac-
tivities on K562 cells were reported previously. For example,
diosmetin induces OCI-AML2 and K562 cell apoptosis via
the caspase pathway [28]. Resveratrol induces apoptosis of
K562 through p38 and JNK-regulated H2AX phosphory-
lation [29]. Kaempferol also showed a potent cytotoxic effect
on K562 cells and U937 cells through Bcl-2 signaling
pathway-induced apoptosis [30].

,en, we constructed a cC-cT network and found that
there were 46 targets with a close relationship to leukemia.
From the chemical structure perspective, flavonoid (11
compounds) and stilbene (7 compounds) family were
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displayed frequently (Supplemental Table 4). Additionally,
literature mining displayed inhibition data of those flavonoids
on leukemic cell proliferation, but there have been few reports
on stilbenes besides resveratrol. 11 candidate stilbenes from
121 compounds in the whole network of Figure 1 were pre-
dicted to have candidate protein targets (Figure 3). We found
that α-viniferin, a basic resveratrol trimer, was predicted to be
closely related to the main targets of leukemia. ,is finding
agrees with the report that resveratrol has antileukemic ac-
tivities in vitro [31]. Next, experiments were performed to
clarify the potential antileukemic activity of α-viniferin.

3.4. cC-cT Networks for Stilbene Compounds. ,is cC-cT
network included 11 stilbenes and their candidate targets,
which consists of 152 nodes (11 candidate compounds and
141 candidate targets). ,e targets in the left blue circle
showed interactions with resveratrol (MOL012744) and
α-viniferin (MOL1808), and those in the right blue circles
represent interactions with cis-pinosylvin (MOL009048),
PIT (MOL00284), 4′-methylpinosylvin (MOL009362),
pterostilbene (MOL011980), cis-resveratrol (MOL001-
229), dihydroresveratrol (MOL009782), cudranin (MOL-
012688), 5-[(Z)-2-(3, 4-dihydroxyphenyl) vinyl] resorcinol

(MOL004570), and 5-[(Z)-2-(3-hydroxy-4-methoxy-phe-
nyl) vinyl] resorcinol (MOL002262). ,ese results indicate
that resveratrol and α-viniferin were common stilbene
compounds. In limited studies, stilbenes were proved to be
highly related to targets of leukemia treatments, for example,
pterostilbene, a 3′, 5′-dimethoxy-resveratrol interacted with
25 targets, including MAPK14, CDK2, and HSP90AA1,
which are highly related to leukemia. Hsiao et al. have re-
ported that pterostilbene induces apoptosis in HL-60 cells by
MAPK-mediated regulation of the mitochondrial apoptotic
pathway while also causing cell cycle arrest in the G0/G1
phase and inhibiting CDK2 expression [32]. In the present
study, resveratrol and α-viniferin were found to be associ-
ated with antitumor targets, including Bcl-2, caspase-3, 8,
and 9, SIRT1, and others. Taken together, these results show
that α-viniferin, a resveratrol dimer, is predicted to be highly
related to targets of leukemia, which are closely associated
with its structure. ,us, the mechanism of leukemia treat-
ment using α-viniferin needs to be clarified.

3.5. α-Viniferin Inhibits Cell Proliferation in K562 Cells.
Stilbene compounds were found to be capable of having high
sensitivity towards leukemia cells by network analysis.

Table 1: ,e ADME properties in silico of 32 candidate compounds via admetSAR prediction.

Compounds
Absorption Metabolism (CYP450 isoform inhibitor)
HIA Caco-2 1A2 2C9 2D6 2C19 3A4 Score

