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Abstract: Obese Asians are more susceptible to metabolic diseases than obese Caucasians of the
same body mass index (BMI). We hypothesized that the genetic variants associated with obesity risk
interact with the lifestyles of middle-aged and elderly adults, possibly allowing the development
of personalized interventions based on genotype. We aimed to examine this hypothesis in a large
city hospital-based cohort in Korea. The participants with cancers, thyroid diseases, chronic kidney
disease, or brain-related diseases were excluded. The participants were divided into case and control
according to their BMI: ≥25 kg/m2 (case; n = 17,545) and <25 kg/m2 (control; n = 36,283). The genetic
variants that affected obesity risk were selected using a genome-wide association study, and the
genetic variants that interacted with each other were identified by generalized multifactor dimension-
ality reduction analysis. The selected genetic variants were confirmed in the Ansan/Ansung cohort,
and polygenetic risk scores (PRS)−nutrient interactions for obesity risk were determined. A high
BMI was associated with a high-fat mass (odds ratio (OR) = 20.71) and a high skeletal muscle-mass
index (OR = 3.38). A high BMI was positively related to metabolic syndrome and its components,
including lipid profiles, whereas the initial menstruation age was inversely associated with a high
BMI (OR = 0.78). The best model with 5-SNPs included SEC16B_rs543874, DNAJC27_rs713586,
BDNF_rs6265, MC4R_rs6567160, and GIPR_rs1444988703. The high PRS with the 5-SNP model was
positively associated with an obesity risk of 1.629 (1.475–1.798) after adjusting for the covariates.
The 5-SNP model interacted with the initial menstruation age, fried foods, and plant-based diet
for BMI risk. The participants with a high PRS also had a higher obesity risk when combined with
early menarche, low plant-based diet, and a high fried-food intake than in participants with late
menarche, high plant-based diet, and low fried-food intake. In conclusion, people with a high PRS
and earlier menarche age are recommended to consume fewer fried foods and a more plant-based
diet to decrease obesity risk. This result can be applied to personalized nutrition for preventing
obesity.

Keywords: nutrigenomics; skeletal muscle index; obesity; menarche age; plant-based diet; fried foods

1. Introduction

Asians with a high body mass index (BMI) have a higher body fat mass than Cau-
casians. Asians with higher adiposity have a greater risk of metabolic diseases than
Caucasians with the same adiposity level [1]. Accordingly, the World Health Organization
defines obesity among Asians as a BMI of 25 kg/m2 or more for both genders and as a
body fat of 25% and 30% for men and women, respectively [2].

Nutrients 2021, 13, 3772. https://doi.org/10.3390/nu13113772 https://www.mdpi.com/journal/nutrients

https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0002-6092-8340
https://orcid.org/0000-0001-9469-010X
https://orcid.org/0000-0002-5020-3397
https://doi.org/10.3390/nu13113772
https://doi.org/10.3390/nu13113772
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nu13113772
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu13113772?type=check_update&version=2


Nutrients 2021, 13, 3772 2 of 20

Obesity is a multifactorial disorder including genetic, gut microbial, and environmen-
tal factors that influence energy balance [3]. Although monogenic variants are involved
in severe obesity, they are rare, and approximately 500 genetic variants of approximately
400 genes have been revealed to be associated with obesity risk at p < 5 × 10−8 [4]. Most
studies have explored the effect of an individual genetic variant on obesity risk [4–7]. A
polygenic model provides the cumulative genetic impact on obesity risk compared to
individual genetic variants when the selected genes have gene−gene and SNP−SNP in-
teractions with the pathways of biological relevance to obesity [8]. Polygenetic risk scores
(PRS) calculated by a sum of the number of risk alleles of each SNP is informative for
examining the polygenetic impact on obesity risk [5,6]. Fat mass and obesity-associated
protein (FTO), melanocortin 4 receptor (MC4R), and brain-derived neurotrophic factor
(BDNF) genetic variants have been reported to be strongly associated with obesity risk in a
genome-wide association study (GWAS) and meta-analysis studies of children and adults
of different ethnicities including Europeans, Americans, Asians, and Africans [8–12].

In the protein−protein interaction network analysis, MC4R, one of the hub genes
related to obesity, is highly interconnected with gastric inhibitory polypeptide receptor
(GIPR), luteinizing hormone/choriogonadotropin receptor (LHCGR), calcitonin receptor
(CALCR), adenylate cyclase (ADCY)3, ADCY9, FTO, transmembrane protein 18 (TMEM18),
BDNF, and potassium channel tetramerization domain containing 15 (KCTD15) [4]. These
genes are related to the obesity-related signaling pathways such as the AMP kinase (AMPK),
neurotrophin, and phosphoinositide 3-kinases àAkt signaling pathway. Their variants affect
the obesity risk by modulating the binding affinity of obesity-related transcription factors,
such as STAT3, CEBPB, TCF7L2, FTO, and GATA2, and changing the phosphorylation of
proteins, such as BDNF with the rs6265 risk allele. The interaction of the genetic variants
may account for a more significant proportion of the genetic impact on obesity. However,
the genetic variant−genetic variant interaction of the obesity-related genes has not been
highly studied.

Furthermore, obesity-related genetic variants do not always equally influence obesity
risk in different people because there are complex interactions between genetic and environ-
mental factors, behavior, and the gut microbiota, influencing the actual obesity phenotypes.
Recent studies have demonstrated that an individual genetic variant and lifestyle inter-
actions influence the risk of obesity [13] and metabolic diseases [14,15] in Europeans and
Asians [16]. For example, FTO genetic variants interact with the genetic and environmental
factors that influence obesity risk [17,18]. Adult Asians with the FTO_rs1421085 risk allele
have a higher BMI than those with the nonrisk allele when they have no regular exercise.
On the other hand, adults with the risk allele have a lower BMI when they engage in
regular exercise [19]. These observations suggest that the interaction of regular exercise
with FTO_rs1421085 modulates obesity risk, indicating that genetic variants interact with
lifestyles. However, there is no study to determine the interaction between the PRS of the
genetic variant−genetic variant interaction and lifestyles. This study hypothesized that the
PRS of the interacting genetic variants associated with obesity risk interacts with lifestyle
factors in middle-aged and elderly adults. We aimed to examine the hypothesis in a large
city hospital-based cohort in Korea.

2. Methods
2.1. Participants

During 2004–2013, 58,630 Korean adults aged >40 years volunteered to participate
in a hospital-based city cohort study called the Korean Genome and Epidemiology Study
(KoGES) organized by the Korean Centers for Disease Control and Prevention. The replicate
study, used only to validate obesity-related genetic variants, was conducted in 5493 adults,
aged 40–79 years, for whom Korean Chip data was available among the Ansan/Ansung
cohort. People with a history of cancers, thyroid diseases, chronic kidney disease, and brain-
related diseases were excluded from the participants. The urban hospital-based cohort
and Ansan/Ansung cohort excluded 4802 and 691 patients, respectively. All procedures
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of the KoGES conformed with the Declaration of Helsinki and were approved by the
Institutional Review Boards of the Korean National Institute of Health (KBP-2019-055) and
Hoseo University (1041231-150811-HR-034-01). All participants provided written informed
consent.

2.2. Demographic, Anthropometric, and Biochemical Information

Participants were interviewed to obtain their demographic information (e.g., age,
residence area, education, income, current occupation, smoking status, alcohol intake, and
regular exercise) [20]. The residence area was where the participant had lived for over
6 months when he/she enrolled in the city-based cohort study. It was categorized into six
provinces, including Gyeonggi-do plus Seoul, Chungcheong-do, Gangwon-do, Jeolla-do,
Gyeongsang-do plus Busan, and Jeju-Do. Household income was stratified as very low
(<USD 1000/month), low (USD 1000–2000/month), intermediate (USD 2000–4000/month),
or high (>USD 4000/month) [21]. Educational status was classified as less than high school,
high school, or college or higher. Current job status was defined as the occupation where
the person had been employed for the longest period if the job was recently changed.
Current job status was classified as unemployed when a participant reported being unem-
ployed or a housewife and employed as professional, director, office worker, service staff,
salesperson, agricultural or fishery worker, labor worker. Alcohol intake was quantified
from the questionnaires about alcohol drinking frequencies and amounts according to
alcohol beverage types. The participants were classified as light (<100 g/week) or heavy
(≥100 g/week) drinkers based on their average daily alcohol intake (Table 1) [21]. The
smoking status was categorized as current, past, or never, and defined as current when
>100 cigarettes had been smoked over the previous six months [21].

