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The contrast sensitivity function that spans the two dimensions of contrast and

spatial frequency is crucial in predicting functional vision both in research and clinical

applications. In this study, the use of Bayesian inference was proposed to determine

the parameters of the two-dimensional contrast sensitivity function. Two-dimensional

Bayesian inference was extensively simulated in comparison to classical one-dimensional

measures. Its performance on two-dimensional data gathered with different sampling

algorithms was also investigated. The results showed that the two-dimensional Bayesian

inference method significantly improved the accuracy and precision of the contrast

sensitivity function, as compared to the more common one-dimensional estimates. In

addition, applying two-dimensional Bayesian estimation to the final data set showed

similar levels of reliability and efficiency across widely disparate and established

sampling methods (from classical one-dimensional sampling, such as 9 or staircase,

to more novel multi-dimensional sampling methods, such as quick contrast sensitivity

function and Fisher information gain). Furthermore, the improvements observed following

the application of Bayesian inference were maintained even when the prior poorly

matched the subject’s contrast sensitivity function. Simulation results were confirmed

in a psychophysical experiment. The results indicated that two-dimensional Bayesian

inference of contrast sensitivity function data provides similar estimates across a

wide range of sampling methods. The present study likely has implications for the

measurement of contrast sensitivity function in various settings (including research and

clinical settings) and would facilitate the comparison of existing data from previous

studies.

Keywords: Bayesian, psychometric function, contrast sensitivity function (CSF), two-dimensional stimuli, two-

alternative forced choice (2AFC), adaptive methods

Abbreviations: AFC, alternative forced choice; AULCSF, area under the log CSF; CSF, Contrast sensitivity function; c/d,

cycle/degree; dB, decibel; FIG, Fisher information gain; MAP, mode of the posterior/maximum a posteriori probability;
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INTRODUCTION

The aim of vision science is to provide a mechanistic explanation
of human vision. Much emphasis has been placed on the
measurement and explanation of contrast sensitivity over a
wide range of spatial frequencies (Pelli and Bex, 2013). The
spatial contrast sensitivity function (CSF) is accepted as a basic
comprehensive measure of the visual system in cases of both
normal and abnormal vision (Hess et al., 1981; Regan et al.,
1981; Jindra and Zemon, 1989; Ginsburg, 2003). It is one of the
most important metrics in the investigation of functional deficits
in visual disorders (Hess and Howell, 1977; Zhou et al., 2006;
Huang et al., 2007, 2008; Hot et al., 2008; Hou et al., 2010).
However, the disadvantages of the CSF, which represents the
detection sensitivity of a subject to the spatial frequency (SF) and
contrast of a stimulus, include lengthy procedures associated with
sampling and estimation. Some studies have proposed parametric
adaptive methods for sampling of psychometric functions in
a multi-dimensional stimulus space, combined with Bayesian
estimation (Kujala and Lukka, 2006; Lesmes et al., 2010). On
the other hand, classic 1-D algorithms such as the staircase
method, are still widely used for CSF sampling (Bonneh et al.,
2016; Chung and Legge, 2016), and the final CSF estimation
can be based on various methods (Levitt, 1971; Huang et al.,
2008). Thus, researchers can apply various adaptive methods
to collect data (Figure 1A, blue), but can also use various
methods of inference (Figure 1A, orange) to predict the most
probable underlying CSF. Interestingly, 2-D Bayesian inference
is applicable to any CSF experimental data set, independently of

FIGURE 1 | (A): General adaptive sampling methods (blue) and final Bayesian

inference from the available data (orange). Examples of typical sampling and

inference methods are listed below the box, along with their applicability in a

1-D or 2-D stimulus space. (B): 2-D spatial contrast sensitivity psychometric

function (P, percentage of detection, Equation 3). The reciprocal of the

standard 1-D CSF function across spatial frequencies (red curve) was used as

the midpoint in a logistic psychometric function along the contrast dimension

(blue curves) and thus defined the 2-D psychometric function.

the sampling method. Therefore, the use of Bayesian inference
to extract the 2-D CSF was proposed, and its efficiency in
comparison to classic 1-D estimates, and when applied to CSF
data sets sampled with different algorithms was investigated.