Majudin 0.9933 0.6835 0.9774 0.8257 0.8931 0.9296 0.7959 3.48407919
Bergapten 0.9964 0.5379 0.9107 0.8949 0.8931 0.8994 0.8123 3.47147818
Sesamin 1 0.5774 0.9106 0.8949 0.8932 0.8994 0.796 3.46096872
Suchilactone 0.9884 0.7833 0.6598 0.9399 0.8096 0.9801 0.9591 3.39143188
Isorhamnetin 0.9783 0.8866 0.9218 0.756 0.6993 0.8648 0.7348 3.12557861
Ammidin 0.9962 0.5187 0.8503 0.7199 0.7115 0.8977 0.7497 3.08492296
8-Geranoxy-5-methoxypsoralen 0.9924 0.5556 0.8058 0.7084 0.788 0.8398 0.7848 3.0808701
Cnidilin 0.9925 0.5243 0.8169 0.5477 0.641 0.8984 0.6951 2.82470425
Naringenin 0.967 0.7533 0.9106 0.8949 − 0.7463 0.8994 0.8988 2.12533827
Genkwanin 0.9921 0.929 0.9378 0.9385 − 0.8253 0.9012 0.7232 2.00309141
Diosmetin 0.9783 0.8866 0.9218 0.756 − 0.6993 0.8648 0.7348 1.92963575
Chrysoeriol 0.9783 0.8866 0.9218 0.756 − 0.6993 0.8648 0.7348 1.92963575
Kaempferide 0.9783 0.8866 0.9218 0.756 − 0.6993 0.8648 0.7348 1.92963575
Syringetin 0.9719 0.8896 0.8668 0.6258 − 0.6249 0.8187 0.7817 1.83717389
4′-Methylpinosylvin 0.9968 0.9191 0.9614 0.903 − 0.8899 0.886 0.5 1.78240889
Dehydrodieugenol 0.9721 0.8004 0.744 0.797 − 0.7521 0.9261 0.6365 1.75847413
Moracin M 0.9964 0.6043 0.9061 0.7842 − 0.8215 0.7031 0.804 1.74936332
Kaempferol 0.9855 0.7447 0.9108 0.8948 − 0.9083 0.6434 0.7241 1.66803093
Morin 0.9855 0.7447 0.9108 0.8948 − 0.9083 0.6434 0.7241 1.66803093
Notoptol 0.9762 0.5537 0.7233 0.7758 − 0.6654 0.7588 0.6368 1.66419893
Dihydroresveratrol 0.9503 0.8604 0.7749 0.742 − 0.8326 0.8434 0.7201 1.65802923
Cis-resveratrol 0.9952 0.8915 0.9106 0.7068 − 0.9226 0.8052 0.7539 1.65443638
Cis-pinosylvin 0.9948 0.9014 0.9177 0.6648 − 0.9171 0.8322 0.6678 1.5974595
Oxysanguinarine 0.9841 0.7216 0.8373 − 0.8557 0.5126 0.7982 0.669 1.50874759
α-Viniferin 1 0.6216 0.9277 0.9497 − 0.7239 0.8042 − 0.6358 1.13587144
(1H,3H-Furo[3,4-c]furan-3a(4H)-ol, dihydro-1,4-bis
(4-hydroxy-3-methoxyphenyl)-, (1R,3aS,4S,6aR)-) 0.5176 0.6408 0.6819 0.5427 − 0.8266 0.5876 0.542 1.10669817

Isoflavone 1 0.8727 0.9662 0.7441 − 0.9436 0.9213 − 0.6675 0.88838768
4,7-Dihydroxy-5-methoxyl-6-methyl-8-formyl-flavan 0.9889 0.9077 0.7694 0.565 − 0.6802 0.7659 − 0.6223 0.71368052
6,8-Dihydroxy-7-methoxyxanthone 0.9306 0.9044 0.9724 − 0.6549 − 0.6476 0.6923 0.6321 0.67863562
(− )-Medioresinol 0.9944 0.763 − 0.5381 0.6912 − 0.8313 0.7443 0.5296 0.34602068
(+)-Medioresinol 0.9944 0.763 − 0.5381 0.6912 − 0.8313 0.7443 0.5296 0.34602068
Torachrysone 0.9803 0.92 0.9469 − 0.7326 − 0.8119 0.5056 0.5459 0.2491008

Evidence-Based Complementary and Alternative Medicine 5



,rough literature mining in cancer cell, antiproliferative
activities were shown with IC50 values of 3 to 4 μg·mL− 1 (HL-
60) [33], 7 to 23 μg·mL− 1 (MCF-7) [34], 30 to 35 μg·mL− 1