Anthropometric measurements, including body weight, height, and waist circum-
ferences, were assessed according to standardized procedures [22]. After an overnight
fast (no food for over 12 h), a participant visited the hospital, and they switched clothes
into a light gown with no shoes. Body weight, and height were measured in a standing
position using a well-calibrated digital weight and height scale (Inbody, Cheonan, Korea).
Waist circumference was measured taken around the abdomen at the position of two
finger-widths above the umbilicus in a relaxed state with a tape measure (Stanley, New
Britain, CT, USA). The BMI was calculated by dividing weight (kilograms) by height2

(meters). Blood pressure was measured using a sphygmomanometer (W.A. Baum Co.,
New York, NY, USA), on the right arm, in a sitting position, at heart level. The biochemical
parameters were determined using plasma and serum from blood drawn after an overnight
fast [22]. Skeletal muscle mass was predicted using a machine learning approach from
the Ansan/Ansung cohort data measured with an Inbody scanner (Cheonan, Korea) [23].
The skeletal muscle index was defined as skeletal muscle mass divided by the BMI [23].
The lipid profiles and the glucose and creatinine in plasma and serum concentrations were
measured using a Hitachi 7600 Automatic Analyzer (Hitachi LTD., Tokyo, Japan). WBC
counts were obtained from heparin-treated blood. The blood hemoglobin A1c (HbA1c;
glycated hemoglobin) concentrations were determined using a Hitachi 7600 Automatic
Analyzer (Hitachi, Tokyo, Japan), and the plasma lipid profiles (total cholesterol, HDL,
and triglyceride) were examined using a Hitachi 7600 Automatic Analyzer. The serum
high-sensitive C-reactive protein (hs-CRP) concentrations were measured using an ELISA
kit. The estimated glomerular filtration rate (eGFR) was calculated using the equation
of 175 × (serum creatinine concentrations)−1.154 × (age)−0.203. In females, the eGFR was
multiplied by 0.742.
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Table 1. Demographic and biochemical characteristics and association with obesity in the participants according to genders
and obesity status.

Men (n = 19,444) Women (n = 34,384)
Adjusted ORs and
95% CIControl

(n = 11,690)
Obese
(n = 7754)

Control
(n = 24,593)

Obese
(n = 9791)

Age (yr) 1 56.9 ± 0.08 a 56.6 ± 0.10 a 51.4 ± 0.05 d 52.6 ± 0.08 c***###+++ 1.106 (1.030–1.188)
Height (cm) 2 168.6 ± 0.06 a 168.4 ± 0.07 a 156.9 ± 0.04 b 156.2 ± 0.06 c***###+++ 1.013 (0.934–1.099)
BMI (mg/kg2) 3 22.7 ± 0.02 b 27.0 ± 0.02 a 22.2 ± 0.01 b 27.2 ± 0.02 a***
Waist circumference
(cm) 4 81.8 ± 0.07 c 91.1 ± 0.08 a 75.2 ± 0.05 d 85.7 ± 0.07 b***###+++ 18.29 (16.46–20.34)

SMI (%) 5 29.8 ± 0.02 b 32.9 ± 0.03 a 23.4 ± 0.02 d 25.9 ± 0.02 c***###+++ 3.380 (3.111–3.673)
Fat mass (%) 6 21.3 ± 0.02 d 26.2 ± 0.03 c 29.4 ± 0.02 b 35.3 ± 0.03 a***###+++ 20.71 (17.83–24.16)
Menarche age 7 15.2 ± 0.01 15.0 ± 0.02 *** 0.778 (0.725–0.834)
Menopausal age 8 49.3 ± 0.04 49.3 ± 0.06 1.410 (0.975–2.038)
Education
≤Middle school
High school
≥College

954 (13.2)
1431 (19.8)
4843 (67.0)

592 (12.9)
941 (20.4)
3070 (66.7)

3255 (17.6)
4004 (21.6)
11,254(60.8)

2296 (28.0) ***
2084 (25.5)
3809 (46.5)

1
0.812 (0.756–0.872)
0.627 (0.587–0.671)

Income
≤USD 2000
USD 2000–4000
>USD 4000

965 (8.68)
4936 (44.4)
5222 (47.0)

544 (7.38) ***
2900 (39.3)
3929 (53.3)

2338 (10.1)
9973 (43.0)
10,896(47.0)

1378 (15.1) ***
4299 (47.1)
3460 (37.9)

1
0.985 (0.915–1.061)
0.915 (0.854–0.980)

MetS (%) 9 942 (8.1) 2514(32.4) *** 1478 (6.0) 2725 (27.8) *** 5.860 (5.307–6.471)
Serum glucose
(mg/dL) 10 96.4 ± 0.23 b 100.4 ± 0.27 a 92.3 ± 0.15 c 97.2 ± 0.23 b***###+ 1.668 (1.548–1.796)

HbA1c (%) 11 5.61 ± 0.01 d 5.80 ± 0.01 b 5.66 ± 0.01 c 5.87 ± 0.01 a***### 1.695 (1.517–1.893)
Serum total
cholesterol 12 188.5 ± 0.41 d 192.1 ± 0.48 c 200.4 ± 0.27 b 204.8 ± 0.41 a***### 1.475 (1.352–1.610)

Serum HDL 13 51.0 ± 0.15 c 46.3 ± 0.17 d 57.7 ± 0.10 a 53.0 ± 0.14 b***### 1.913 (1.756–2.083)
Serum LDL 14 113.0 ± 0.38 c 113.8 ± 0.45 c 120.3 ± 0.25 b 124.4 ± 0.37 a***###+++ 1.484 (1.338–1.647)
Serum Triglyceride 15 122.6 ± 0.97 b 160.6 ± 1.14 a 111.8 ± 0.64 d 137.3 ± 0.96 c***###+++ 2.157 (2.006–2.320)
Serum hs-CRP 16 0.17 ± 0.01 ab 0.19 ± 0.01 a 0.12 ± 0.02 b 0.23 ± 0.03 a***+ 1.266 (1.008–1.589)
SBP (mmHg) 17 123.7 ± 0.16 c 128.9 ± 0.19 a 119.0 ± 0.11 d 125.3 ± 0.16 b***###+++ 1.782 (1.657–1.916)
DBP (mmHg) 18 77.2 ± 0.11 b 80.5 ± 0.13 a 73.1 ± 0.07 c 76.9 ± 0.11 b***###++ 1.946 (1.750–2.164)
eGFR (ml/min) 19 84.7 ± 0.18 c 83.3 ± 0.24 d 86.9 ± 0.13 a 88.0 ± 0.21 b***+++ 1.140 (1.039–1.251)
Serum AST (U/L) 20 24.3 ± 0.25 b 26.6 ± 0.31 a 22.3 ± 0.17 c 24.4 ± 0.27 b***### 2.013 (1.837–2.205)
Serum ALT(U/L) 21 23.8 ± 0.24 b 30.8 ± 0.29 a 18.6 ± 0.16 c 23.9 ± 0.26 b***###++ 2.724 (2.566–2.892)
Serum hs-CRP
(mg/L) 22 0.17 ± 0.01 ab 0.19 ± 0.01 a 0.12 ± 0.02 b 0.23 ± 0.03 a**+ 1.645 (1.201–2.254)

