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A low-cost, simple, and highly selective method was used for the assessment of

total prostate specific antigen (tPSA) in the serum of prostate cancer patients. This

method is based on quenching the intensity of luminescence displayed by the optical

sensor Eu (TTA)3 phen/poly methylmethacrylate (PMMA) thin membrane or film upon

adding different concentrations of tPSA. The luminescent optical sensor was synthesized

and characterized through absorption, emission, scanning electron microscopy (SEM),

and x-ray diffraction (XRD), and is tailored to present red luminescence at 614 nm

upon excitation at 395 nm in water. The fabricated sensor fluorescence intensity is

quenched in the presence of tPSA in aqueousmedia. The fluorescence resonance energy

transfer (FRET) is the main mechanism by which the sensor performs. The sensor was

successfully utilized to estimate tPSA in the serum of patients suffering prostate cancer

in a time and cost effective way. The statistical results of the method were satisfactory

with 0.0469 ng mL−1 as a detection limit and 0.99 as a correlation coefficient.

Keywords: specific antigen, quenching, luminescence, optical sensor, prostate cancer

INTRODUCTION

The PSA protease is manufactured by the prostatic gland cells whether normal or malignant. Its
function is digesting the gel formed in seminal fluid after ejaculation (Schröder et al., 2014). In
the case of prostate cancer, men exhibit elevated levels of total PSA and lower levels of the free
form (fPSA). The fPSA/tPSA ratio can contribute to deciding whether the elevation in the level
of PSA is caused by prostate malignancy (Partin et al., 1996). The PSA test is sensitive to prostate
cancer but is not specific where false positive results may occur in other diseases as prostate benign
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hyperplasia, prostatitis, prostate intraepithelial neoplasia, acute
urinary retention, and renal failure (Nadler et al., 1995). Owing to
the suboptimal performance of the tPSA test, its significance as a
sole test for the diagnosis of prostate cancer is not recommended
as it may direct the suspected patient to administer drugs
that may affect their quality of life or lead him to perform
unnecessary invasive biopsies (Tkac et al., 2019). The role of
the tPSA test could be used as a stand-alone test to detect
the possible recurrence of prostate cancer, and monitor disease
progression following treatment, irrespective of the treatment
modality. Furthermore, tPSA can detect an early-stage of prostate
cancer that would be missed by a digital rectal examination (Van
der Kwast et al., 2003; Tkac et al., 2019). The tPSA normal level
lies below 4.0 ng mL−1 (Tkac et al., 2019).

Recently, different approaches were utilized to overcome
the over diagnosis of tPSA as an independent test including
biomarker panels such as the prostate health index and/
or a combined platform of biomarkers and some clinical
manifestations and variables such as the 4K score, also known as
4-kallikrein, and the Stockholm 3 test (Ferro et al., 2020; Jin et al.,
2020). These approaches utilized the tPSA levels as an important
parameter. Thus, the development of novel analytical methods
and the fabrication of cheap but yet sensitive sensors for the
accurate estimation of tPSA is always in demand.

Several procedures have been described for the determination
of tPSA in serum samples, such as electrochemical
immunosensor (Ge et al., 2013), immunoassay (Huhtinen
et al., 2004), immuno-chromatography (Yuhi et al., 2006),
enhanced Raman scattering (Chen et al., 2012), surface plasmon
resonance, integrated microfluidic systems (Grubisha et al.,
2003), digital rectal examination, and fluorescence microscopy
(Kerman et al., 2007). However, these methods have definite
disadvantages where the interactions between antigen and
antibody are accompanied with high constants of affinity,
leading to single-use systems. Although an immunosensor
is the most specific and highly sensitive method used in the
laboratory (Panini et al., 2008), it is a time-consuming and
expensive technique. Many recently developed methods depend
on nanoscale biosensors for cancer detection at its earliest stages
(Attia et al., 2019). In the present work, the optical sensor Eu
(TTA)3 phen (Figure 1) embedded in a polymethylmethacrylate
(PMMA) matrix is used for sensitive determination of tPSA
as a prostate cancer marker in human serum. We determined
tPSA concentration in blood serum by fluorescence quenching
of this optical sensor. This is a relatively simple and inexpensive
technique providing a quick reproducible analysis and is
relatively free from interference with coexisting substances.