(HepG2), 32 to 35 μg·mL− 1 (HepG2) [35], 50 μg·mL− 1

(A549) [33], and 37 to 45 μg·mL− 1 (WRL-68) [36]. Why the
low concentration of the stilbene compounds had a high
sensitivity to leukemia cells? Previously, it has been reported
that resveratrol can cause cell apoptosis in various kinds of
cancer cell lines, such as leukemia cells [37], breast carci-
noma cells [38], and hepatoma cells [39]. According to the
National Cancer Institute Developmental ,erapeutics
Program records (NSC 655524) (https://dtp.cancer.gov/
dtpstandard/dwindex/index.jsp), α-viniferin is more sensi-
tive to K562 cells in 32 candidate compounds by comparing
GI50 and one dose growth percent (Supplemental Table 5).
Resveratrol had remarkable cytotoxic effects and induced
apoptosis in K562 cells, and IC50 value is 9 μg·mL− 1. ,ere

were few records about α-viniferin inhibiting K562 cell
growth. To verify the underlying antitumor activity of
α-viniferin, MTT assay was used to detect the cytotoxic
activity of different concentrations of α-viniferin ranging
from 0.5 to 128 μg·mL− 1 on K562 cells. ,e results revealed
that α-viniferin significantly inhibited the proliferation of
K562 cells in both dose- and time-dependent manners
(Figure 4). ,e inhibition rates sharply increased at the
concentration of α-viniferin from 8 to 128 μg·mL− 1 at 12, 24,
and 48 h. We observed α-viniferin inhibits K562 cell growth
IC50 values of 13.61 μg·mL− 1 at 24 h. Compared with
resveratrol, there were few records about α-viniferin, a
resveratrol trimer, inhibiting K562 cell growth. But the effect
of α-viniferin is not simply triple of resveratrol; it is probably
due to another way of inhibiting the growth of K562 cells.
We observed high-dose α-viniferin (32 to 128 μg·mL− 1)
caused serious cell death, cell fragmentation, and nuclei lysis.
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Figure 1: Network of 118 candidate compounds and 141 candidate targets.,e red circles represent the compounds, whereas the green and
blue circles delineate the targets.
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,us, we chose a comparatively lower concentration range
from 0 to 32 μg·mL− 1 at 24 h for the investigation of
mechanisms relating to the inhibitory effects of α-viniferin
on K562 cell proliferation. In order to verify the selectivity of
α-viniferin on leukemia cells, peripheral blood mononuclear
cells (PBMCs) from healthy C57BL/6 mice were isolated and
incubated with Con A or different concentrations of
α-viniferin for 24 h and 48 h to detect cell viability. In total,
α-viniferin promoted PBMC proliferation, but the prolif-
eration effect of PBMC was observed only in 32 μg·mL− 1

with significance (Supplemental Figure 1). We also noticed
that α-viniferin inhibits the proliferation of K562 cells by
reducing the expression of the BCR-ABL protein (Supple-
mental Figure 2).

3.6. α-Viniferin Induces Proapoptotic Morphology in K562
Cells. As shown in the microscopy images in Figure 5(a),
following exposure to 0 to 128μg·mL− 1 α-viniferin for 24h,

K562 cells exhibited apoptotic morphological features, in-
cluding distortion and disruption, all of which showed no
difference with the cell proliferation assay results. In
Figures 5(b)–5(d), Hoechst-stained control cells showed a
circular nucleus containing diffuseHoechst chromatin staining.
After α-viniferin treatment, the cell nuclei became granular,
which is consistent with the results of apoptosis-positive drug
H2O2. In addition, cells stained with AO/EB appeared as bright
green arcs and had condensed yellow/orange nuclei during the
early stage and the late stage of apoptosis; however, no necrotic
cells were observed (Figures 5(e)–5(g)). Besides, the ultra-
structural analysis further proved the absence of apoptotic cells
in the control group (Figure 5(h)). But apoptotic bodies were
spotted in K562 cells treated with 32μg·mL− 1 α-viniferin for
24h (Figures 5(i) and 5(j)).

3.7. Flow Cytometric Assay on Apoptosis. After α-viniferin
treatment, K562 cells were analyzed by Annexin V-PI
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Figure 2: Network of 46 potential targets (triangles) connected to 139 diseases (circles), and diseases are classified into 24 groups (C squares)
according to their Medical Subject Headings.
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staining analysis to evaluate apoptotic cell death. Despite the
pronounced concentration-dependent cell death that was
observed in the cytotoxicity assay, apoptotic cell death was
pronounced only at a high concentration of α-viniferin
(Figure 6). To gain insights into the antileukemic effect of

α-viniferin, we performed FITC Annexin V and PI staining
of K562 cells. Cells treated for 24 h with α-viniferin revealed
marked flow cytometry findings, including a few cells
appearing in the second quadrant (FITC Annexin V-neg-
ative and PI-positive), indicating that necrosis rarely oc-
curred in the drug-treated cells. ,e finding of drug-induced
cell apoptosis, indicated by cells moving from the third
(FITC Annexin V- and PI-negative) to the first quadrant
(FITC Annexin V- and PI-positive) and fourth quadrants
(FITC Annexin V-positive and PI-negative), suggested that
apoptosis was induced by the treatment.