The values represent adjusted means ± standard deviations or the number of the subjects (percentage of each group). Covariates included
age, gender, education, income, energy intake (percentage of estimated energy requirement), occupation, residence area, regular exercise,
alcohol intake, and smoking status. The cutoff points of the reference for logistic regression were as follows: 1 < 55 years old for age,
2 <25 kg/m2 for BMI; 3 <172.5 cm for men and <160 cm for women; 4 < 90 cm for men and 85 cm for women waist circumferences;
5 <29.0% for men and 22.8% for women in skeletal muscle index (SMI defined as appendicular skeletal muscle mass/weight); 6< 25%
for men and 30% for women for fat mass; 7 <14 years old; 8 <50 years old for menopause age; 9 Metabolic syndrome (MetS) criteria;
10 <126 mL/dL fasting serum glucose plus diabetic drug intake; 11 <6.5% HbA1c plus diabetic drug intake; 12 <230 mg/dL plasma total
cholesterol concentrations; 13 >40 mg/dL for men and 50 mg/dL for women plasma HDL cholesterol; 14 <160 mg/dL plasma total
cholesterol concentrations; 15 <150 mg/dL plasma triglyceride concentrations; 16 <0.5 mg/dL serum high-sensitive C-reactive protein
(hs-CRP) concentrations; 17 <140 mmHg SBP, 18 < 90 mmHg DBP plus hypertension medication; 19 estimated glomerular filtration rate
(eGFR) <70; 20 aspartate aminotransferase <40 U/L; 21 alanine aminotransferase <35 U/L; 22 high sensitive C-reactive protein <0.5 mg/d.
** Significant differences by obesity (BMI ≥ 25) at p < 0.01, *** p < 0.001. ### Significant differences by gender at p < 0.001. + Significant
interaction between gender and obesity at p < 0.05, ++ at p < 0.01, +++ p < 0.001. a–d values with different superscript letters in the same
row were significantly different by Tukey’s test at p<0.05.

2.3. Definition of Obesity and MetS

Obesity for Asians is defined as ≥25 kg/m2 [24]. In the urban hospital-based and
Ansan/Ansung cohorts, 17,545 and 2756 participants belonged to high-BMI (case), respec-
tively, and 36,283 and 5395 participants in low-BMI (control), respectively.

MetS was defined according to the 2005 revised National Cholesterol Education
Program−Adult Treatment Panel III criteria for Asia [16,17]. Participants with three or
more of the following criteria were considered as having MetS: (1) elevated blood pressure
(average systolic blood pressure ≥130 mmHg or diastolic blood pressure ≥85 mmHg) or
current blood pressure medication use; (2) low HDL-C concentration (<40 mg/dL for men
and <50 mg/dL for women); (3) elevated serum triglyceride concentration (≥150 mmol/L)
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or current anti-dyslipidemic medication use; (4) elevated fasting blood glucose concen-
tration (≥100 mmol/L) or current use of antidiabetic medication; (5) abdominal obesity
(waist circumference ≥ 90 cm for men and ≥85 cm for women).

2.4. Food and Nutrient Intake and Dietary Patterns

The food and nutrient intakes were assessed using a semi-quantitative food frequency
questionnaire (SQFFQ) developed and validated during the KoGES [25]. The usual dietary
intake was estimated over the previous six months. The questionnaire requested infor-
mation regarding the intake of 106 food items. Each participant completed the SQFFQ,
and 23 nutrient intakes were calculated from the SQFFQ data using the Computer-Aided
Nutritional Analysis Program (CAN Pro) 3.0, a nutrient database program developed by
the Korean Nutrition Society [25].

The 106 food items included were categorized into 29 food groups. These 29 food
groups were used as independent variables during factor analysis to determine the dietary
patterns using the FACTOR procedure. The number of factors retained in principle com-
ponent analysis was determined using the eigenvalues >1.5, and the orthogonal rotation
procedure (Varimax) was applied [15]. Dietary factor-loading values of ≥0.40 indicated
significant contributions to the dietary patterns. Four distinct dietary factors were selected
for the Korean dietary patterns. As integrating food intake estimated by SQFFQ, the partic-
ipants were categorized into a balanced Korean diet, plant-based diet, Western-style diet,
and rice-based diet. The plant-based diet was high in beans, eggs, milk, beverage, fruits,
and nuts, while the Western-style diet was rich in noodles, soups, meats, processed meats,
and fast foods.

2.5. Dietary Inflammatory Index (DII)

DII represents an index of dietary inflammatory potentials from individual food and
nutrient intake using their dietary inflammatory weights for certain foods and nutrients
(energy, 32 nutrients, four food products, four spices, and caffeine), as previously de-
scribed [26]. Since the SQFFQ did not include the intake of spices, we excluded intake of
garlic, ginger, saffron, and turmeric from DII calculations. DII was calculated by multi-
plying the dietary inflammatory scores of the 38 food and nutrient components by daily
intake and dividing the sum of the scores of 38 items by 100.

2.6. Genotyping Using a Korean Chip and Quality Control

The genotype data were provided by the Center for Genome Science at the Korea
National Institute of Health. Genomic DNA was isolated from whole blood, and genotypes
were determined using a Korean Chip (Affymetrix, Santa Clara, CA, USA), which was
designed to examine the Korean genetic variants and included the disease-related single
nucleotide polymorphisms (SNPs) [27]. The genotyping accuracy was checked by Bayesian
Robust Linear Modeling using the Mahalanobis Distance Genotyping Algorithm [28]. For
genotyping analysis using this Korean chip, the genotyping accuracy, missing genotype
call rate, and heterozygosity were ≥98%, <4%, and <30%, respectively; the data showed
no gender bias. In addition, genetic variants that met the Hardy−Weinberg equilibrium
(HWE, p > 0.05) and minor allele frequency (MAF) > 1% criterion were included [28].

2.7. Genetic Variants Influencing the Obesity Risk and the Best Model with SNP−SNP
Interactions

The steps to select genetic variants for the best model of SNP−SNP interactions
are shown in Figure 1. Genetic variants for obesity risk were explored by conduct-
ing GWAS with low-BMI (n = 36,283) and high-BMI groups (n = 17,545) in the urban
hospital-based cohort (p < 0.00001). From the GWAS, 9335 genetic variants were se-
lected at p < 5 × 10−5. Gene names of the 9335 SNPs were identified using g:Profiler
(https://biit.cs.ut.ee/gprofiler/snpense, accessed on 29 March 2021), and 367 genes
(3858 SNPs) were identified. The 3415 SNPs without identified gene names were discarded
since their association with obesity cannot be explained by associations with obesity-related

https://biit.cs.ut.ee/gprofiler/snpense
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pathways. Among the 367 genes, the 36 obesity-related genes (453 SNPs) based on the liter-
ature were selected using HuGE Navigator (https://phgkb.cdc.gov/PHGKB/hNHome.
action, accessed on 8 April 2021). The corresponding linkage disequilibrium (LD) analy-
ses were performed on the SNPs of the selected genes in the same chromosomes using
Haploview 4.2 in PLINK. Because SNPs with high r2 values provided the same information
on the genetic impact, they were not included in the GMDR. The potential genetic variants
in the same chromosome were not strongly correlated in an LD analysis (r2 < 0.3).