EXPERIMENTAL

Apparatus
A spectrofluorophotometer [Shimadzu RF5301PC] was used
for scanning all luminescence spectra within the range of
(200–800 nm). A spectrophotometer [Shimadzu UV 2450] was
used for scanning the absorption spectra in 1.0 cm matched
silica cells within the range of (200–800 nm). A morphology
investigation was executed using SEM [Sirion, FEI] supported by

an EDX detector [S-3400N II, Japan]. Phases and crystallinity
characterization of the Eu (TTA)3 phen nanostructure was
accomplished via an x-ray diffractometer specified by Cu-kα
radiation of λ =1.5412 Å, 30mA, and 40 KV [Shimadzu 6000,
Japan] the 2θ ranged between 10◦ and 80◦ with a scanning rate of
2◦/min at room temperature.

Sample Collection and Delivery
The samples of patients were supplied in agreement with WHO
approved protocol for the collection of human specimens and
their use in the field of research by two reputable hospitals in
Egypt, Ain Shams Specialized Hospital and the New Al-Kasr-EL-
Aini Teaching Hospital. The approval and consent forms of the
patients to use their own samples were fulfilled before starting the
experiments. The experimental clinical samples included human
serum samples of different patients with normal and abnormal
PSA concentrations to diagnose prostate carcinoma.

Materials and Reagents
Uric acid, glucose, urea, albumin, KCl, and NaCl were purchased
from Sigma-Aldrich. Polymethylmethacrylate (PMMA),
polyethylene glycol (PEG), and tetramethoxysilane (TMOS)
were purchased from Alfa-Aesar. Total prostate-specific antigen
(tPSA) (1mg) was purchased from (Ortho-Clinical Diagnostics).
A system of Milli Q-Plus was used for the production of pure
distilled water (Millipore Corporation, USA). Pure solvents
of analytical grade were utilized throughout the whole work
(Aldrich, USA).

A quantity equivalent to 53.4 ng mL−1 of tPSA stock solution
was obtained via the dissolution of 1mg of tPSA in 2mL
deionized water and stored at 4◦C. More diluted solutions (0.1–
31.5 ng mL−1) of tPSA were obtained through diluting the
previously prepared stock solution using deionized water. The
optimum temperature for saving the prepared solutions stably
ranged between 0 and 4◦C.

For the fabrication of the luminescent sensor, a specific
amount Eu (TTA)3 was accurately weighed and dissolved in
DMSO to prepare a stock solution with a final concentration
of (5 × 10−3 mol L−1). The stock solution was further diluted
by DMSO to obtain a working solution of concentration
(1× 10−4 mol L−1).

General Procedures
Preparation the Optical Sensor Eu (TTA)3 Phen

Complex Embedded in PMMA Matrix

Doping of the optical sensor (Eu (TTA)3 phen) in PMMA was
done via adding 1.50 g PMMA to 10mL CHCl3 with continuous
stirring for 30min until complete dissolution at 60 ◦C. Then, 200
µl of Eu (TTA)3 phen was added with continuous stirring for
30min until a homogenous matrix was formed.

The solution was finally casted in a 60 × 15mm petri dish
and kept at 25◦C until the solution was completely dry. The thin
film thickness was 0.1mm, and its width and height were 8.5 and
25mm, respectively.
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Recommended Procedure

Standard solutions of different concentrations of tPSA were
accurately prepared in water. A constant definite sized Eu (TTA)
3 Phen/PMMA film was sunk in each solution sequentially in the
spectrofluorometer cell carefully to avoid its fracture. The film
was rinsed with water after each measurement.

The luminescence intensity of the solutions was measured in
a quartz cell of 1 cm thickness of the spectrofluorometer, at λex

= 395 nm, and the calibration graph was fitted via plotting the
values of (F0/F – 1) at λem = 614 nm vs. tPSA concentration.

Determination of tPSA
Standard Method for tPSA

Assay Principle
The principle procedure of the assay was reported previously, for
which the PSA test was a two-site immunoenzymatic similar to a
sandwich assay conducted by Kuriyama (Kuriyama et al., 1980).

In the one reaction flask, a serum sample was added
to two anti-PSA monoclonal solutions, one conjugated with
alkaline phosphate and the second one was used as a coat for
paramagnetic nanoparticles.

A linkage between serum PSA and its anti monoclone were
fixed on the solid phase together along with other interactions
between the specific antigenic sites of PSA with the anti-PSA
monoclone conjugate.

Magnetic separation of the solid phase from unbound
materials occurred by washing. A chemiluminescent substrate,
Lumi Phos—530, was dripped in the same flask leading to
the generation of light that could be measured using a simple
luminometer. The relationship between PSA concentrations in
the sample and light generation was found to be proportional
and a multi-point calibration curve was used for calculating the
analyte concentrations.