Researchers have developed numerous quick and efficient
methods of sampling the most informative parts of psychometric
functions. As shown in Figure 1A (blue rectangle), thesemethods
select stimulus strength according to previous responses of the
subject, and are referred to as adaptive psychometric methods,
or in psychology, adaptive optimization designs (Watson and
Pelli, 1983; Leek et al., 1992; Leek, 2001; Cavagnaro et al., 2010;
Vul et al., 2010; Myung et al., 2013). Some of the adaptive
methods of psychophysics use 1-D non-parametric samplings,
which select the next stimulus based on the subject’s responses
to past trials (Levitt, 1971; Kaernbach, 1991), and the final
psychophysical parameters of interest are obtained either by
fitting the data (Treutwein and Strasburger, 1999), or simply
by averaging the data collected (Levitt, 1971). Others methods
apply Bayesian inference at each step, such that after each trial
the next stimulus is chosen based on the current most probable
functional estimate tomaximize sampling efficiency (Watson and
Pelli, 1983; Kontsevich and Tyler, 1999; Kujala and Lukka, 2006;
Lesmes et al., 2010), and parameters of interest are extracted
through trial-by-trial Bayesian updating. The Bayesianmethod of
function estimation can be applied independently of the sampling
method (Figure 1A, orange rectangle), i.e., it could be applied to
data collected by any strategy (Kuss et al., 2005).

The theory that two-dimensional (2-D) psychometric
functions (such as CSF) could be efficiently sampled by 2-D
Bayesian adaptive strategies was recently proposed. These
novel methods search the 2-D stimulus space for the next most
informative stimulus based on a parametric model, thereby
facilitating more efficient estimation of the threshold contour
than more common procedures (Kujala and Lukka, 2006; Lesmes
et al., 2006, 2010; Hou et al., 2010; Vul et al., 2010). The more
common procedures, such as QUEST, 9 , and staircase, map
responses to one dimension (the contrast) of the stimulus only,
and require repetitive measurements along the other dimension
(the SF), a process that seems inefficient. At the same time,
these procedures have the advantages of relative simplicity of
algorithms and fewer assumptions of functional shape, and are
still widely used by researchers (Klein, 2001; Richard et al., 2015;
Vedamurthy et al., 2015; Bonneh et al., 2016; Chung and Legge,
2016).

In the present study, 2-D Bayesian inference was used to
estimate CSF from data sampled by four disparate adaptive
methods. As shown in Figure 1A, the inference was applied
when all responses of the subject had been collected. The CSF
was parameterized with a logistic psychometric function along
the log-contrast dimension, together with a double-exponential
function for the SF dimension (Movshon and Kiorpes, 1988;
Figure 1B). Given a final set of observed data, the Bayesian
inference method updated, on a trial-by-trial basis, the posterior
probability distribution of the parameters (Watson and Pelli,
1983). The final estimate of CSF parameters was determined by
the mean of this posterior distribution along the dimension of
each parameter (Kontsevich and Tyler, 1999). The reliability and
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efficiency of the multi-dimensional Bayesian inference method
was assessed. Four adaptive procedures were tested—two simple
1D adaptive strategies and two novel 2-D adaptive methods. The
simple strategies included: (1) the up-down staircase method
(Kaernbach, 1991) that changes the intensity of the stimulus
“up” or “down” after every “negative” or “positive” response,
respectively; and (2) the 9 method (Kontsevich and Tyler,
1999) that uses parametric adaptive techniques to select the next
stimulus, such that the associated response would minimize the
expected entropy of the threshold and slope along the contrast
dimension. The two novel 2-D adaptive methods included: (1)
the quick contrast sensitivity function (qCSF; Lesmes et al.,
2010) that optimizes sampling along the entire CSF curve and
searches for the stimulus, the response to which would minimize
the expected entropy in both contrast and SF space; and (2)
the FIG (Fisher information gain) method (Remus and Collins,
2007), adapted to a 2-D model for purposes of the present
study, that selects the next 2-D stimulus that maximizes the
Fisher information gain of function parameters. For effective
comparison, the CSFmodel, levels of spatial frequencymeasured,
levels of contrast, and number of sampling trials were identical
across all methods.