Of the 45 potential genetic variants in the 36 obesity-related genes, ten SNPs exhibiting
SNP−SNP interactions strongly associated with an obesity risk were automatically selected
by generalized multifactor dimensionality reduction (GMDR) with 1–10 marker count
range, 10 CVC, and exhaustive search type. GMDR provided ten potential models among
different combinations of 45 genetic variants. The best SNP−SNP interaction model was
selected in a sign rank test of trained balanced accuracy (TRBA) and testing balanced
accuracy (TEBA) with or without adjusting for the covariates using a GMDR program
and a p-value threshold of 0.05 [29]. The covariates used were age, gender, residence area,
education, income, occupation, energy intake, alcohol intake, regular exercise, and smoking
status. Ten-fold cross-validation was also checked for cross-validation consistency (CVC)
because the sample size was larger than 1000 [29], and 10 out of 10 in CVC met the perfect
cross-validation criteria. Using the best model determined by GMDR analysis, the risk
allele of each SNP in the selected best model was counted as 1. For example, when people
had AA, AG, and GG of one SNP, and the A allele was the risk allele, the genetic score for
the SNP was 2, 1, and 0, respectively. The PRS for the best gene−gene-interaction model
was assessed by summating the number of the risk alleles (genetic score) from each selected
SNP in the best gene−gene-interaction model [5,6,30]. The PRS in the five and seven SNP
models was divided into three categories according to the number of risk alleles; they were
classified as low PRS, middle PRS, and high PRS when the number of risk alleles in the
PRS was 0–3, 4–5, and ≥6 in the 5-SNP model and 0–5, 6–7, and ≥8 in the 7-SNP model,
respectively.

2.8. Statistical Analyses

Statistical analysis was conducted using PLINK version 2.0 (http://pngu.mgh.harvard.
edu/~purcell/plink, accessed on 9 March 2021) and SAS version 9.3 (SAS Institute, Cary,
NC, USA). Descriptive statistics of the categorical variables (e.g., gender and smoking
status, etc.) were analyzed using the frequency distributions in the low-, middle-, and
high-PRS groups. The significant differences between their frequency distributions were
assessed using a chi-squared test. The descriptive values of continuous variables were
expressed as the means and standard deviations according to the PRS categories. The
significance of the differences among the PRS groups was analyzed using a one-way
analysis of variance (ANOVA) to adjust covariates. Finally, multiple comparisons among
the PRS groups were performed using a Tukey’s test.

The associations among the PRSs were obtained using the best model, and the obesity
risk was examined using multivariate logistic regression analysis with an adjustment for
covariates. The odds ratios (ORs) and 95% confidence intervals (CI) were calculated against
an index reference: low PRS. Multivariate logistic regression analysis was performed using
two adjusted models. The covariates of model 1 included gender, age, residence area,
education, and income, while those of model 2 contained the covariates in model 1 plus
smoking status, drinking amount, daily energy intake, and regular exercise. The adjusted
ORs and 95% CI were calculated for obesity risk according to PRS.

The participants were categorized into higher and lower intake groups using the
classification criterion described above. A multivariate interaction model was used to
examine the interactions between PRS and lifestyles and demographic parameters after
adjusting for the covariates. p values < 0.05 were considered significant.

https://phgkb.cdc.gov/PHGKB/hNHome.action
https://phgkb.cdc.gov/PHGKB/hNHome.action
http://pngu.mgh.harvard.edu/~purcell/plink
http://pngu.mgh.harvard.edu/~purcell/plink


Nutrients 2021, 13, 3772 7 of 20
Nutrients 2021, 13, x FOR PEER REVIEW 7 of 21 
 

 

 
Figure 1. Flow chart for the generation of polygenetic variants that increase the risk of obesity and interactions between 
polygenetic risk scores (PRS) and lifestyles. 

Of the 45 potential genetic variants in the 36 obesity-related genes, ten SNPs exhibit-
ing SNP−SNP interactions strongly associated with an obesity risk were automatically se-
lected by generalized multifactor dimensionality reduction (GMDR) with 1–10 marker 
count range, 10 CVC, and exhaustive search type. GMDR provided ten potential models 
among different combinations of 45 genetic variants. The best SNP−SNP interaction model 
was selected in a sign rank test of trained balanced accuracy (TRBA) and testing balanced 
accuracy (TEBA) with or without adjusting for the covariates using a GMDR program and 
a p-value threshold of 0.05 [29]. The covariates used were age, gender, residence area, ed-
ucation, income, occupation, energy intake, alcohol intake, regular exercise, and smoking 
status. Ten-fold cross-validation was also checked for cross-validation consistency (CVC) 
because the sample size was larger than 1000 [29], and 10 out of 10 in CVC met the perfect 
cross-validation criteria. Using the best model determined by GMDR analysis, the risk 
allele of each SNP in the selected best model was counted as 1. For example, when people 
had AA, AG, and GG of one SNP, and the A allele was the risk allele, the genetic score for 
the SNP was 2, 1, and 0, respectively. The PRS for the best gene−gene-interaction model 

Figure 1. Flow chart for the generation of polygenetic variants that increase the risk of obesity and interactions between
polygenetic risk scores (PRS) and lifestyles.

3. Results
3.1. General and Demographic Characteristics of the Participants According to Gender and Obesity

The men were older than the women, while the obese women were older than the
nonobese women (p < 0.001). Obese women were shorter than nonobese women, but there
was no height difference linked to obesity in men (p < 0.001). The average BMIs of the
nonobese and obese groups were approximately 22.5 and 27.1 kg/m2, respectively, in both
gender groups (Table 1). The waist circumferences were higher in the obese group than the
nonobese group in both genders, but men in the obese and nonobese groups had greater
waist circumferences than women in the corresponding weight groups. Interestingly, the
skeletal muscle and fat mass were higher in the obese group than the nonobese group for
both genders (p < 0.05; Table 1). On the other hand, the adjusted ORs were much higher for
waist circumferences (OR = 18.3 and 95% CI: 16.5–20.3) and fat mass (OR = 20.71 and 95%
CI = 17.83–24.16) for obesity risk than the skeletal muscle mass. The initial menstrual age
was younger in the obese group than in the nonobese group, while there was no significant
difference in menopausal age in the obese and nonobese groups (Table 1).
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The incidence of metabolic syndrome was much higher in the obese groups in both gen-
ders, and the risk of metabolic syndrome increased 5.86-fold in the obese group (p < 0.001;
Table 1). The components of metabolic syndrome were higher in the obese group than the
nonobese group in both genders. Serum total cholesterol and LDL concentrations were
much higher in women than men, but the serum triglyceride concentrations were higher
in men than women (Table 1). The serum HDL concentrations were higher in women
than men. In the combined lipid profiles, women had as many lipid disturbances as men.
Furthermore, obese women exhibited higher serum hs-CRP concentrations than nonobese
women, but this was not observed in men (Table 1). Blood pressure, including systolic
blood pressure (SBP) and diastolic blood pressure (DBP), was higher in the obese group
than the nonobese group, and men showed higher blood pressure than women. Women
had much higher eGFR than men, and eGFR was lower in the obese group than in the
nonobese group. The serum alanine aminotransferase (ALT) and aspartate aminotrans-
ferase (AST) concentrations were higher in the obese groups than the nonobese groups in
both genders. Obesity increased the odds ratio for higher AST and ALT concentrations by
2.0 and 2.7-fold, respectively (Table 1).

3.2. Lifestyle Characteristics of the Participants According to Genders and Obesity

The daily energy intake based on the estimated energy intake was higher in the obese
groups than the nonobese group in both genders, and it increased the obesity risk by
1.24-fold. The protein intake also elevated the obesity risk (p < 0.05; Table 2) based on the
daily energy intake. In women, the carbohydrate intake was higher in the obesity group
than the nonobese group, and the association of the carbohydrate intake with the obesity
risk was marginally significant (p = 0.0508). Fat, including saturated, monounsaturated,
polyunsaturated fatty acids, and cholesterol intake, were not associated with the obesity
risk (Table 2). Their intake was slightly higher in the obese group than the nonobese group
in men, but their intakes showed an opposite tendency in women. DII was similar in the
obese and nonobese groups, but DII was higher in men than women (Table 2). Interestingly,
the fried-food intake was higher in the obese group than the nonobese group in both
genders, but the intake of sugar-containing foods was higher in the nonobese groups than
the obese group in women, but not men (Table 2). Obese men had a higher intake of
a Korean balanced diet and Western-style diet than the nonobese men, while there was
no difference in the plant-based diet and rice-based diet intake in obese and nonobese
men (Table 2). Obese women had a lower plant-based diet and a higher Korean balanced
diet than nonobese women. There was no significant association of dietary patterns with
obesity risk (Table 2).

