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Catalytic ozonation is widely employed in advanced wastewater treatment owing to its high minerali-
zation of refractory organics. The key to high mineralization is the compatibility between catalyst
formulation and wastewater quality. Machine learning can greatly improve experimental efficiency,
while fluorescence data can provide additional wastewater quality information on the composition and
concentration of organics, which is conducive to optimizing catalyst formulation. In this study, machine
learning combined with fluorescence spectroscopy was applied to develop ozonation catalysts (Mn/g-
Al2O3 catalyst was used as an example). Based on the data collected from 52 different catalysts, a
machine-learning model was established to predict catalyst performance. The correlation coefficient
between the experimental and model-predicted values was 0.9659, demonstrating the robustness and
good generalization ability of the model. The range of the catalyst formulations was preliminarily
screened by fluorescence spectroscopy. When the wastewater was dominated by tryptophan-like and
soluble microbial products, the impregnation concentration and time of Mn(NO3)2 were less than
0.3 mol L�1 and 10 h, respectively. Furthermore, the optimized Mn/g-Al2O3 formulation obtained by the
model was impregnation with 0.155 mol L�1 Mn(NO3)2 solution for 8.5 h and calcination at 600 �C for
3.5 h. The model-predicted and experimental values for total organic carbon removal were 54.48% and
53.96%, respectively. Finally, the improved catalytic performance was attributed to the synergistic effect
of oxidation (�OH and 1O2) and the Mn/g-Al2O3 catalyst. This study provides a rapid approach to catalyst
design based on the characteristics of wastewater quality using machine learning combined with fluo-
rescence spectroscopy.
© 2023 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the rapid development of industrial processes, most in-
dustrial wastewater remains refractory after the biochemical stage
because it contains many toxic substances (such as benzene, alde-
hydes, and phenols) [1]. Recently, the discharge standards of in-
dustrial wastewater have become increasingly strict. Advanced
oxidation processes mineralize refractory organics in wastewater
through the reaction of strong oxidation radicals in the system,
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including ozonation, photocatalytic, Fenton, and sulfate radical-
based reactions [2,3]. Catalytic ozonation has shown promise for
treating refractory organic substances by promoting the decom-
position of ozone (O3) molecules into free radicals (�OH, 1O2, �O2

�)
with a higher redox potential using catalysts [4,5]. Compared with
pure ozonation, the use of catalysts can enhance the removal effi-
ciency through electrostatic interaction or hydrogen bonding
adsorption of organic matter [6,7]. Therefore, catalysts play an
important role in the catalytic ozonation process for refractory
wastewater treatment. However, previous studies have mainly
focused on developing catalysts with high activity, while ignoring
the corresponding water quality characteristics.

Catalyst activity is closely related to the characteristics of
organic matter in wastewater, with the degradation efficiency of
the same catalyst varying greatly for different organic matter. For
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the catalytic ozonation process using MnO2 catalyst, the degrada-
tion efficiencies for phenol, hydroquinone, p-nitrophenol (4-NP),
and p-chlorophenol were 76.1%, 91.9%, 97%, and 100%, respectively
[8,9]. This indicated that hydroquinone, 4-NP, and p-chlorophenol
were more easily degraded than phenol. Similarly, different metal
oxide catalysts can affect the degradation efficiency of the same
organic matter in the catalytic ozonation process. For phenol
degradation using the catalytic ozonation process, the removal ef-
ficiencies with MnO2, Mn2O3, Mn3O4, Mn/g-Al2O3, and CeO2 sup-
ported on carbon nanotubes as catalysts were 76.1%, 66.8%, 58.4%,
82.6%, and 96%, respectively [9e11]. In summary, owing to the
intricate characteristics of wastewater, complex interactions among
influent quality indexes and catalyst formulations should be
considered during catalyst optimization. Traditional catalyst opti-
mization methods are time-consuming and costly, as the optimized
catalyst is usually obtained via multiple experiments to adjust the
catalyst formulation based on the possible mechanism. Therefore,
new methods that can optimize the catalyst formulation more
quickly need to be developed.

In recent years, machine learning has undergone rapid devel-
opment in environmental, biological, and chemical fields to reduce
blind trials and improve experimental efficiency. Burger et al. [12]
introduced a Bayesian algorithm in machine learning to achieve
688 experiments in eight days, and identified an optimal photo-
catalyst for hydrogen production that was six times more active
than the original formula. Among various machine learning
methods, the artificial neural network (ANN) model can use pre-
dictive data to investigate the nonlinear correlation of process pa-
rameters for modeling, rapidly learning from data and finding the
optimal solution to a problem [13]. The ANN model has been
extensively applied to evaluate traditional catalytic processes and
catalyst design. A prediction of catalyst activity in the
FischereTropsch synthesis used the catalyst carrier, active phase,
and promoters as inputs for the ANN model [13]. The best ANN
model for predicting hydrogen production efficiency was estab-
lished under different operating conditions, including reaction
temperature, NaBH4 concentration, and catalyst loading [14].
Catalyst deactivation during the production of synthesis gas by
methane dry reforming was introduced into an ANN model by
Alsaffar et al. [15]. The reactions in the above research are relatively
simple with relatively stable conditions. However, the degradation
of organic matter by the catalytic ozonation process is difficult to
explore owing to the complexity of wastewater quality and the
variability of the wateregasesolid three-phase reaction system.
Furthermore, the ANN model has not been utilized to optimize
ozonation catalysts in thewastewater treatment field with complex
reaction conditions.