Assay Protocol
All prepared reagents were mixed thoroughly without foaming
before use. All measurements were performed in duplicate.
Quantities of 25.0 µL of standards, samples, or controls were
placed inside each well for a 5min incubation period in a
temperature range between 18 and 25◦C. Then, 100.0 µL PSA
was placed in each well-separately and merged by stirring the
plates (10 s), before incubation at room temperature for 1 h (18–
25◦C). A quantity of 100.0 µL of solution of the TMB-substrate
was added to all the wells before incubation for 20min at 18–
25◦C. A quantity of 100 µL/well stop solution was added (in the
same order as for the substrate solution). Absorbance (OD) was
obtained at 450 nm (at 630 nm for the blank).

Proposed Method for tPSA
For measuring the tPSA concentrations in samples of serum, the
film of the optical sensor was inserted in the quartz cell of the
fluorimeter then a volume of 200 µL of each was added and
diluted with 1.5mL distilled water. The intensity of the emission
for the sensor was recorded at 614 nm before and after the serum
was added.

DISCUSSION AND RESULTS

The Absorption and Emission Spectra
The thin film of the Eu (TTA)3 phen /PMMA matrix in distilled
water exhibited two absorption bands at 280 and 395 nm owing
to π-π∗ transitions of the organic moieties; 1, 10-phenanthroline
and 2-thenoyltrifluoroacetone (Rajamouli et al., 2017a).

While upon excitation at 395 nm, the optical film exhibited
six emission bands at 580, 590, 614, 650, 696, and 705 nm. These
emission bands were due to excited Eu3+ and were characteristic
to the transitions from 5D0 to 7F0, 7F1, 7F2, 7F3, and 7F4,
respectively. The transfer of energy from the antenna to Eu3+

results in the red emission of the Eu complex in which TTA
acted as a β-diketone ligand with a high absorption coefficient
bound to the metal ion, while the phen ligand had an agonist
shielding effect, minimized the non-radioactive rate of decay,
and significantly enhanced the complex luminescence intensity
(Lunstroot et al., 2010). The sensitivity of the optical sensor
toward the tPSA depends on the ratio between the two emission
bands at 590 nm (magnetic-dipole), where the 5D0 → 7F1
transition is not affected by the coordinate environment, and
614 nm (electric dipole), in which the transition 5D0 → 7F2
is the most intense peak, suggesting that Eu (III) occupies
an inversion centered site. Any variation in the surrounding
chemical environment of the sensor affects the electric dipole
band (Hamed et al., 2009) of the Eu (III).

The excitation of the Eu-complex embedded in PMMA was
obtained via the population of the ligands to their singlet states
followed by consequent decay through the intersystem crossing
(ISC) to the triplet state. The triplet state ultimately decays via
a Dexter-type transfer if an antenna is found in the bonding
distance field to lanthanide ion within 10 Å or less (Heine and
Müller-Buschbaum, 2013). The overlap between energy levels of
the antenna triplet state and the Eu(III) resonance level is an
efficient triplet >5,000 cm−1 (Latva et al., 1997), while the most
favorable difference in energy between an antenna triplet state
and the Eu(III) resonance level promotes the activation of the
ligand-to-metal ET route (Rajamouli et al., 2017b).

In the light of the above illustration, it may be concluded
that PMMA exhibits transparent, flexible, and excellent optical
properties. Hence, it could be a good host to the Eu-complex
to enhance the luminescence intensity of the complex due to
increasing disorder in the local environment by the surrounding
polymer that decreases the symmetry of the environment around
Eu ions. However, the binding of the Eu-complex to the
polymer via branched groups, such as C = O and C-O, also
leads to the enhanced fluorescence intensity of the Eu-complex
(Zhao et al., 2006).

Surface Characterization of Eu-Complex
Embedded in PMMA
The XRD pattern for Eu (TTA)3 phen/PMMA film showed sharp
diffraction peaks at 2⊖ = 15◦, 20.6◦, 21.9◦, 26.6◦, and 30.6◦

showing the formation of the crystalline structure of Eu (TTA)3
phen. The maximum sharp peak intensity at 45◦ associated with
the polymer indicates that crystallinity has its maximum degree
owing to the high degree of atom ordering in the polymer blends.
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FIGURE 1 | Structure of Eu (TTA)3 phen.

The results suggest that the fixed crystal structure and chemical
bonds were formed between the Eu-complex and the polymer
matrix (Attia et al., 2012d).

While the SEM image of the as-synthesized thin film assured
that the microcrystals of Eu (TTA)3 phen in the PMMA polymer
matrix were homogenously mixed with a spherical shape, a more
disordered environment, and less uniformity around Eu (III) ions
of the surrounding polymer.