Alcohol intake was much higher in the obese group than the nonobese group in both
genders, particularly in men (Table 2). Alcohol intake was positively associated with the
obesity risk. Fewer current smokers belonged to the obese group than the nonobese group
in men but not women (Table 2). Regular exercise lowered the incidence of obesity in
women but not men. Regular exercise was inversely associated with the risk of obesity
(Table 2).
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Table 2. Lifestyles including nutrient intake and association with obesity in the participants according to genders and
obesity status.

Men
(n = 19,444)

Women
(n = 38,384) Adjusted ORs and

95% CI 1Control
(n = 11,690)

Obese
(n = 7754)

Control
(n = 24,593)

Obese
(n = 9791)

Energy (<EER %) 2 90.2 ± 0.32 3 92.4 ± 0.39 92.8 ± 1.07 103.5 ± 1.62 ***###+++ 1.244 (1.153–1.342)
CHO (<70 En %) 71.0 ± 0.07 a 70.7 ± 0.09 a 69.6 ± 0.26 b 70.1 ± 0.39 ab### 0.946 (0.895–1.000)
Protein(<14 En%) 13.6 ± 0.03 b 13.5 ± 0.03 b 14.2 ± 0.10 a 14.1 ± 0.15 a### 1.047 (0.998–1.090)
Total fat (<15 En%) 14.5 ± 0.06 b 14.6 ± 0.07 b 15.4 ± 0.20 a 14.9 ± 0.30 ab## 1.020 (0.977–1.064)
Saturated fat (<4.7 En%) 0.44 ± 0.002 b 0.46 ± 0.003 a 0.45 ± 0.002 a 0.44 ± 0.003 b+++ 1.032 (0.986–1.080)
Monounsaturated fat (<6.0 En%) 0.56 ± 0.003 b 0.58 ± 0.004 a 0.55 ± 0.002 c 0.54 ± 0.003 d###+++ 1.001 (0.955–1.049)
Polyunsaturated fat (2.5 En%) 0.32 ± 0.003 ab 0.33 ± 0.003 a 0.31 ± 0.002 b 0.31 ± 0.003 b###++ 1.038 (0.992–1.087)
Cholesterol (<200 mg/d) 179 ± 1.13 a 181 ± 1.33 a 165 ± 0.74 b 162 ± 1.12 c###++ 0.985 (0.930–1.043)
Fiber (6 g/d) 5.98 ± 0.02 a 5.94 ± 0.03 a 5.51 ± 0.02 b 5.49 ± 0.02 b### 0.985 (0.892–1.086)
DII (<2374 scores) 2096 ± 15.9 a 2088 ± 18.8 a 1917 ± 10.5 b 1939 ± 15.9 b### 0.980 (0.933–1.030)
Fried foods (<0.6/week) 0.53 ± 0.01 b 0.60 ± 0.01 a 0.42 ± 0.01 c 0.50 ± 0.01 b***### 1.217 (1.117–1.326)
Sugar-containing foods 3.05 ± 0.09 a 2.98 ± 0.10 a 2.79 ± 0.06 a 2.45 ± 0.09 b**## 0.984 (0.905–1.070)
Balanced Korean diet (<70th
percentile) 10,984 (66.9) 2114 (69.9) ** 19,746 (64.6) 2843(67.2) ** 1.137 (1.089–1.186)

Plant-based diet (<70th percentile) 8721 (53.1) 4 1552 (51.3) 21,961 (72.8) 2857 (67.5) *** 0.868 (0.832–0.907)
Western-style diet (<70th percentile) 12,949 (78.9) 2487 (82.2) *** 17,898 (59.4) 2552 (60.3) 1.142 (1.092–1.195)
Rice-based diet (<70th percentile) 10,949 (66.7) 1974 (65.2) 19,580 (64.9) 2828 (66.8) * 1.001 (0.960–1.045)
Alcohol drinking (<100 g/week) 199 ± 3.37 b 241 ± 3.96 a 57.8 ± 2.22 d 64.1 ± 3.36 c***###+++ 1.139 (1.060–1.225)
Smoking status (current smokers) 3423 (29.4) 2106 (27.2) *** 469 (1.91) 212 (2.17) 0.820 (0.761–0.884)
Regular Exercise 5 6897 (59.0) 4575 (59.0) 12,961 (52.7) 4523 (46.2) *** 0.444 (0.203–0.974)

1 Odds ratio (ORs) and 95% confidence intervals (CI) in logistic regression after adjusting for covariates included age, gender, education,
income, energy intake (percentage of estimated energy requirement), occupation, residence area, regular exercise, alcohol intake, and
smoking status. 2 The cutoff points for logistic regression. 3 The values represent adjusted means ± standard deviations. 4 The number
of the subjects (percentage of each group). 5 The cutoff points of regular exercise for logistic regression were as follows: 30 min of
moderate exercise 3 times per week when moderate exercise was defined as the exercise corresponding to 3 ≤ metabolic equivalents of task
(METs) ≤ 6. * Significant differences by gender at p < 0.05, ** at p < 0.01, *** p < 0.001. ## Significant differences by obesity (BMI ≥ 25) at
p < 0.01, ### p < 0.001.++ Significant interaction between gender and obesity at p < 0.01, +++ p < 0.001. a–d values with different superscript
letters in the same row were significantly different by Tukey’s test at p < 0.05.

3.3. Genetic Variants Related to the Obesity Risk and the Best Model with SNP-SNP Interaction

Ten genes with SNPs that affect the obesity risk were chosen to examine genetic
variant−genetic variant interactions in the GMDR in the urban hospital-based cohort
(Table 3). The selected genetic variants involved in the obesity risk were SEC16 Ho-
molog B (SEC16B, endoplasmic reticulum export factor) rs543874, DnaJ heat shock protein
family (Hsp40) member C27 (DNAJC27)_rs713586, CDK5 regulatory subunit-associated
protein 1-like 1 (CDKAL1)_rs9356744, transcription factor AP-2 Beta (TFAP2B)_rs2206277,
BDNF_rs6265, myosin light chain-2 (MYL2)_rs3782889, olfactomedin-4 (OLFM4)_rs9568856,
FTO_rs1421085, MC4R_rs6567160, and GIPR_rs1444988703 (Table 3). These genes were
strongly connected, and FTO and MC4R acted as hub genes that affect the risk of obe-
sity [5]. All of the genes were involved in either energy intake or energy expenditure by
modulating transcription factors. These SNPs satisfied the MAF (>0.01) and HWE (p > 0.05)
criteria (Table 2). Some SNPs had an inverse association with obesity risk, while the other
SNPs were positively associated with the obesity risk. The p values of most selected SNPs
were higher than 5×10−7, but rs3782889_MYL2 and rs9356744_CDKAL1 did not meet the
statistical criteria (Table 3). These SNPs had similar associations with the obesity risk, and
the statistical significance was higher in the Ansan/Ansung cohort (Table 3), but they were
not ultimately included in the best model.
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Table 3. Characteristics of genetic variants mainly related to appetite regulation for obesity risk.