3.8. Mechanism of α-Viniferin-Induced Apoptosis. To verify
the potential mechanism by which α-viniferin induces ap-
optosis, we detected changes in the mitochondrial mem-
brane potential involved in apoptosis. To explore the effects
of α-viniferin on mitochondrial membrane potential, JC-1-
stained K562 cells were analyzed by flow cytometry, which
were cultured in the presence of different drug concentra-
tions for 24 h (Figure 7). Compared with untreated cells,
mitochondrial membrane potential decreases in a dose-
dependent manner. ,is result showed that α-viniferin
disrupts the mitochondrial membrane potential leading to
cytosolic accumulation of monomeric JC-1, activating the
intrinsic pathway to indicate apoptosis.

,e mRNA levels of Bad, Bax, Bcl-2, and Bcl-xL were
measured in α-viniferin-induced and control K562 cells by
quantitative real-time RT-PCR (qRT-PCR). As shown in
Figure 8(a), when α-viniferin was added, the mRNA levels of
apoptosis-promoting genes were upregulated with increas-
ing drug concentrations. In contrast, antiapoptosis mRNA
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Figure 4: Effect of α-viniferin (obtained from BioPha Co., Ltd.
Yunnan, China; cat no. BBP00220) on the cell inhibition ratio of
K562 cells. Cells were treated with different concentrations of
α-viniferin for 12, 24, and 48 h. Cell inhibition ratio was detected by
the MTT assay. ,e results are the means of three independent
experiments. ∗∗P< 0.01; ∗P< 0.01 vs. control.
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Figure 3: Network of 11 candidate stilbene compounds (cC) and 141 candidate targets (cT). ,e red circles represent the compounds,
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expression levels were significantly downregulated. However,
the results of Bcl-2 and Bax are not very significant compared
to Bcl-xL and Bad. To further verify the observed changes in
Bcl-2 family underlying α-viniferin-induced apoptosis, the
protein levels of Bcl-2 and Bax were measured by western

blotting. Compared with the control group, Bcl-2 expression
decreased, and Bax expression increased after treated with
α-viniferin for 24 h (Figures 8(b)–8(d)). And themRNA levels
of caspase-9 were upregulated in a dose-dependent manner
measured by RT-PCR (Supplemental Figure 3).

Control 0.5 μg·mL–1 2 μg·mL–1 8 μg·mL–1 32 μg·mL–1 128 μg·mL–1

(a)

(b) (c) (d)

(e) (f ) (g)

(h) (i) (j)

Figure 5: ,e images in (a) show the morphological changes of K562 cells treated with 0–128 μg·mL− 1 α-viniferin for 24 h (magnified by
200x); the images in (b–d) show the morphological changes in the k562 cell nucleus with Hoechst staining; (b, c) K562 cells treated with
0∼32 μg·mL− 1 α-viniferin for 24 h (magnified by 200x); (d) K562 cells treated with H2O2 for 24 h (magnified by 200x); the images in (e–g)
show differences in k562 cell apoptosis and necrosis with AO/EB staining; (e, f ) K562 cells treated with 0∼32 μg·mL− 1 α-viniferin for 24 h
(magnified by 200x); (g) K562 cells treated with H2O2 for 24 h (magnified by 200x); the images show ultrastructural features of a rep-
resentative control cell (h) and the morphological features of apoptosis in K562 cells treated with 32 μg·mL− 1 α-viniferin (i, j) by electron
microscopy; (h) K562 cells without α-viniferin treatment (magnified by 5,000x). K562 cells treated with 32 μg·mL− 1 for 24 h; (i) magnified by
6,000x; (j) magnified by 12,000x).
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Figure 6: α-Viniferin induced early apoptosis of K562 cells in a dose-dependent manner. K562 cells were cultured with 0, 2, 8, and
32 μg·mL− 1 (a∼d) α-viniferin for 24 h analyzed by flow cytometry; relative quantitative analysis of apoptosis cells for 24 h (e); the results and
error bars are the means of three independent experiments. ∗∗P< 0.01; ∗P< 0.05.
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Figure 7: Continued.
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Figure 7: α-Viniferin induces apoptosis in K562 cells by reducing mitochondrial membrane potential. K562 cells were cultured with
0∼32 μg·mL− 1 α-viniferin for 24 h and stained with JC-1. (a) Control. (b) 2 μg·mL− 1. (c) 8 μg·mL− 1. (d) 32 μg·mL− 1.
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Figure 8: Evaluation ofmRNA and protein expression of the Bcl-2 family. K562 cells are cultured with 0∼32 μg·mL− 1 α-viniferin for 24 h. (a)
Evaluation of mRNA expression of Bcl-2 family by quantitative real-time RT-PCR (qRT-PCR); (b) Evaluation of protein expression of Bcl-2
family by western blotting; relative quantitative analysis of protein expression (c, d). Bcl-2 and Bcl-xL expression decreased, and Bad and Bax
expression increased. ,e results and error bars are the means of three independent experiments. ∗∗P< 0.01; ∗P< 0.05.
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4. Discussion