MATERIALS AND METHODS

2-D Psychometric Function
The psychometric function along the contrast dimension is a
one-dimensional (1-D) function that represents the percentage
of detection by the subject of a given stimulus contrast c. This
function commonly has a sigmoid form. In the present study, the
logistic function was selected as follows:

P(′detected′|c, {α,β , δ, γ }) = γ +
(1 − γ − δ)

1+ exp(−β(ln(c) − ln(α)))

(1)

thereby defining the percentage of the “detected” response
at contrast c for the given parameters, where α denotes the
midpoint, β represents the slope, and the asymptotes γ and
δ represent the guess and lapse rates, respectively. For an n-
alternative forced choice (nAFC) task, in which the subject is
asked to choose between n possibilities, the value of γ should
be equal to 1/n. The present study was restricted to the most
common, standard contrast detection 2AFC paradigm (γ = 1/2).

The CSF, or S(f ), in its basic 1-D representation describes
sensitivity (1/threshold) as a function of grating frequency
(Wilson and Wilkinson, 2003). The double-exponential form
(Movshon and Kiorpes, 1988) was used to characterize the CSF
(Figure 1B, red curve):

S(f ) = M × f A × exp(−
f

F
) (2)

The parameters A and F relate to the steepness of the low-
and high-frequency portions of the curve, respectively; F·A
defines the peak spatial frequency; and M (F×A)A exp (−A)
its amplitude. The threshold 1/S(f ), was used as the midpoint in
the logistic psychometric function (Equation 1) in the contrast

dimension, α = 1/S(f ), on the assumption that the slope
parameter does not vary with spatial frequency (Mayer and Tyler,
1986). Thus, the 2-D log-log contrast-SF psychometric function
was defined as follows:

P (′detected′|{f , c}, θ) ≡

γ +
(1− γ − δ)

1+ exp
(

−β
(

ln (c) + ln (A) ln
(

f
)

+ ln (M) − f /F
))

(3)

representing the percentage of positive responses at intensity
x= {f, c} for the given parameters θ = {M, A, F, β, γ , δ} (γ = 1/2).

Bayesian Inference
The Bayesian rule described in detail by Kuss et al. (2005) and
Kontsevich and Tyler (1999) was applied. Given the observed
data, the posterior distribution was obtained using Bayes’ rule as
follows:

pt(θ |rt) =
pt(θ) p(rt|θ)

pt(rt)
(4)

where pt(rt) =
∑

θ

pt(θ) p(rt|θ); and rt is the response to

trial t, the stimulus intensity of which is xt . In Equation (4),
the nominator is the product of the prior pt (θ), defined
further below, and the likelihood p(rt | θ), which is simply

p(rt|θ) = prt
(

1− p
)1−rt (P is the percentage of “detected”

responses defined in Equation (3) that is also assumed to be the
probability of a positive response).

The posterior distribution after each trial served as the prior
distribution of the next trial. In the following experiments, the
collected data set D = {(x, r)t | t = 1,..., k} allowed sequential
updating of the posterior distribution on a trial-by-trial basis,
thus the estimates of p(θ | rt) were derived. The final posterior
after all trials (Figure 2, magenta curve) was used to estimate the
vector of parameters θ .

In a Bayesian psychometric function inference, a prior
distribution must first be defined. An initial prior pt = 1 (θ)
was set in a discrete gridded parameter space that consisted
of the five-dimensional vector θ = (M, A, F, β, δ). The prior
distribution for the parameters (M, A, F, β, δ) was a joint normal
distribution ∼N ([2.00, −0.30, 0.78, 0.62, −0.30], diag (0.50,
0.50, 0.50, 0.11, 0.02)) in log 10 space across a constrained 5-
D parameter space, representing a weak prior knowledge of
normal vision (Figure 2, cyan curve) and narrow priors on the
“nuisance” parameters β and δ (Prins, 2013). An approximation
was applied by defining the [32, 32, 32, 8, 8] discretization grid
for the corresponding five dimensions of the parameter vector
θ that was found to have good equilibrium between computation
time across simulations and the discretization step of preliminary
and subsequent tests (For example, increasing the grid to [64,
64, 64, 8, 8] gave a RMSE around 2.2, at M = 108 trials for
the staircase (Stc) sampling method, and this result is virtually
indistinguishable from the results of the present study, based on
smaller grid steps). Although the 5-D prior contains about two
million elements, the time of computation was done relatively
quickly, and was run in Matlab (MathWorks, Natick, MA) on a
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FIGURE 2 | Distribution of the three “key” parameters of the CSF prior to data collection (cyan) and after 108 two-alternative forced choice (2AFC)

simulated trials (magenta). The plot at far right shows the ±1 st.d. prior and posterior in the 2-D CSF space. The dashed lines indicate the designated “true” value

in simulation. The plots show that: (1) the prior distribution represents weak initial knowledge; and (2) the posterior distribution after 108 2AFC trials converges near

the “true” value of simulation.