Chr 1 SNP 2 Position Mi 3 Ma 4 OR and 95%
CI for City 5

p-Value
Adjusted
(City) 6

p-Value
Adjusted
(Urban) 7

MAF 8 p-Value for
HWE 9 Gene

Functional
Consequence

1 rs543874 177889480 G A 1.13
(1.10–1.17) 6.65 × 10−16 1.52 × 10−3 0.249 0.581 SEC16B exon

2 rs713586 25158008 C T 1.08
(1.05–1.11) 2.16 × 10−8 2.25 × 10−3 0.485 0.225 DNAJC27 exon

6 rs9356744 20685486 C T 0.95
(0.93–0.98) 4.06 × 10−5 8.80 × 10−5 0.466 0.102 CDKAL1 intron

6 rs2206277 50798526 T C 1.07
(1.04–1.11) 4.35 × 10−7 5.06 × 10−2 0.310 0.969 TFAP2B intron

11 rs6265 27679916 T C 0.92
(0.89–0.94) 2.04 × 10−10 2.84 × 10−1 0.459 0.148 BDNF missense

12 rs3782889 111350655 G A 0.94
(0.91–0.97) 4.84 × 10−4 8.11 × 10−3 0.171 0.449 MYL2 intron

13 rs9568856 54064981 A G 1.08
(1.05–1.11) 1.33 × 10−7 3.17 × 10−1 0.285 0.620 OLFM4 intron

16 rs1421085 53800954 C T 1.18
(1.13–1.22) 1.82 × 10−16 1.54 × 10−6 0.125 0.460 FTO intron

18 rs17782313 57829135 C T 1.11
(1.08–1.15) 3.16 × 10−12 2.14 × 10−4 0.239 0.585 MC4R exon

19 rs1444988703 46175046 A T 1.10
(1.07–1.13) 2.86 × 10−12 6.22 × 10−5 0.407 0.441 GIPR intron

1 Chromosome; 2 single nucleotide polymorphism; 3 minor allele; 4 major allele, 5 odds ratio (OR) and 95% confidence intervals (CI) for
city cohort; 6 p-value for OR after adjusting for age, gender, residence area, survey year, body mass index, daily energy intake, education,
income and regular exercise in the city cohort; 7 p-value for OR for Ansan/Ansung cohort after adjusting the covariates; 8 minor allele
frequency; 9 Hardy−Weinberg equilibrium.

Among the genetic variants selected, the models including 5, 7, 8, 9, and 10 SNPs
met the criteria of TREB and CVC for the best model to explain the SNP−SNP inter-
actions that contribute to obesity risk. The five models exhibited significant interac-
tions among the genetic variants that influenced the obesity risk (Table 4). The 5-SNP
model included SEC16B_rs543874, DNAJC27_rs713586, BDNF_rs6265, MC4R_rs6567160,
and GIPR_rs1444988703. The genetic variants in model 5 plus CDKAL1_rs9356744 and
OLFM4_rs9568856 (model 7) also exhibited significant interactions (Table 4). The models
that added the remainder of the SNPs to model 7 also had significant interactions for
obesity risk. After adjusting for covariates, the models included five, seven, eight, nine,
and ten genetic variants that met the TRBA, TEBA, and CVC criteria, including gender,
age, resident area, regular exercise, and smoking status. However, since all of these models
have similar statistical significance; therefore model 5, which included the smallest number
of variables, was selected.

Model 5 resulted in participants having PRS scores ranging from 0–9 risk alleles.
The results show that BMI showed an increasing trend with PRS, and the participants
with PRS scores of 8 and 9 had a sharp increment in BMI (Figure 2A). Although there
was a positive association between PRS and BMI, some severely obese and underweight
participants were distributed among the top deciles of PRS (8 and 9) to the bottom decile
(0). However, obese (25–30 kg/m2) and severely obese (>30 kg/m2) persons had much
higher representations in the middle deciles (2–7) than normal (18.5–23 kg/m2 for men
and 18.5–22 kg/m2 for women), overweight (23–25 kg/m2 for men and 22–25 kg/m2 for
women), and underweight (Figure 2B). In the other stratification, participants were assigned
to low PRS (0–3), medium PRS (4–5), and high PRS (≥6) (Figure 2C). The PRS stratification
showed a similar pattern of the top, middle, and bottom deciles, but the percentage of
overweight participants in the three PRS groups was not significantly different.
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Table 4. Generalized multifactor dimensionality reduction (GMDR) results of multilocus interaction with genes mainly
related to appetite regulation for obesity risk.

GMDR Adjusted for Gender, Age, and Residence Area Adjusted for Gender, Age, Residence Area,
Regular Exercise, and Smoking Status

Model TRBA TEBA p-Value CVC TRBA TEBA p-Value CVC

SEC16B_ rs543874 0.5171 0.5144 10
(0.0010) 8/10 0.5174 0.5156 10

(0.0010) 9/10

Model 1 plus BDNF_
rs6265 0.5237 0.5178 10

(0.0010) 6/10 0.5239 0.5179 10
(0.0010) 6/10

model 2 plus GIPR_
rs1444988703 0.5275 0.5180 10

(0.0010) 4/10 0.5276 0.5183 10
(0.0010) 4/10

Model 3 plus FTO_
rs1421085 0.5322 0.5228 10

(0.0010) 6/10 0.5326 0.5222 10
(0.0010) 4/10

Model 3 plus DNAJC27_
rs713586, MC4R_

rs17782313
0.5413 0.5260 10

(0.0010) 10/10 0.5416 0.5254 10
(0.0010) 10/10

Model 5 plus OLFM4_
rs9568856 0.5536 0.5232 10

(0.0010) 9/10 0.5539 0.5210 10
(0.0010) 6/10

Model 6 plus CDKAL1_
rs9356744 0.5774 0.5224 10

(0.0010) 10/10 0.5778 0.5197 10
(0.0010) 10/10

Model 7 plus TFAP2B_
rs2206277 0.6129 0.5165 10

(0.0010) 10/10 0.6139 0.5145 10
(0.0010) 10/10

Model 8 plus MYL2_
rs3782889 0.6550 0.5163 10

(0.0010) 10/10 0.6568 0.5163 10
(0.0010) 10/10

Model 4 plus DNAJC27,
CDKAL1, TFAP2B, MYL2,

OLFM4, MC4R
0.6978 0.5129 10

(0.0010) 10/10 0.6996 0.5122 10
(0.0010) 10/10

TRBA, trained balanced accuracy; TEBA, test balance accuracy; CVC, cross-validation consistency; sign test, p-value for the significance
of GMDR model by sign test with and without adjusting for covariates designated in the table; BMI, body mass index. Boldface values
indicated qualifying for the best model.
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(B) the percentage of the participants according to obesity and bottom (0), middle (1–7), and top (8–9) deciles of PRS; (C) the
percentage of the participants according to obesity and low (0–3), medium (4–5), and high (≥6) PRS in the 5-SNP model;
(D) adjusted odds ratios (ORs) and 95% confidence intervals (CI) of the PRSs of 5- and 7-SNP models were generated by
assessing gene−gene interactions associated with obesity risk. PRSs of the 5- and 7-SNPs were calculated by summing the
number of risk alleles of SNPs. PRS of the 5-SNP model included 0–9 deciles, and it was divided into the bottom (0), middle
(1–7), and top (8–9) in B. In C, PRS calculated using the 5- and 7-SNPs models were divided into three categories (0–3, 4–5,
and ≥6) and (0–5, 6–7, and ≥8), respectively. Underweight refers to BMI < 18.5 kg/m2, normal as 18.5 to 23 for men 18.5 to
22 kg/m2 for women, overweight as 25.0 to 29.9 kg/m2, obesity as 30.0 to 39.9 kg/m2, and severe obesity as ≥40 kg/m2.
Adjusted ORs were obtained by logistic regression using age, gender, education, income, occupation, residence area, and
energy intake (percentage of estimated energy requirement) (model 1), plus variables in model 1, regular exercise, alcohol
intake, and smoking status as covariates. The lowest category PRS were used as reference scores for logistic regression. Red
and blue boxes indicate adjusted ORs for the 5- and 7-SNP models, respectively, and lines on these boxes indicated 95% CI.

The high PRS of the 5-SNP model was positively associated with the obesity risk:
by 1.626 (1.474–1.801) and 1.629 (1.475–1.798) times after adjusting for covariates 1 and 2,
respectively (Figure 2D). The high PRS with seven SNPs also showed a positive association
with the obesity risk, but the ORs of the 7-SNP model were slightly smaller than those in
the 5-SNP model (Figure 2D).