Fluorescence spectroscopy, in which light is absorbed and the
energy is re-emitted as fluorescence, can be applied to determine
wastewater quality due to its fingerprint characteristics. Fluores-
cence data can quantify dissolved organic matter (DOM) [16,17],
and provide information on the composition and concentration of
DOM removed and transformed bywastewater treatment, inwhich
traditional water quality parameters are inadequate [18,19]. Fluo-
rescence spectroscopy has the advantages of fast measurement,
high sensitivity and selectivity, and limited requirements for sam-
ple pretreatment [18,20]. Therefore, fluorescence spectroscopy
techniques have recently been increasingly used tomonitor DOM in
wastewater treatments. However, fluorescence spectroscopy have
never been coupled with the ANN model to optimize the catalyst
formulation.

This study aimed to evaluate the effect of ANN input variables on
the performance of ozonation catalysts, including catalyst
2

formulation and influent quality indexes, optimize catalyst
formulation using the ANN model combined with fluorescence
spectroscopy, and demonstrate the synergistic effect of oxidation
(�OH and 1O2) and the Mn/g-Al2O3 catalyst on improving catalytic
performance. The application of the ANN model in this study was
anticipated to stimulate an understanding of the compatibility
between complex wastewater quality and catalyst preparation.
Furthermore, the ANN model combined with fluorescence spec-
troscopy can be used as an effective strategy to provide experience
for further development, performance prediction, and process
simulation of catalysts in complex wastewater systems.

2. Materials and methods

2.1. Original wastewater

The petrochemical secondary effluent (PSE) used as the original
wastewater in this study was obtained from the effluent of the
sedimentation tank at a typical petrochemical-integrated waste-
water treatment plant in northern China. The wastewater treat-
ment plant, which has a capacity of 5000 m3 h�1, treats influent
from over 70 sources. The plant employs hydrolysis acid-
ificationeanoxic/oxic process for biochemical treatment [21]. The
characteristics of PSE are shown in Table S4. The wastewater was
filtered through qualitative filter paper before use.

2.2. Catalytic ozonation experiments

Catalytic ozonation treatment of wastewater with the Mn/g-
Al2O3 catalyst was performed in an O3 reactor with an inner
diameter of 90 mm, a height of 250 mm, and a volume of 1.59 L O3
was generated from pure oxygen by an O3 generator (Longevity
EXT120, Beijing Tonglin, China). The O3 concentration was
controlled using a flowmeter and recorded using an online O3
concentration detector (3S-J5000, Beijing Tonglin, China). O3 was
transported to the reactor for experiments, and the exhaust was
discharged into an O3 destroyer. Details of O3 concentration
detection are provided in Text S1 (see Supplementary information).

In each ozonation experiment, the O3 reactor contained 1 L of
PSE. For catalytic ozonation experiments, 300 g of Mn/g-Al2O3

catalyst was added to the reactor. After 60 min, sodium thiosulfate
was added to remove residual O3 from the samples. The O3 con-
centration was kept at 3 mg L�1, and the flow rate was
200 mL min�1. Each group experiment was performed in triplicate.
A schematic diagram of the catalytic ozonation device is shown in
Fig. S1. Detailed information on catalyst preparation and the effect
of operating parameters during experiments are provided in Text
S2 and Fig. S2, respectively.

2.3. Analytical methods

Total organic carbon (TOC) was determined with a TOC analyzer
(TOC-LCPH/CPN, Shimadzu, Japan), and chemical oxygen demand
(COD) was determined using the potassium dichromate method.
The UV absorption intensity at 254 nm (UV254) was determined
using a UV spectrophotometer (UV-1700, Shimadzu, Japan). The
excitation emission matrix (EEM) fluorescence spectroscopy of
samples was performed using a 3D-fluorescence spectrophotom-
eter (F-7000, Hitachi, Japan) and coupled with the fluorescence
regional integration (FRI) method for quantitative analysis [22].
Detailed information on the EEM determination and cumulative
volume calculation is provided in Text S3.