A demonstration of the elemental analysis of Eu (TTA)3
phen/PMMA thin film, which contains Eu, F, O, and C elements,
due to TTA and phen, confirmed that the polymer blend and Eu-
complex were synthesized successfully (Dandekar et al., 2015).

Analytical Parameters
The emission spectra of Eu (TTA)3 phen/PMMA thin film
in organic solvents of different polarity was examined. In an
aqueous solution, the sensor displayed a high red emission
intensity despite the low concentration of complexes in the
matrix. The enhanced emission of Eu ions is attributed to
increasing the efficiency of the ions upon excitation due to the
increasing intensity of the ligandπ-π∗ transitions, which leads to
the photoluminescence of Eu resulting from radiative transition
from the 5D0 and 5D1 levels (Watson et al., 1975). An additional
reason for increasing emission intensity in water is possibly
the stabilization of electrons in the 5D0 excited state of Eu by
increasing the lifetime of electrons τ ∗ = 500 µs in the excited
state (Petushkov et al., 2006). Water deactivates the PL of the
Eu-complex in sol gel and doping in PEG polymer techniques,
as a result of the interaction with the high-frequency stretching
vibrations of the hydroxyl groups (νOH) that are related to the
incomplete nine-coordination number of the central Eu3+ ion.
However, in the PMMA polymer, water molecules are prohibited
from Eu ions. The water molecules in the sol gel and PEG
polymer techniques induce a blue shift in the fluorescence
intensity of the Eu-complex due to the reduction of Eu3+ to Eu2+

in a water environment (Ugale et al., 2019).
Figure 2A demonstrates the effect of PSA concentration levels

on the luminescence power of the Eu (TTA)3 phen/PMMA
matrix thin film under optimal experimental conditions. The
luminescence intensity of the Eu (TTA)3 phen/ PMMA thin film
was quenched by different concentrations of PSA (up to 31.5
ng mL−1). PSA is regarded as a quencher that interacts with
the excited state of the Eu-complex by weak coupling (R = 2.87

FIGURE 2 | (A) Luminescence spectra of Eu (TTA)3 phen/PMMA thin film

using different dilutions of PSA, at λex = 395 nm, in water. (B) PSA quenching

mechanism.

A◦), resulting in electron transfer from 5D0 to PSA by a collision
mechanism, leading to the dissipation of the excitation energy of
the optical sensor with less fluorescence emissions (Figure 2B).

The method selectivity and validity was investigated by
studying the effect of possible interfering substances on the
luminescence spectra of Eu (TTA)3 phen/ PMMA optical film
after the addition of PSA (31 ng mL−1). The interfering
substances included (2.0 × 10−3mol L−1) for both potassium
and sodium chloride (0.06 g L−1), for both urea and triglycerides
(0.08 g L−1), for glucose and uric acid (0.01 g L−1), total protein,
and (0.7 g L−1) albumin. The influence of CEA, CA 15-3, and
CA 19-9 was also studied in concentrations equivalent to (130U
mL−1) each. All of the results obtained implied insignificant
influence on the sensor film luminescence intensity (Attia et al.,
2006; 2012a; 2012b; 2012c; 2018; Elabd and Attia, 2016).
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Analytical Performance
The proposed method of validation was assessed through
determining the dynamic linear range, limit of detection (LOD),
limit of quantification (LOQ), recovery, and precision under
the improved experimental conditions (Tables 1, 2). The Stern–
Völmer (SV) plot was applied for correlating the luminescence
acuity of the sensor and PSA concentration in accordance with
the relation; F0/F = 1–Ksv [Q] (Attia et al., 2014; 2011; 2012d;
2015; Attia and Al-Radadi, 2016a,b; 2017; Elabd and Attia, 2015;
Essawy and Attia, 2013; Stern et al., 1919; Zhao et al., 2006;
Dandekar et al., 2018), where F0 and F are the intensities of sensor
luminescence in PSA absence and presence, respectively.While Q
is the PSA concentration, and Ksv is the SV constant. A typical SV
plot showed a linearity range within a concentration of (0.1–31.5
ng mL−1) with 0.996 as the correlation coefficient (Figure 3). SV
constant is the plot slope and C0 = 1/Ksv = 16.7 ng mL−1. The
critical radius (R0) was found to be 7.35/C−1/3

0 = 2.87 A.

TABLE 1 | Regression parameters of the proposed luminescent method.