The PRS was significantly associated with the BMI: 1.43-fold and 1.55-fold in men and
women, respectively, after adjusting for the covariates (Table 5). On the other hand, PRS
was not related to waist circumference and SMI after adjusting for the covariates, including
BMI. Interestingly, the fat mass was positively associated with fat by 1.46-fold only in men
but not women after adjusting for covariates, including the BMI (Table 5). In addition,
PRS was not related to menarche and menopausal age in women after adjusting for the
covariates.

3.4. Interaction of PRS and Nutrient Intake in Obesity Risk

Interestingly, initial menstruation age interacted with PRS for the obesity risk. In
participants with an early menarche age, the BMI was higher than those with late menarche
age. The impact of PRS was much higher in the participants with early menstruation than
those with late menstruation (p = 0.027; Figure 3A). The adjusted ORs and 95% CI were
2.38 and 1.608–2.841 in the participants with early menstruation and 1.562 and 1.405–1.738
in those with late menstruation, respectively (Table 6).

A plant-based diet intake showed an interaction with the PRS to influence the obesity
risk (Table 6). In a low plant-based diet intake, the genetic impact was lower for BMI,
whereas the participants with a high PRS had a higher BMI than those with a low PRS
with a high plant-based dietary intake (Figure 3B). Adults with a high PRS were protected
against the obesity risk in a high plant-based diet (Table 6). The nutrient intake and other
dietary patterns did not show any interactions with the PRS to affect the obesity risk.

Fried-food intake exhibited an interaction with the PRS (Table 6). The high fried-food
intake participants had a higher BMI, but the PRS impact was offset in the participants with
a high fried-food intake (Figure 3C). Thus, fried-food intake should be avoided to protect
against obesity, even though a high PRS did not significantly exacerbate the obesogenic
effects of fried-food intake (p = 0.035).
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Table 5. Association of polygenetic risk scores (PRS) with metabolic parameters in the participants according to genders
and obesity status.

Men Women

Low PRS 1 Medium PRS
(n = 13,024)

High PRS
(n = 1931)

Medium PRS
(n = 23,094)

High PRS
(n = 3344)

Age (<55 year) 1 0.965 (0.893–1.043) 1.019 (0.901–1.151) 0.986 (0.926–1.049) 0.975 (0.883–1.076)
Waist circumference (M: 95; F 85 cm) 1 0.873 (0.772–1.000) 0.907 (0.764–1.077) 0.971 (0.881–1.069) 0.886 (0.764–1.027)
BMI (<25 mg/kg2) 1 1.252 (1.161–1.350) 1.430 (1.272–1.608) 1.278 (1.199–1.362) 1.554 (1.412–1.711)
BMI (<27 mg/kg2) 1 1.232 (1.109–1.369) 1.479 (1.267–1.727) 1.375 (1.255–1.506) 1.742 (1.531–1.983)
Skeletal muscle index 2 (%) 1 0.976 (0.897–1.063) 0.940 (0.822–1.075) 0.998 (0.937–1.063) 0.928 (0.839–1.026)
Fat mass (%) 1 1.233 (1.136–1.338) 1.463 (1.291–1.657) 0.893 (0.785–1.015) 0.824 (0.656–1.001)
Metabolic syndrome (No) 1 1.062 (0.956–1.181) 1.106 (0.939–1.304) 1.006 (0.915–1.106) 0.892 (0.774–1.028)
Serum glucose (<126 mg/dL) 1 1.012 (0.936–1.094) 0.972 (0.859–1.099) 0.947 (0.881–1.017) 1.063 (0.952–1.187)
HbA1c (<6.5%) 1 1.021 (0.905–1.151) 1.058 (0.879–1.274) 1.009 (0.897–1.136) 1.182 (1.002–1.401)
Serum total cholesterol (<230 mg/dL) 1 0.884 (0.805–0.970) 0.826 (0.710–0.961) 1.012 (0.948–1.081) 1.055 (0.953–1.169)
Serum HDL (M: 40 F: 50 mg/dL) 1 1.006 (0.917–1.103) 0.992 (0.858–1.147) 1.031 (0.938–1.132) 1.007 (0.949–1.070)
Serum LDL (<140 mg/dL) 1 0.925 (0.827–1.034) 0.915 (0.767–1.092) 0.986 (0.915–1.063) 1.018 (0.906–1.144)
Serum triglyceride (<150 mg/dL) 1 0.931 (0.862–1.006) 0.869 (0.769–0.982) 0.942 (0.880–1.007) 1.030 (0.928–1.142)
SBP (<130 mmHg) 1 1.029 (0.954–1.110) 0.975 (0.865–1.100) 0.997 (0.935–1.063) 1.011 (0.916–1.117)
DBP (<90 mmHg) 1 0.977 (0.875–1.090) 1.026 (0.865–1.217) 0.999 (0.894–1.117) 1.071 (0.905–1.268
eGFR (<70 mL/min) 1 1.070 (0.879–1.304) 1.206 (0.898–1.619) 0.971 (0.817–1.154) 1.127 (0.869–1.462)
Serum hs-CRP (<0.5 mg/L) 1 1.606 1.106 2.332 1.719 (1.020–2.896) 0.491 (0.110–2.193) 0.613 (0.059–6.409)
Menarche age (<14 yr) 1 0.997 (0.926 1.074) 1.014 (0.903–1.140)
Menopausal age (<50 yr) 1 1.060 (0.995 1.129) 1.118 (0.998–1.242)

Values represent adjusted odds ratios and 95% confidence intervals. Covariates included age, gender, body mass index (BMI), education,
income, energy intake (percentage of estimated energy requirement), occupation, residence area, regular exercise, alcohol intake, and
smoking status. 1 PRS with 5 SNPs of the best GMDR model was divided into three categories according to the number of the risk alleles:
when the number of risk alleles in the PRS was ≤ 3, 4–5, and ≥ 6 into low PRS, middle PRS, and high PRS, respectively. <29.0% for men
and 22.8% for women in skeletal muscle index (SMI; defined as appendicular skeletal muscle mass/weight); reference was the low PRS
(men: n = 4485; women: n = 7939). 2 Skeletal muscle mass divided by BMI; SBP, systolic blood pressure; DBP, diastolic blood pressure;
eGFR, estimated glomerular filtration rate; hs-CRP, high-sensitive C-reactive protein.

Table 6. Adjusted odds ratios for obesity risk by polygenetic risk scores (PRS) of the best model for gene−gene interaction
after covariate adjustments according to lifestyles patterns.

Low PRS
(n = 7939)

Medium PRS
(n = 23,094)

High PRS
(n = 3344)

PRS−Lifestyle
Interaction p-Value 3

Early menarche (<14 yr) 2 1 1.152 (0.990–1.341) 1 1.785 (1.427–2.233) 0.0174
Late menarche 1 1.283 (1.219–1.351) 1.479 (1.367–1.600)

Low PRS
(12,424)

Medium PRS
(n = 36,118)

High PRS
(n = 5275)

PRS−lifestyle
interaction p-value

Low plant-based diet (<70th percentile) 1 1.241 (1.138–1.353) 1.462 (1.279–1.670) 0.0273
High plant-based diet 1 1.268 (1.118–1.437) 1.392 (1.141–1.699)
Low intake of fried food (<1 times/w) 1 1.288 (1.220–1.359) 1.472 (1.355–1.600) 0.0364
High intake of fried food 1 1.196 (1.072–1.335) 1.616 (1.374–1.902)