The catalyst surface morphology (ground powder samples
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scraped from the catalyst surface) was characterized by scanning
electron microscopy (SEM; HITACHI SU-8010, Japan) using an
accelerating voltage of 30 keV. X-ray diffraction (XRD) analysis was
conducted in the 2q range of 10�e70� with a scanning speed of 2�

min�1. The elemental composition of the catalyst was determined
by X-ray photoelectron spectroscopy (Thermo ESCALAB 250XI XPS,
USA) with 200 W Al Ka radiation (hn ¼ 1486.6 eV). Other material
characterization analysis methods are detailed in Text S4.

2.4. ANN model training

The original data were collected in catalytic ozonation experi-
ments using 52 different catalyst formulations (Tables S5 and S6).
The contributions of catalyst formulation (i.e., catalyst preparation
parameters, including impregnation concentration, impregnation
time, calcination temperature, and calcination time) and influent
quality indexes (COD, TOC, UV254, and five fluorescence region in-
tensities) to catalyst performance were analyzed using statistical
methods. Two types of ‘feedforward neural network’ model were
developed (Fig. 1), and their prediction accuracy was compared,
achieving optimal performance in the ANN model. Except for the
input layer, the two ANN models had the same three-layer neural
network structure, comprising the input layer, hidden layer (single
layer), and output layer. In general, ANN predictive modeling
involved training and testing phases, in which 44 groups were
conducted as training data sets and eight groups as test data sets
(sample data sets were 4, 8, 16, 20, 28, 32, 40, 48). The whole ANN
model training procedure mainly comprised forward and reverse
transmission. In forward transmission, the corresponding influence
of input variables on the network is propagated layer by layer on
the network to generate the output [23], where hyperbolic tangent
transfer function tansig was adopted as the transfer function of
neurons in the hidden layer (equation (1)). Owing to the error
Fig. 1. Structures of ANN models: a, ANN1; b, ANN2.
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between the network output value and the actual value, the
training was transferred to reverse transmission. During reverse
transmission, the gradient descent technique was applied to train
the weight of neurons, with the minimum error obtained after
several iterations [15]. TOC removal efficiency was introduced to
represent catalyst performance, and was also used as the output of
the ANN model. BPANN modeling was performed using the Neural
network toolkit of MATLAB 2019a, and trial-and-error testing was
used to determine the model parameters [15,24]. Furthermore, the
reliability of the model parameters was measured using the root
mean square error (RMSE) and correlation coefficient (R2), obtained
by equations (2) and (3).

tansig¼ 1� e�2x

1þ e�2x (1)

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

ðEi � PiÞ2
vuut (2)

R2 ¼ 1�
Pn

i¼1ðPi � EiÞPn
i¼1ðEi � EiÞ2

(3)

where Ei is the experimental value, Pi is the predicted value of the
ANNmodel, n is the number of training or testing samples, and Ei is
the average of experimental values.

SA ¼

Pn
i¼1

Vi
Aiffiffiffi
li

p
Pn
i¼1

Vi

Pm
i¼1

Pn
i¼1

Vi
Aiffiffiffi
li

p
Pn
i¼1

Vi

(4)

where SA is the weight of factor of index A, Vi is the variance of the
principal component, Ai is the factor load matrix, and li is the
characteristic value.

3. Results and discussion

3.1. Selection input variables of ANN model

ANN modeling prediction is based on a functional relationship
between the predicted and training values. If the training data have
too many input variables that are weakly correlated with the pre-
dicted value, they will affect the generalization ability of the neural
network and further reduce the prediction accuracy of the model
[25]. Therefore, input variables were investigated to determine the
significance of the considered indexes on the Mn/g-Al2O3 catalyst
performance. To explore the optimization of catalyst formulation
based on wastewater quality characteristics, two layers of indexes
were mainly considered when screening the input variables of the
ANN model: (i) Catalyst formulation, including impregnation con-
centration, impregnation time, calcination temperature, and calci-
nation time; and (ii) influent quality indexes, including COD, TOC,
UV254, and five fluorescence region intensities (regions I, II, III, IV,
and V). The notability inspection was based on principal compo-
nent analysis and equation (4), which represents the impact of each
index on the output variable (details of principal component
analysis results are provided in Text S5). Fig. 2 shows that the five
fluorescence region intensities were the most important indexes
among others, while TOC, COD, and UV254 made little contribution.
This was mainly due to fluorescence data providing information on



Fig. 2. Important contributions of indexes to output variable.

Fig. 3. Influence of catalyst formulation on TOC removal efficiency by the catalytic
ozonation process: a, impregnation concentration; b, impregnation time; c, calcination
temperature; d, calcination time. Conditions: pH 7e8; PSE: 1 L; [Mn/g-Al2O3 catalyst]:
300 g L�1; time: 60 min; [O3]: 3 mg L�1.
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the composition and concentration of organics in the influent,
which was inadequate for TOC, COD, and UV254 [18,19]. Further-
more, the relative significance of the four parameters of catalyst
formulation was more than 0.05, indicating that the effect on the
output variable was not negligible.