We found changes in the apoptosis pathway after drug
treatment, and the expression of Bcl-2 family changed
significantly. ,ese findings suggest that stilbene com-
pounds do not rely on toxicity to kill cancer cells; instead,
cancer cells are killed through mitochondrial pathway in-
terference of their growth and induction of apoptosis. Sci-
entists working in the field of apoptosis agree that
programmed cell death occurs via mitochondrial damage.
For example, a recent study has found that resveratrol is a
tumor suppressor compound in grapes that induces apo-
ptosis through a mitochondrial pathway regulated by Bcl-2
[40]. Studies have shown that resveratrol induces apoptosis
in different acute lymphoblastic leukemia cells by depola-
rizing mitochondrial membranes and activating caspase-9
[41]. Wieder et al. reported that a hydroxylation analogue of
resveratrol, named piceatannol, could induce apoptosis in
the lymphoma cell line BJAB and primary leukemic lym-
phoblasts [42]. Resveratrol-mediated stimulation of C7H2
cells has been shown to lead to the production of reactive
oxygen species (ROS), which is remarkably reduced by Bcl-2
[32]. Another study has shown that resveratrol induces
apoptosis in K562 cells by reducing mitochondrial mem-
brane potential [43]. ,is study observed the same phe-
nomenon for 32 μg·mL− 1 α-viniferin treated with K562 cells
for 24 h.

Lower cytotoxicity and higher protective potency appear
to be common characteristics of natural stilbenes. However,
α-viniferin may play a role in plant disease resistance, human
health, and other diseases. A large number of Chinese
medicines analyzed by systems pharmacology have been
found to contain α-viniferin and to exhibit an effect on
leukemia cells. According to the National Cancer Institute
Developmental ,erapeutics Program records (NSC 655524)
(https://dtp.cancer.gov/dtpstandard/dwindex/index.jsp), leu-
kemia and central nervous system cell lines are sensitive to
α-viniferin treatments in vitro. We used the Comparative
Toxicogenomics Database to evaluate the specificity of
α-viniferin against different diseases according to inferred
scores [44]. Among the top 100 inferred diseases related to
α-viniferin, cancer and cardiovascular disease were highly
correlated with α-viniferin. ,ese results indicate the possible
proapoptotic activity of α-viniferin for potential application in
treating cancer, whose effects were observed in our work.
However, the antitumor mechanism of α-viniferin is likely
greater than this single effect. Its role in cell cycle arrest,
autophagy, and other functions must be investigated further.

5. Conclusions

In summary, our study is the first systems pharmacology
investigation of the treatment of CML by TCM. We gen-
erated 118 bioactive compounds from 11 herbs within four
dialectical therapy groups and 141 predicted targets. Our
data showed that α-viniferin, a natural stilbene, was found to
be highly related to these targets. And it has lower cyto-
toxicity and high sensitivity to K562 cells. We found
α-viniferin could induce early apoptosis on K562 cells,

especially considering the Bcl-2 family of proteins in reg-
ulating K562 cell apoptosis through unique modulation of
the mitochondrial pathway. α-Viniferin caused mitochon-
drial damage and increased Bcl-2 family proapoptotic
protein activity, leading to apoptosis. ,us, we hypothesize
that α-viniferin merits additional experimental and clinical
research in the treatment of CML.
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