PRS with 5 SNPs was divided into three categories according to the number of the risk alleles: when the number of risk alleles in the PRS
was ≤3, 4–5, and ≥6 into low-PRS, medium-PRS, and high-PRS, respectively. The reference was the low PRS. 1 Values represent adjusted
odds ratios (95% confidence intervals) after adjusting for covariates including age, gender, education, income, energy intake (percentage of
estimated energy requirement), occupation, residence area, regular exercise, alcohol intake, and smoking status. 2 The cutoff points to
divide the two groups. 3 Multivariate ANCOVA models include the corresponding main effects, interaction terms of main effects, and
potential confounders such as age, gender, energy intake, residence area, metabolic syndrome, occupation, education, income, BMI, WBC,
smoking status, coffee, alcohol, regular exercise, and any medication for inflammatory diseases.
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Figure 3. Body mass index (BMI) of participants with low, medium, or high polygenetic risk scores
(PRS) as determined using the 5-SNP model. (A) Adjusted means and standard errors of participants
of BMI categorized by menarche age (a cutoff value: 15 years). (B) Adjusted means and standard
errors of participants of BMI categorized by a plant-based diet (PBD; a cutoff value: 70th percentiles).
(C) Adjusted means and standard errors of participants of BMI categorized by fried-food intake
(a cutoff value: once a week). Covariates included age, gender, education, income, energy intake
(percentage of estimated energy requirement), occupation, residence area, regular exercise, alcohol
intake, and smoking status. a–d Different letters on the bar indicated significant differences among
the groups in Tukey’s test at p < 0.05.
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4. Discussion

GWAS studies have previously identified genetic variants associated with obesity risk,
but few studies have been conducted to identify the genetic variant−genetic variants and
genetic variant−lifestyle interactions. The present study showed the participants with high
PRS of appetite-related genes, mainly MC4R pathway-related genes, including SEC16B_
rs543874, BDNF_ rs6265 DNAJC27_ rs713586, MC4R_rs17782313, GIPR_ rs1444988703,
increased the obesity risk by 1.6-fold. The participants with early menarche age, low plant-
based diet, and high fried-food intake had a higher PRS impact on the obesity risk than
those with late menarche age, high plant-based diet, and low fried-food intake. Therefore,
the participants with high PRS, especially with early menstruation, could be at obesity risk,
and they should consume a plant-based diet with fewer fried foods to prevent obesity risk.

The arcuate nucleus of the hypothalamus, a central organ for regulating energy bal-
ance, has a range of receptors for appetite-regulating hormones and neurotransmitters.
Leptin, insulin, ghrelin, cholecystokinin, and glucagon-like peptide-1 modulate the acti-
vation of orexigenic neurons and anorexigenic neurons of the hypothalamus [31]. When
the hunger center is activated, food intake increases and energy expenditure decreases.
The leptin−melanocortin signaling system is the critical appetite regulatory system: leptin
activates proopiomelanocortin, an α-melanocyte-stimulating hormone that activates the
melanocortin type 3 (MC3R) and MC4R. MC4R stimulates the anorexigenic effectors and
suppresses the orexigenic effectors [32]. Therefore, the MC4R-related pathway is involved
in obesity risk.

The present study shows that MC4R mutations are reported to develop obesity ranging
from 0.5–5.8% [32]. A GWAS study in Danish, Icelandic, Dutch, European Americans,
and African American adults has shown that SNPs in the FTO, MC4R, BDNF, and SH2B1
genes are highly associated with obesity risk via modulating leptin secretion to induce
leptin resistance in different ethnicities [33–35]. In Chinese people, SEC16B is involved
in the serum leptin concentration connected with FTO, MC4R, and BDNF involved in
the appetite regulation in the hypothalamus [34]. SEC16B is expressed in various tissues
and is also involved in transporting appetite-regulatory peptides, including neuropeptide
Y and proopiomelanocortin [36]. It acts in the adipose tissues to secrete obesity-related
molecules that regulate fat mass [37]. Adults with the risk alleles of MC4R_rs17782313 have
higher ghrelin concentrations, and more than 50% have severe binge eating issues [38]. The
genes and genetic variants were associated with high BMI in middle-aged adults and the
elderly. Furthermore, afamelanotide stimulates BDNF expression in the brain by activating
MC4R to mediate neurogenesis and cognitive function in an Alzheimer’s disease animal
model [35]. The present study showed that MC4R_rs17782313 and BDNF_rs6265 were
included in the best genetic model for obesity. The two SNPs might interact with each
other to influence the obesity risk through modulating appetite.

This study demonstrates that genetic factors can interact with environmental factors
in obesity development, and obesity can be prevented with high compliance using genetic
and environmental interaction results. The association of fat and carbohydrate intake with
obesity remains controversial, although the daily energy intake was positively associated
with obesity risk. Furthermore, food intake has shown controversial results for obesity risk.
The present study reported that DII, a dietary inflammatory index, and sugar-containing
food intake were not involved in the obesity risk, while fried-food intake was positively
associated. In contrast, the serum hs-CRP concentrations have a positive association with
obesity. Therefore, obesity may be associated with inflammation, but the DII itself may not
fully represent the inflammation status in the present study.

Dietary patterns have been reported to influence obesity risk [39–42]. A plant-based
diet was inversely associated with the obesity risk, whereas a Western-style diet had a
positive association in the present study. In the present study, the participants with a high
intake of plant-based foods had a higher energy intake with a high intake of fat and low
intakes of carbohydrates. Thus, the intake of a plant-based diet might reduce the obesity
risk despite the higher energy intake. The previous study has also shown that a plant-based
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diet is inversely related to liver fat deposition in children aged 6 to 15 [39]. These results
suggest that the reduced obesity risk may be related to the gut microbiome because a high
plant-based diet had a higher dietary fiber intake, but a Western diet had a lower fiber
intake. Previous studies [40–42] reported that the participants with vegetarian-type diets
have more of the Prevotella enterotype in the Western countries, whereas among Koreans,
those with a rice-based diet have a higher level of Prevotella. Therefore, a plant-based
diet may be intermediate between a rice-based diet and a balanced Korean diet. Thus, a
plant-based diet improves obesity risk potentially by promoting the gut microbiota balance.

A few studies have shown the genetic variants−diet interaction for obesity risk [43].
Previous studies have not shown that MC4R, BDNF, SEC16B, and FTO genetic variants
interacted with the food and nutrient intake, even though nutrient interactions with the
genetic variants of other genes, such as GRB14, LYPLAL1, LRRN6C, and MTIF3, have been
reported [43]. In the present study, a plant-based diet and fried-food intake interacted with
a high PRS, but other lifestyle-related factors did not interact with the PRS. The fried-food
intake increased BMI, but the PRS impact was attenuated in the high intake group of
fried foods, even though BMI was higher in the high intake group of fried food in the
adults regardless of PRS. A high intake of fried foods has been shown to be related to
hypertension, cardiovascular disease, and cancer risk [44–46]. Therefore, people with high
PRS may have a higher risk of obesity and other metabolic disorders, and they need to
consume less fried foods to reduce obesity risk.

The merit of this study was to show that the PRS of the appetite-related genetic
variants increased obesity risk, and a high PRS had a higher impact on obesity with an
early menarche age, high fried-food intake, and low plant-based diet intake. This result can
be used as a basis of personalized nutrition for obesity risk. This study had some limitations.
First, this was a case-control study that did not show a causal relationship. Second, although
the results were analyzed from a large cohort, this study was not conducted with a survey
design. Lifestyles and nutrient intake were self-reported, and they might include some
biases. Finally, the PRS model employed in this study probably underestimates the true
genetic impact on obesity since a limited number of genes were included. This model was
clinically used as a tool in personalized nutrition and only included well-described SNPs
associated with known metabolic pathways. Future research should be conducted with a
total PRS that evaluates the complete impact of genetics on obesity among Koreans.

In conclusion, a PRS model using SEC16B_rs543874, DNAJC27_rs713586, BDNF_rs6265,
MC4R_ rs6567160, and GIPR_rs1444988703 had gene−gene interactions which elevated the
obesity risk. In addition, the PRS interacted with the menarche age in adult women with
high PRS: those who had an early menarche age showed an elevated obesity susceptibility
in later life. PRS also interacted with a plant-based diet and fried-food intake. Therefore,
people with high PRS, especially women with early menarche, need to consume a more
plant-based diet with fewer fried foods to decrease their obesity risk. These results can be
applied to personalized nutrition for protecting against obesity from childhood.
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