The results in Fig. 2 suggest that changes in fluorescent organics
significantly influenced catalyst performance. Studies have re-
ported a linear correlation between fluorescence intensity and COD
or TOC [26,27]. Tyrosine-like components show strong correlations
with COD (R2 ¼ 0.83) in wastewater treatment plants [26], while
humic-like and fulvic-like acids are linearly correlated with TOC in
urban lake water, with R2 values of 0.97 and 0.99, respectively [27].
Fig. S3 shows that the R2 values between the five fluorescence re-
gion intensities and TOC were in the range of 0.92e0.99, respec-
tively, showing a strong positive correlation. Compared with
regions I, II, III, and V, region IV showed the strongest linear rela-
tionship (R2 ¼ 0.99) with the TOC, showing that soluble microbial
products were dominant contributors to organic carbon in the
catalytic ozonation process. This result agreed with petrochemical
wastewater containing large amounts of refractory toxic organics,
and microbial products formed by hydrolysis acidificationeanoxic/
oxic process being discharged into the secondary sedimentation
tank. This indicated that fluorescent organics could substitute for
the comprehensive index of TOC in PSE, thus affecting catalyst
performance.

Furthermore, catalyst activity is often reported to be closely
related to catalyst formulation [28,29]. The impregnation concen-
tration and time can lead to an uneven distribution of the active
phase [28]. The effect of calcination temperature and time is mainly
caused by the mass and heat transfer process, which affects the
specific surface area and crystallinity of the catalyst [30]. Therefore,
the effect of catalyst formulation on TOC removal efficiency using
the Mn/g-Al2O3 catalytic ozonation process was discussed. Ac-
cording to Fig. 3a and b, at an impregnation solution concentration
above 0.5 mol L�1 and impregnation time longer than 8 h, TOC
removal efficiency decreased from 43.16% to 51.82%, respectively.
Excess concentration and time cause metal to cover the surface or
block the pore structure of g-Al2O3, reducing the number of cata-
lytic sites [31,32]. As shown in Fig. 3c and d, TOC removal efficiency
reached a maximum (52.02%) when roasted at 600 �C for 3 h. This
excellent catalytic activity was due to Mn oxide crystals forming at
400e600 �C and uniformly distributing on the g-Al2O3 surface [33].
Notably, with surplus calcination temperature and time, the cata-
lyst crystal melted and the pore collapsed, which led to the
4

decreased adsorbability of the catalyst surface toward organic
matter [10,29].

Therefore, catalyst formulation (impregnation concentration,
impregnation time, calcination temperature, and calcination time)
and the five fluorescence region intensities (regions I, II, III, IV, and
V) in the influent were selected as input variables for the ANN
model.

3.2. ANN modeling and optimization

To confirm whether catalyst activity was closely related to the
wastewater characteristics, two types of “feedforward neural
network” model were developed (Fig. 1), and their prediction ac-
curacy compared. The catalyst formulation parameters were
selected as ANN1 input variables, while catalyst formulation and
the five fluorescence region intensities in the influent were
simultaneously applied as ANN2 input variables.

In ANN models, hidden neurons affect the establishment of
models and result prediction accuracy. The number of hidden
neurons not only concerns the number of nodes in the input and
output layers, but also the types of conversion function and char-
acteristics of the samples [34]. The RSME values of ANN1 and ANN2
as a function of the neuron number in the hidden layer are shown
in Fig. 4a. In the ANN1 curve, the curve oscillating increased with
the number of hidden neurons between 15 and 50, and the RMSE
had five relatively low values of 23, 24, 25, 36, and 38. Fig. 4b shows
that the ANN1 model fitting was optimal when the number of
hidden neurons was 36, with RMSE and R2 values of 6.47 and
0.4542, respectively. For ANN2 models, the relatively low RMSE
values were 23, 29, 30, and 34. The RMSE increased with an
increasing number of neurons, illustrating the unexpected signal of
overfitting. This was attributed to the complexity of the neural
network structure leading to a long algorithm training time [15]. As
shown in Fig. 4c, when the number of hidden neurons was 23, the
fitting of the ANN2 model was optimal, with RMSE and R2 values of
3.06 and 0.79, respectively. Therefore, without affecting the model
prediction, 36 and 23 neurons were selected as the hidden layer of
ANN1 and ANN2, respectively.