Parameter Values

λem nm 614

Linearity (ng mL−1 ) 0.001–31.5

LOD (ng mL−1) 0.0469

LOQ (ng mL−1 ) 0.142

Intercept (a) 0.02882

Slope (b) 0.05968

Standard deviation 0.00084

Regression coefficient (r) 0.996

The LOD and LOQ values were calculated and found to
equal 0.047 and 0.142 ng ml−1 under established conditions,
respectively. The LOD and dynamic linear range of the
presented method were analog compared to the previously
reported method (Wang et al., 2018). Evaluation of the method
accuracy and precision (repeatability and inter-day precision)
was accomplished via repeating all the assays in triplicate and all
the results of the study are tabulated in Table 2. The values of
relative standard deviation percentage (RSD %) were calculated
to be≤0.006–0.097% and≤0.006–0.088% for intra and inter-day
precision, respectively.

FIGURE 3 | Stern–Völmer plot.

TABLE 2 | Accuracy and precision (intra and inter-day) evaluation.

Samples Standard

method

average ng

mL −1

Intra-day accuracy and

precision (n = 3)

Inter-day accuracy and

precision (n = 3)

Average recovered

ng mL −1a
± CL

RE% RSD% Average recovered

ng mL −1
± CL

RE % RSD%

Patient (1) 8.3 8.3 ± 0.001 −0.2 0.01 8.2 ± 0.001 1.3 0.01

Patient (2) 3.5 3.5 ± 0.002 −0.5 0.02 3.5 ± 0.002 −0.2 0.02

Patient (3) 9.1 9.2 ± 0.001 −0.6 0.01 9.2 ± 0.001 −1.1 0.01

Patient (4) 1.2 1.2 ± 0.003 0.0 0.07 1.3 ± 0.003 −8.3 0.06

Patient (5) 13.7 13.7 ± 0.001 0.4 0.01 13.5 ± 0.001 1.4 0.01

Patient (6) 2.4 2.4 ± 0.002 0.8 0.03 2.4 ± 0.002 0.0 0.03

Patient (7) 6.4 6.4 ± 0.001 0.2 0.01 6.3 ± 0.001 0.7 0.01

Patient (8) 9.8 9.8 ± 0.001 0.10 0.01 9.8 ± 0.001 0.0 0.01

Patient (9) 1.3 1.3 ± 0.003 −0.8 0.06 1.3 ± 0.003 1.5 0.07

Patient (10) 0.9 0.9 ± 0.004 3.3 0.10 1.0 ± 0.004 −5.6 0.09

Patient (11) 2.7 2.7 ± 0.002 −0.7 0.03 2.6 ± 0.002 3.3 0.03

CL, Confidence limits; S, standard deviation; n, number of assay.

The tabulated value of t is 4.303 at CL 95%.
a: average value = (X1+X2+X3)/3.
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Percentage relative error (RE %) of the recovered mean
concentrations and the actual PSA concentrations was measured
and the results supported the high precision method. While the
values of (RE %) for inter and intra-day precision were calculated
to be ≤-8.33–3.33 and ≤-0.77–3.33, respectively, demonstrating
that themethod was highly accurate. The bias percentage was also
calculated using the following equation:

[((Recovered Concentration—actual concentration) ×

100)/actual concentrations]
and all the obtained results are registered in Table 2.

Analytical Applications
For testing the applicability of the proposed luminescent method,
we measured PSA concentration for 11 serum samples of
patients. The results found are summarized in Table 2. It is
clear that the observed data demonstrate a coincidence between
the average value of PSA concentrations for patients obtained
by the proposed method (13.6 ± 0.001 ng mL−1) and the
standardmethod (13.7 ngmL−1), highlighting excellent accuracy
and precision.

The adopted method is simple, time saving, and cost
effective in comparison with previously reported standard
chemiluminescence methods, where they usually involve time
consuming and tedious manipulation steps, special expertise
in the field, and sophisticated expensive instruments. Hence,
the development of facile methods as an alternative for PSA
estimation but yet preserving the sensitivity and specificity is
of great significance. In general, the luminescent photo probe
lanthanide complexes offer advantages of superior durability
and fixed signal response that may extend for 24 months.
Photo probes also have a constant prerogative stability over the
measurements and low values of SD are obtained due to the
minimization of error sources in the assays.

The limitation of the optical sensor doped in PMMA is the
solubility of PMMA in nearly all the solvents except water, thus
all measurements must be carried out in water at pH 7.2.

CONCLUSION

The fabricated optical sensor thin film Eu (TTA)3 phen/PMMA
matrix offers a simple and fast approach for accurate and precise
determination of tPSA as an indicator for the diagnosis of
prostate cancer in the early stage of the disease. The method is

specific, sensitive, and cover a wide range of linearity achieved
by measuring the thin film optical sensor fluorescence intensity
under optimal conditions.
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