5-year-old Windows Intel Core i5-760 @ 2.80 GHz PC (memory
10 GB). This Bayesian method with a 5-D parameter space takes
about 7 s to estimate a CSF function from 108 trials, and takes
<3 s on a 3-year-old Windows Intel Core i7-4770 @ 3.40 GHz
PC. Computation time showed an approximately linear increase
per dimension and higher grid approximation. Once the final
posterior distribution was updated, the simplest representation of
its information was derived by assigning a single point estimate
for each of the parameter values. In Bayesian inference, various
methods provided the final point estimate, including the mode
of the posterior (maximum a posteriori probability, MAP), the
median of the posterior (MED), and the mean of the posterior
(MEAN). The MEAN was chosen as a final estimation of θ in the
present study.

Adaptive Methods
Four methods were tested, including two 2-D adaptive (FIG and
qCSF) and two 1-D adaptive (9 and staircase) methods.

Fisher Information Gain (FIG)
A maximum Fisher information gain method was implemented
(Liao and Carin, 2004; Remus and Collins, 2007) in which the
next stimulus sample was selected, using a one-step-ahead search
to maximize the determinant of the Fisher information matrix.
This method optimizes the sampling step to get maximum
information about the parameters. Once the information gain has
been calculated, the stimulus to be selected is that corresponding
to the maximum gain of Fisher information. The stimulus value
xt was uniformly selected among the top 10% of stimuli, to avoid
being trapped in local minima and to obtain a more uniform
sampling of the SF space. With this constraint, sampling of the
SF space was still biased toward the edge SFs (see Supplementary
Material), because they are the most informative for the fitting
procedure, but much less so than they are without this constraint
(results not shown). The prior probability distribution, p(θ)
was generated over a 5-D parameter space, as described in
the previous Section Bayesian Inference, and used for stimulus
selection in the first trial. After the final trial, the parameter
estimates were defined by the mean value across the whole
parameter space, and the estimated sensitivity was reported as
FIG in the results.

Quick contrast sensitivity function (qCSF). This is a Bayesian
adaptive procedure that was designed to concurrently estimate
contrast thresholds across the full spatial frequency range
(Lesmes et al., 2010). For the convenience of comparison with
other methods, the CSF model designed for the present study
(Equation 3) and the prior distribution described in the previous
Section Bayesian Inference were used, by changing the CSF in
the qCSF toolbox and making a 2-D Bayesian re-estimate of
sensitivities after each simulation (reported qCSF). As was the
case for the FIG, sampling of the SF space was somewhat more
biased to the edge SFs (see Supplementary Material).

The 9 Method
This is a 1-D Bayesian adaptive technique that estimates the
parameter values of a 1-D psychometric function from a
posterior distribution and defines the combined distribution
of two parameters α and β (Kontsevich and Tyler, 1999). In
the present study, the Palamedes toolbox (Prins and Kingdom,
2009) was used and an independent 9 measurement was
run simultaneously and interleaved for each spatial frequency.
The prior distribution of parameters α and β for every 9

measurement was a joint normal distribution ∼N ([−log
10(S(f )), 0.62], diag (5, 0.11)) in log 10 space, where S(f )
represented the prior sensitivity at the respective spatial
frequency f. The prior distribution represented a weak prior
knowledge of α and a constrained prior assumption of β . The
reciprocal of the final threshold estimate of every 9 run was the
contrast sensitivity at the spatial frequency, and was denoted as
“9 .” The CSF was also estimated by 2-D Bayesian inference and
was denoted as “Bayes-9 .”