The learning rate in the BP neural network represents the
updating speed of the network weight and threshold value [24]. An



Fig. 4. Optimization of ANN1 and ANN2 model parameters. a, RMSE of ANN1 and ANN2 as a function of neuron number in the hidden layer. b, The number of neurons in the hidden
layer with ANN1. c, The number of neurons in the hidden layer with ANN2. d, Learning rate. e, Target accuracy. f, Iterations.
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excessive learning rate value will cause rapid updating of the range,
resulting in declining prediction stability in the network. Mean-
while, an insufficient learning rate value will lead to a slow and
inadequate network training speed [35]. Furthermore, setting
target accuracy and iterations determines the stopping conditions
of network training [34]. Therefore, the appropriate model opera-
tion parameters must be optimized to achieve the global minimum
error possible in the network training. The optimization procedure
needs tomeet the requirements of network stability while ensuring
prediction accuracy and running speed. Fig. 4def shows the opti-
mization results for the operating parameters of the two models.
The optimal parameters of the ANN1 model were determined to be
a learning rate of 0.02, a target accuracy of 0.1, 4000 iterations, and
RSME and R2 values of 3.83 and 0.6506, respectively. Meanwhile,
the optimal parameters of the ANN2model were determined to be a
learning rate of 0.005, a target accuracy of 0.05, 6000 iterations, and
RMSE and R2 values of 1.16 and 0.9659, respectively.
Fig. 5. Comparison of prediction accuracy and stability between ANN1 and ANN2

models. a, Fitting curve of predicted and experimental TOC removal efficiency. b, RMSE
and R2 values of ten consecutive predictions.

5

According to Fig. 5, the results of ten consecutive predictions
showed that the RMSE and R2 values of the ANN1 prediction sample
group fluctuated in the ranges of 3.49e5.63 and 0.4535e0.6506,
respectively; while those of the ANN2 prediction sample group
fluctuated in the ranges of 1.11e1.68 and 0.9027e0.9659, respec-
tively. The R2 values of >0.9 demonstrated the robustness and good
generalization of the ANN2 model. The robustness of the ANN
model in this study was consistent with previous reports. Karaman
et al. [25] reported that an optimized ANN model predicted the
adsorption behavior of anionic dyes on biomass-modified carbon
materials with an R2 value of 0.9996. Alsaffar et al. [15] accurately
predicted the carbon deposition of catalysts through the training of
an ANN model, with R2 ¼ 0.987 for the predicted and observed
values. Suparmaniam et al. [36] reported that ANN achieved a high
prediction accuracy for the microalgae flocculation process
(R2 > 0.98). Compared with ANN1, ANN2 showed higher accuracy
and stability. Therefore, the interaction between catalyst formula-
tion and influent quality could be considered to affect the ANN
output. Therefore, the ANN2 model was selected for subsequent
catalyst optimization in this study.
3.3. Combining fluorescent spectroscopy and ANN model for
catalyst formulation

In this study, fluorescence spectroscopy was applied for pre-
liminary screening of the range of catalyst formulations, and then
the optimized catalyst formulation was determined by ANN model
verification. Pearson product-moment correlation coefficient was
used to measure the correlation (linear correlation) between two
variables X (catalyst formula) and Y (influent fluorescence in-
tensity). The correlation strength, represented by the Pearson
product-moment correlation coefficient, is shown in Table S7. As
shown in Fig. 6, the Pearson product-moment correlation co-
efficients of impregnation concentration with fluorescent regions



Fig. 6. Pearson relationship between TOC variation and ANN2 model input variables.
*p � 0.05; **p � 0.01; ***p � 0.001.
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IeV were in the range of 0.37e0.55. These results indicated a
moderate positive correlation between the impregnation concen-
tration and regions I, II, IV, and V. Furthermore, the impregnation
time showed a weak positive correlation with regions IV and V,
with correlation coefficients of 0.32 and 0.36, respectively. To
further obtain the range of catalyst formulations using influent
fluorescence information, contour diagrams were used to visualize
the interaction between the catalyst formulation (impregnation
concentration and impregnation time) and fluorescent organics.

Fig. 7a shows the effect of impregnation concentration and
influent fluorescent organics on the catalyst performance. TOC
removal efficiency increased with increasing impregnation con-
centration in regions I, IV, and V at low fluorescence intensity.
Fig. 7. Interaction of catalyst formulation and influent quality on catalyst performance (
Impregnation time and fluorescent organics.

6

Furthermore, when the impregnation concentration of Mn(NO3)2
was less than 0.3 mol L�1, TOC removal efficiencies in regions I, IV,
and V remained above 30%, with TOC removal efficiencies in re-
gions II and III being more than 41.79%, exhibiting excellent cata-
lytic performance. This was consistent with the conclusions of
previous studies. For example, Luo et al. [31] deemed that an
insufficient impregnation solution concentration caused low cata-
lyst activity, while Tong et al. [32] reported that the pore structure
of Fe-SBA-16 was destroyed because of the over-doping of Fe.
Therefore, when influent fluorescent organics are dominated by
regions II and III, the Mn(NO3)2 concentration should
be < 0.3 mol L�1.

As shown in Fig. 7b, for region IV, the peak values of TOC
removal, represented by the red color in the plot, were obtained
within an impregnation time of 10 h. This means that the rapid
reaction between the active component and catalyst surface is
conducive to promoting the decomposition of O3 into �OH, which
effectively mineralizes organics [37]. TOC removal efficiency
increased in region V with an extended impregnation time, and
remained over 40% with an impregnation time of >30 h. This was
mainly due to diffusion in the porous structure of the Mn/Al2O3

catalyst being the main factor enhancing catalyst performance.
Therefore, if the influent fluorescent organic matter is dominated
by region V, an impregnation time of over 30 h should be selected,
but the adsorption balance and dissolution rate of metal ions on the
carrier should be considered. Meanwhile, an impregnation time of
less than 10 h was advantageous to the treatment of influent
fluorescent organic matter dominated by region IV.

Using PSE as an example, the range of catalyst formulations
could be obtained by analyzing the fluorescence characteristics.
Fig. S5 shows the contents II of fluorescent organics in PSE, which
were in the order of region II > V > IV > III > I, with the average
proportions of region II and IV in PSE being 33.26% and 28.94%,
respectively. This confirmed that PSE was dominated by
tryptophan-like aromatic proteins and soluble microbial
TOC removal efficiency). a, Impregnation concentration and fluorescent organics. b,
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metabolites. The results for fluorescence characteristics in PSE
agreed with Fu et al. [22]. Therefore, Mn/g-Al2O3 catalyst was
optimized by the ANN2 model based on an impregnation concen-
tration and time of less than 0.3 mol L�1 and 10 h, respectively.

The range of catalyst formulationmentioned abovewas selected
as the boundary of the ANN2 model. The boundary ranges were a
Mn(NO3)2 impregnation concentration of 0.01e0.3 mol L�1, an
impregnation time of 4e10 h, a calcination temperature of
300e600 �C, and a calcination time of 2e4 h. The trained ANN2
model was then used to obtain the optimum catalyst formulation
using an enumeration algorithm. The optimal Mn/g-Al2O3 formu-
lation was as follows: 0.155 mol L�1 of [Mn(NO3)2] for 8.5 h, and a
calcination temperature of 600 �C for 3.5 h. The ANN-predicted and
experimental values for TOC removal for the optimal Mn/g-Al2O3
catalyst were 54.48% and 53.96%, respectively. To confirm the cor-
rectness of the ANNmodel, testing was conducted using 15 groups.
Fig. S6 and Table S8 show that the ANN-predicted and experimental
R2 value was 0.9593, indicating that the developed ANN model
agreed well with Mn/g-Al2O3 catalyst performance. Therefore, the
ANN model combined with fluorescence spectroscopy could be an
effective method for optimizing ozonation catalyst formulation.
3.4. Characterization of optimal catalyst

Characterization of the catalyst with the highest TOC removal
efficiency predicted by the ANN model was conducted to confirm
catalyst performance. From the SEM images (Fig. 8a and b),
compared with the g-Al2O3 carrier, the Mn/g-Al2O3 catalyst
Fig. 8. aeb, SEM images of g-Al2O3 (a) and Mn/g-Al2O3 (b). ced, Adsorption-
desorption isotherms (left) and pore size distributions (right) of g-Al2O3 (c) and Mn/
g-Al2O3 (d).
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showed a uniform rough elliptic particle structure and a dense
layered pore structure on the catalyst surface, which formed during
calcination of the catalyst [38,39]. The SEM-EDS results (Fig. S7 and
Table S9) showed that the weight percentage of Mn was 0.87%,
indicating that the metal oxide was successfully loaded into the
carrier. The specific surface area and pore size distribution of the
samples were observed using N2 adsorptionedesorption isotherms
(Fig. 8 and Table S10). g-Al2O3 and Mn/g-Al2O3 both exhibited an
H3-type hysteresis loop in the desorption branch when P/P0 was
0.45 and 0.55, respectively, belonging to a type-IV(a) isothermal
curve [40]. These results suggested that g-Al2O3 and Mn/g-Al2O3
were typical mesoporous structures. Compared with that of g-
Al2O3, the SBET value of Mn/g-Al2O3 had decreased by 23.76%, and
the average diameter and pore volume had increased by 31.49% and
11.66%, respectively, which was consistent with the pore size dis-
tribution results shown in the right of Fig. 8c and d. This was
attributed to g-Al2O3 being the main contributor to SBET, and high-
temperature roasting, resulting in the collapse of micropores to
form mesoporous and macroporous structures, which was condu-
cive to the dispersion of Mn oxide [11].

XRD measurements were used to elucidate changes in the
crystal structure between the g-Al2O3 carrier and Mn/g-Al2O3
catalyst, with the results shown in Fig. 9a. For the g-Al2O3 carrier,
three diffraction peaks were observed at 19.42�, 37.60�, 45.86�, and
67.03�, corresponding to the Al2O3 crystal structure (JCPDS
Fig. 9. a, XRD spectra of g-Al2O3 and Mn/g-Al2O3. b, Survey XPS spectra. c, Fitted
spectra of C1s. d, Fitted spectra of O1s. e, Fitted spectra of Al 2p. f, Fitted spectra of Mn
2p.