Up-Down Staircase
A simple up-down staircase method (three up, one down;
Kaernbach, 1991) was used; the contrast was stepped up ∼33%
after a negative response, and stepped down 10% after a positive
response. For each spatial frequency, an independent staircase
was run and the staircase started from the prior estimated
contrast threshold at the respective spatial frequency. To speed
up measurements, on the first four trials, three-exponent step
sizes (i.e., ∼136% up and ∼33% down) were used. For every
staircase, the log-contrasts of all trials were averaged to estimate
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the contrast threshold, following exclusion of the first four trials.
These staircases were all randomly interleaved. The CSF was then
estimated by Bayesian inference and was denoted as “Bayes-Stc.”

Simulation Methods
To investigate the efficiency of 2-D Bayesian inference in different
adaptive strategies, Monte-Carlo simulations (N = 1000) were
used. The 2-D Bayesian estimates from four sampling methods
(FIG, qCSF, Bayes-Stc, and Bayes-9) and two 1-D estimates
(9 and Stc) were simulated as described in previous sections.
Each simulated experiment consisted of the simulation of data
sets comprising 48, 72, 108, 156, 228, and 300 trials, spatial
frequency ranging from 0.5 to 22.6 cycle/degree (c/d) in 0.5
(log 2) unit steps, and possible contrast values ranging from 0.001
to 1 in 0.02 (log 10) unit steps. The initial stimulus point of
every simulation was selected according to the sampling methods
and chosen prior previously described in detail (Section Adaptive
Methods). The simulated subject, specified by parameters {M, A,
F, β, δ} = {100, 0.8, 4, 4, 0.02}, matched a normal subject in a
2AFC contrast detection task (Figure 1B). For each simulated
trial, these values were introduced into Equation (3) to generate
the simulated response. As a measure of variability the root mean
square error (RMSE) pooled across SFs between predicted and
true CSF curves were used (see Section Results), and the mean
bias of 1000 estimates with respect to the true curve was also
reported. These variables represent equivalent measures to the
area under the log CSF (AULCSF), as described by other research
teams (Lesmes et al., 2010).

The influence of initial priors was also tested, using data
artificially generated from a curve that did not match the prior,
the parameters of which were {M, A, F, β, δ}= {40, 1.2, 6, 4, 0.02},
to represent an amblyope (Huang et al., 2008). Demonstration
codes inMATLAB (MathWorks, Natick,MA) andOctave (GNU)
are available for download (http://vision.ustc.edu.cn/packages_
en.html).

Experimental Methods
Apparatus
A vertically-oriented sinusoidal grating was displayed in the
center of the screen (SonyMultiScanG520) 21′′ CRT driven by an
Nvidia Quadro K600 Engine, with 500MB of video RAM, housed
in a Windows Intel Core 2 PC. A video switcher (Li et al., 2003)
was used to generate a 14-bit gray level. The mean luminance of
the screen was set to an absolute level of 48 cd/m2. The gamma
function and parameters for the method were calibrated every
day before the experiment, at least 30 min after the monitor was
switched on. The resolution was set to 1600 × 1200 at 85Hz.
The display window was masked by a gray cardboard to form a
circular aperture subtending 4.2◦ at the usual viewing distance
of 4m. To remove any sources of distraction, all data collection
took place in a dark room. The stimuli were viewed monocularly
by the dominant eye of each subject with the other eye covered.

Stimuli
Vertically-oriented sinusoidal gratings were presented in a
3◦Circular window. A radial Gaussian cumulative function
distribution was used to blend the grating’s edge into the

background (mean of 1.5 degrees of eccentricity, and st.d.
of 0.3◦). Every stimulus grating had a random phase. The grating
was presented with a limited lifetime of 150ms in its interval.

Subjects
The subjects (five naive subjects; aged 23–30-years; two males)
had normal or corrected-to-normal vision and were experienced
at the task. Written informed consent was obtained from the
subjects following an explanation of the nature and possible
consequences of the study. Written informed consent by the
subjects was obtained beforehand; the study conformed to the
tenets of the Declaration of Helsinki and was approved by ethics
committee of the School of Life Science, University of Science and
Technology of China.