Fig. 10. aec, ESR spectra of different ROS in the Mn/g-Al2O3 catalytic ozonation sys-
tem: �OH (a); �O2

� (b); 1O2 (c). d, The effect of ions HCO3
� and PO4

3� on the Mn/g-Al2O3

catalytic ozonation system.
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10e0425). The XRD patterns showed that AlO(OH) in the g-Al2O3
carrier belonged to the rhombic system (JCPDS 88e2112), while the
Mn/g-Al2O3 catalyst did not, mainly owing to the diffraction peak of
AlO(OH) disappearing when the calcination temperature of g-Al2O3
was above 450 �C [41]. Four diffraction peaks were observed for the
Mn/g-Al2O3 catalyst, at 28.79�, 33.524�, 43.188�, and 57.128�,
belonging to the (220), (311), (400), and (511) planes, respectively,
which matched the cubic spinel phase of Mn2AlO4 (JCPDS
29e0881) [42]. Studies have shown the existence of ion leaching by
manganese oxides. However, bonding between Mn and Al can
effectively maintain structural stability in the catalytic ozonation
process, reducing Mn ion leaching [43].

Catalyst activity is affected by the metal composition and
chemical valence state of the catalyst. Therefore, g-Al2O3 andMn/g-
Al2O3 were analyzed by XPS (Fig. 9bef). The survey XPS spectra
(Fig. 9b) showed that all elements (C, O, and Al) in the g-Al2O3
carrier and Mn were present in the synthesized Mn/g-Al2O3 cata-
lyst. The fitted spectrum of C 1s (Fig. 9c) in g-Al2O3 exhibited a CeH/
CeC peak at 284.80 eV and a C]O peak at 287.33 eV, while Mn/g-
Al2O3 could be divided into three main peaks, at 284.80, 286.36,
and 288.92 eV, corresponding to CeH/CeC, CeOH, and OeC]O,
respectively. The CeOH and C]O structures acted as catalytic sites
for the rapid decomposition of O3 to �OH [44]. The fitted spectra of
O 1s (Fig. 9c) showed two peaks, namely, for adsorbed OH at
532.67 eV and lattice OH at 531.65 eV, which were attributed to the
metal oxide loaded onto the g-Al2O3 carrier occupying the surface
hydroxyl position and forming the oxygen structure of the metal
oxide lattice [45]. Furthermore, ATR-FTIR spectroscopy (Fig. S8)
showed that OeH and C]O were the main surface functional
groups of Mn/g-Al2O3, which agreed with the XPS results. For the
Mn/g-Al2O3 catalyst, the two characteristic peaks of Al 2p3/2
(74.89 eV) and Al 2p1/2 (75.78 eV) in the fitted Al 2p spectrum
(Fig. 9e) were AleOH on the g-Al2O3 surface, which could act as the
catalytic site [46]. The fitted Mn 2p spectrum, exhibiting two spin-
orbit doublets of Mn 2p3/2 and Mn 2p1/2, is shown in Fig. 9f. The
binding energy peaks of Mn/g-Al2O3 located at 643.36 and
654.66 eV confirmed the presence of Mn2þ, while the other two
peaks at 647.91 and 658.81 eV were attributed to Mn3þ [47]. The
presence of Mn2þ/Mn3þ redox electron pairs on the surface of Mn/
g-Al2O3 suggested that Mn/g-Al2O3 could catalyze the production
of reactive oxygen species (ROS) from O3 [8].

3.5. Catalytic performance and catalytic mechanism of optimal
catalyst

The catalytic performance of the optimized Mn/g-Al2O3 was
evaluated and compared with that of the single ozonation and
adsorption systems. Fig. S9 shows that the TOC removal efficiencies
of the adsorption, single ozonation, and catalytic ozonation systems
were 9.86%, 15.19%, and 53.52%, respectively. The TOC removal ef-
ficiencies of adsorption and single ozonation systems accounted for
18.96% and 29.20% of the Mn/g-Al2O3 catalytic ozonation system,
respectively. The above results indicated that the Mn/g-Al2O3 cat-
alytic ozonation system involved the synergistic effects of oxidation
(�OH and O3 molecules) and the Mn/g-Al2O3 catalyst. The Mn
component in the Mn/Al2O3 catalyst was conducive to the
adsorption of water molecules to form surface hydroxyl groups,
which further promoted the decomposition of O3 into �OH,
enhancing the mineralization of organics [48,49]. Furthermore, in
the optimized Mn/g-Al2O3 catalytic ozonation system, the reaction
kinetics matched the pseudo-second-order kinetics with a R2 value
of 0.9786, as shown in Table S11. Fig. S10 shows that the carbon
oxidation state [50] increased from 1.47 to 1.87, reflecting signifi-
cant mineralization, meaning that the catalytic ozonation process
transformed refractory organics into biodegradable substances.
8