Procedure
Subjects were seated in a dimly-lit room and the head of each
was stabilized with a chin-rest. The subjects were presented
with a two-interval forced choice (2-IFC) task. On each trial,
two intervals separated by a 500ms gap were presented for
150 ms. During one of the intervals, the target grating was
presented, and during the other, themean luminance background
remained on. The task of each subject was to indicate the
interval during which the target grating appeared, by pressing
a keyboard. An intermediate-frequency pure tone was provided
at the beginning of every interval, and a high-frequency pure
tone was provided after every response, irrespective of response
correctness.

All participants completed a series of CSF runs. Two adaptive
methods were used, the 9 method and FIG method. For both
methods, spatial frequency values were 0.5–22.6 c/d in 0.5 (log
2) unit steps, and possible contrast values ranged from 0.001
to 1 in 0.02 (log 10) unit steps. The initial stimulus point
of every measurement was selected according to the sampling
methods, described in detail in Section Adaptive Methods. Each
measurement contained a total of 108 trials, and all stimuli
and responses were used in the Bayesian inference of the CSF.
A session comprised two methods, with three repetitions per
method, to give a total of 648 trials per session (or day). All 648
trials were interleaved. The subjects were tested over 4 days, i.e.,
2592 trials in total. Subjects received preliminary training for 216
trials, 1 day ahead of the experiment, and 24 practice trials, every
day before the experiment (Jäkel and Wichmann, 2006). These
practice trials were not included in the results and analysis. A 2-D
Bayesian inference was also performed with the data sets sampled
by the 9 method, such that three estimated CSFs (FIG, Bayes-9 ,
and 9) were obtained for every subject.

RESULTS

Simulation
In simulation experiments of CSFs of a normal model and
an amblyopic model, the performance of Bayesian inference
of CSFs from data sampled with two types of modern 2-
D adaptive estimates (FIG and qCSF) and two types of
1-D strategies (9 and Stc) were analyzed. The results of
inferring CSF in a 2-D space were compared to those of
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common 1-D estimates (9 from 1-D fitting, and Stc from
1-D convergence point estimates), and differences among the
Bayesian estimates among the four sampling methods were
evaluated.

Figure 3 (left panel) shows an example of the six CSFs
estimated after 108 sampling trials. The error region (shaded)
represents the variability (mean ± 1 st.d.) of estimations of
individual thresholds at a given spatial frequency. In addition
to the 9 and Stc methods, all other sampling schemes seemed
to have yielded very similar results and distributions. To
quantify the concordance of CSF estimates, the root mean
squared error (RMSE) of the threshold obtained from each
of the six methods was calculated with respect to the model
subject, collapsed across all simulations (N = 1000) and spatial
frequency conditions (S = 12; Hou et al., 2010). As shown
in Figure 4, the RMSE of sensitivities estimated with the FIG,
qCSF, Bayes-9 , Bayes-Stc, 9 , and Stc methods over 108 trials
were 1.9, 2.2, 2.1, 2.2, 4.9, and 4.7 dB, respectively, and all
were reduced as the trial number increased. The results showed
that the 2-D Bayesian inference had a considerable effect of
reducing the estimated RMSEs of common 1-D estimates.
For example, the average RMSEs of 9 among trials were
reduced from 4.9 to 2.2 dB, following the application of
Bayesian inference on 2-D contrast-SF space. In other words,
the Bayes-9 method was considerably more efficient than the
9 method, yielding the same precision within almost one-
fourth the number of trials; 168 trials of the 9 method yielded

a similar precision level as about 48 trials of the Bayes-9
method, and 228 trials of the 9 method corresponded to
about 72 trials of the Bayes-9 method. A similar improvement
in efficiency of the staircase, another common method, was
noted.

The accuracy, defined as the bias to the “true” threshold value
in dB, was also analyzed. Figure 4 depicts the bias for threshold
estimations for each of the six methods. These six estimates
exhibited similar, relatively small biases that were 0.48, 0.35, 0.45,
0.14, −0.13, and 0.33 dB, for the FIG, qCSF, Bayes-9 , Bayes-Stc,
9 , and Stc methods, respectively, after 108 trials. The absolute
value of all biases, except those of the Stc method, were reduced
as the trial number increased.

All results of variability and bias remained valid when the
AULCSF (which is an equivalent variable to the RMSE adopted
in the present study) was used as a measure (see Supplementary
Material).

To further prove that the test efficiencies exhibited by
the current simulation were not overly determined by the
initial priors, the Bayesian measurement of a very different
CSF (Figure 3, right) observed for an amblyope was simulated
(Huang et al., 2008). As shown in Figure 5, CSF estimates derived
by the Bayesian methods converged at 2.06, 1.79, 2.05, 2.01, 5.56,
and 4.66 dB for the measurement methods FIG, qCSF, Bayes-9 ,
Bayes-Stc, 9 , and Stc, respectively by the 108th trial; and the
magnitude of the mean bias, 0.63, 0.63, 0.63, 0.68, 0.99, and
0.46 dB, respectively, continued to decline as the trial number

FIGURE 3 | Results of simulation of a normal subject (left) and an amblyopic subject (right). CSFs obtained with FIG, qCSF, Bayes-9, Bayes-Stc, 9, and Stc

methods for 108 trials. The shaded region and error bar represent 1 st.d.

FIGURE 4 | Average precision (left) and relative bias (right) estimates of the methods used in simulation (open symbols) and psychophysical experiments (solid

symbols). Symbols of the experimental results are slightly shifted for greater clarity. Different methods are represented by different colors and symbols (see legend).
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FIGURE 5 | Average precision (left) and relative bias (right) estimates of the methods used in simulation of an amblyopic subject. Different methods are

represented by different colors and symbols (see legend).

increased. These results are comparable to those reported above
for a CSF close to the prior peak.

Experimental Test
A standard 2-IFC grating detection task with 108 trials was used
for psychophysical validation of the Bayesian inference method.
A modern 2-D adaptive method, FIG, and a traditional sampling
method, 9 , were applied independently and repeatedly for each
of the five subjects. The precision of the methods were evaluated
through RMSE of repeated measurements across 4 days, with
three repetitions per day and subject.

The measured CSFs of the five subjects for the three estimates
(Bayesian-FIG, Bayes-9 , and 9) are presented in Figure 6. The
errors (shaded region or error bar) represent the variability (±1
st.d.) of estimation of individual thresholds. To quantify the
concordance of CSF estimates, the RMSE with respect to the
amblyope model obtained with the three methods, collapsed
across all subjects (O = 5), repetitions (N = 12), and spatial
frequency conditions (S = 12) was computed. The results were
added to the simulations presented in Figure 4. The RMSEs
estimated with the FIG, Bayes-9 , and 9 methods were 2.0,
2.2, and 3.9 dB, respectively (Figure 4, solid symbols). The 2-D
Bayesian inference had a considerable effect in reducing the
estimated variance. The RMSE of9 estimates were reduced from
3.9 to 2.2 dB following Bayesian inference, and the precision
was comparable to that of the common estimate (FIG), with a
difference of only 0.2 dB. The 2-D Bayesian estimates of the
AULCSF were also validated, and the results were similar to those
of the RMSE (see Supplementary Material).

DISCUSSION

Our study demonstrated that Bayesian inference over a 2-D
stimulus space strongly increases the efficiency of estimation
from data collected with traditional simple adaptive methods
and makes them comparable to more recent, modern 2-D
parametric adaptive methods. A large number of simulations
were performed that showed that this inference was fast and
convenient, and could be applied to behavioral data sets
sampled by common, simple strategies. This method presented
an acceptable compromise that allowed for efficient estimation
of CSF with traditional, simple adaptive strategies. Under

psychophysical validation, the method improved accuracy in
a similar manner to the simulations, and showed favorable
applicability to real-world conditions.

The sampling procedures considered in the present study
(FIG, qCSF, Stc, and 9) are four examples of the numerous
adaptive techniques available for psychometric testing. The
staircase method (Stc), the simplest of all sampling methods,
requires very few assumptions and has a fairly simple
algorithm for the selection of stimuli. The other category of
adaptive methods, parametric adaptive methods, sample the
stimulus space by applying more complex algorithms through
psychometric function estimates of previous samples. These
parametric “sample-estimate-sample” strategies thus make a
positive-feedback loop, and face the risk of being trapped in
local minima (Lesmes et al., 2010). Fortunately, researchers have
discovered numerous techniques (implemented in toolboxes,
Prins and Kingdom, 2009; Lesmes et al., 2010; Shen et al., 2015)
to help with their application. The robustness of the methods
in estimating anomalous functions have also been proven (Hou
et al., 2010; Lesmes et al., 2010). However, concerns about
complexity and potential traps of these modern 2-D parametric
adaptive methods still exist. On the other hand, the more
common methods are still widely accepted by psychophysical
researchers for their robustness and simplicity in applications
(Klein, 2001; Richard et al., 2015; Vedamurthy et al., 2015;
Bonneh et al., 2016; Chung and Legge, 2016). The Bayesian
inference method improved the efficiency of traditional methods,
and thus provides researchers with a flexible choice for optimal
inference of CSFs.