Ten cycling tests were conducted for the Mn/g-Al2O3 catalyst
optimized by the ANN model (Table S12). The TOC removal effi-
ciency of the optimized Mn/g-Al2O3 in the tenth cycle was 41.74%,
which had only decreased by 6.24% compared with that in the first
cycle, indicating the excellent reusability and stability of Mn/g-
Al2O3. The O3 utilization rate of the single catalyst cycle test was
approximately 90%, suggesting high O3 utilization in the Mn/g-
Al2O3 catalytic ozonation system. Furthermore, the maximum
dissolution concentration of Al ions was 70 mg L�1, which was
attributed to Al3þ release from the hydrolysis of Al2O3 on the
catalyst surface. A low leaching concentration of Al3þ indicated that
the g-Al2O3 carrier was stable and did not reduce catalyst activity.
Meanwhile, the average COD and TOC of the effluent reached 30.2
and 9.73 mg L�1, respectively, with the effluent meeting the
Emission Standard of Pollutants for the Petroleum Chemistry In-
dustry (GB 31571-2015, China).

To investigate the main ROS in the Mn/g-Al2O3 catalytic ozon-
ation system, electron spin resonance (ESR) analysis was per-
formed. As shown in Fig. 10a and c, DMPO-�OH characteristic peaks
with an intensity ratio of 1:2:2:1 and TEMP-1O2 characteristic
peaks with an intensity ratio of 1:1:1 appeared in the Mn/g-Al2O3
catalytic ozonation system. However, as shown in Fig. 10b, no
obvious DMPO-�O2

� signal peaks were detected. The above results
indicated that the main reason for improved catalytic performance
in the Mn/g-Al2O3 catalytic ozonation systemwas that Mn/g-Al2O3
was conducive to radical (�OH) and non-radical (1O2) generation.

The composition of wastewater is complex, and anions in
wastewater can affect catalyst activity. As shown in Fig. 10d, the
effects of carbonate ions (HCO3

�) and phosphate ions (PO4
3�) on the

Mn/g-Al2O3 catalytic ozonation system were investigated. TOC
removal efficiency decreased from 52.02% to 42.18% with
250 mg L�1 HCO3

�, indicating that HCO3
� quenched �OH in the

system. In contrast, phosphate can be adsorbed on the catalyst
surface and effectively replace surface hydroxyl groups. The pres-
ence of 100 mg L�1 PO4

3� significantly inhibited the mineralization
of organics, and TOC removal decreased to 11.55%. This result
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proved that surface hydroxyl groups were the active catalytic sites.
Therefore, the following catalytic mechanism was proposed using
our results (equations (5)e(10)):

Mn2þ þO3 þHþ / Mn3þ þ �OHþ O2 (5)

O3 þ �OH / O2 þHO�
2 � (6)

Mn3þ þHO�
2 � þOH� /Mn2þ þH2Oþ O2 (7)

Mn2þ �OH/Mn3þ þ OH� (8)

�OHþHCO�
3 /OH� þHCO3� (9)

�OH =O3 þorganics / CO2 þH2O (10)

4. Conclusions

In summary, the ANN algorithm in machine learning combined
with fluorescence spectroscopy successfully optimized catalyst
formulation for PSE treatment using the catalytic ozonation
process.

The input variables of the ANN model were determined,
including catalyst formulation (impregnation concentration,
impregnation time, calcination temperature, and calcination time)
and influent fluorescence region intensity (regions I, II, III, IV, and
V). The RMSE and R2 values of TOC removal between experimental
values and those predicted by the ANNmodel were 1.16 and 0.9659,
respectively.

Visualization of the fluorescence spectroscopy allowed pre-
liminary screening of the range of catalyst formulation. The results
showed that the impregnation concentration of Mn(NO3)2 was less
than 0.3 mol L�1 when influent fluorescent organics were domi-
nated by regions II and III. Furthermore, an impregnation time of
over 30 h was optimal when dominated by region V, while an
impregnation time shorter than 10 h was optimal when dominated
by region IV.

The optimal formulation of Mn/g-Al2O3 obtained from the
trained ANN model was impregnation with 0.155 mol L�1

Mn(NO3)2 for 8.5 h and calcination at 600 �C for 3.5 h. The predicted
and experimental TOC removal efficiencies of the optimal Mn/g-
Al2O3 catalyst were 54.48% and 53.96%, respectively. ESR analysis
indicated that �OH and 1O2 were involved in the Mn/g-Al2O3 cat-
alytic reaction. Specifically, surface hydroxyl groups were the main
catalytic sites for �OH generation.

This work provides an approach to the rapid design and opti-
mization of ozonation catalysts for various types of industrial
wastewater using machine learning combined with fluorescence
spectroscopy.
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