The Bayesian inference approach is often criticized for its
dependence on priors, but it also provides a straightforward,
reasonable method to realize the constraints of function
parameters (Kuss et al., 2005). A relatively large prior distribution
across a wide magnitude of CSF parameters was chosen in the
present study (Figure 2). The robustness of the 2-D Bayesian
inference was demonstrated, by estimating a CSF that poorly
matched the prior curve (Figure 5). The parameters describing
the slope and lapsing rate were considered to be nuisance
parameters, since they do not describe the sensory mechanism
of interest, but nevertheless affected the results. Wichmann and
Hill (2001) have shown that the threshold and slope estimates
of a psychometric function might be severely biased if the
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FIGURE 6 | CSFs measured for five subjects with Bayes-FIG, Bayes-9, and 9 methods repeated 12 times over 108 trials. Both Bayesian methods exhibit

less variability than the traditional method. The shaded region and error bar represent 1 st.d.

lapse rate is assumed to be equal to zero. However, lapses
do, in fact, occur. They concluded that it is advisable to leave
a narrow range of possible nuisance parameter values in the
fitting procedure. In the Bayesian inference method, as Prins
(2013) effectively demonstrated, the nuisance parameters can be
given proper attention, and in the present study the strategy
that limits the prior slope and lapse rate within a narrow
distribution was adopted. The Bayesian method applied in the
present study work defined a 5-D joint prior over all parameters,
including nuisance parameters, and provided relatively small bias
changes in parameter estimates (see Supplementary Material for
additional tests of nuisance effects).

The present results could be improved in at least two
directions. First, improvements could be obtained through
definition of the initial prior, which was relatively large in the
present study. As various researchers have recently demonstrated,
gathering data that has already been collected, in order to build

a better prior that facilitates a reduction in the variability of
measurements (or the time taken to complete measurements)
could be advantageous for both experimenters and institutions
(Kim et al., 2014; Gu et al., 2016). Given the availability of data
sets that have already been collected in research and clinical
environments, the present Bayesian inference could be easily
applied, and thus create a relatively large database that could be
used by the research community as a common prior distribution.
Second, improvements could be achieved by changing the
standard 2AFC design to n> 2 designs (Gu et al., 2016; Hou et al.,
2016), thereby reducing the binomial variability around the lower
asymptote at p= ½, and providing a much better estimate of the
threshold.

Another point that had not been considered is the limited
variety of shapes of the CSF that were possible in the present
study. The selected mathematical model of the CSF fixes the
type of shapes that the CSF can assume. Thus, the model
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cannot accommodate very specific changes, such as notches or
other local modifications within the CSF (Woods et al., 1996;
Huang et al., 2008; Tahir et al., 2009). In such cases, one
would need different methods [e.g., non-parametric function
approximations, such as a Gaussian process (Rasmussen and
Williams, 2006)], different CSF functions, or supplementary
statistical tests, to detect these aberrant CSF features.

To summarize, the Bayesian inference over a 2-D stimulus
space appears to be a good choice, with which the CSF
can be estimated, and is applicable to data obtained from
various sampling strategies. Besides the four adaptive strategies
considered in the present study, the Bayesian inference method
could also be applicable to other strategies. Furthermore, it is
flexible and could be used to measure other behavioral functions
that link the binomial-distributed responses of subjects to multi-
dimensional stimulus spaces [e.g., color discrimination in a 3-D
RGB color space (Kujala and Lukka, 2006); motion contrast
sensitivity in a speed-contrast space; or any other psychophysical
function]. Application of this inference method provides the
experimenter with the freedom to use a stimulus sampling
procedure that is appropriate for their research interest and
experience, while estimating the function of interest in a highly
efficient manner.
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