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ABSTRACT: Analysis of exhaled breath offers a noninvasive approach to understanding the metabolic
state of the body. This study focuses on the efficacy of an innovative Electrochemical Hand-held
Breathalyzer COVID-19 Sensing Technology (E.Co.Tech) for predicting COVID-19 infection,
specifically in populations of never or former light smokers. The electrochemical nose technology
used in this device aims to discriminate changes in exhaled nitric oxide levels, which are associated with
COVID-19-linked respiratory inflammation. The methodology combines the device with a machine
learning-based algorithm trained on a diverse data set of breath profiles from both infected and
noninfected individuals. A cohort of 46 participants, consisting of never or former light smokers, was
recruited. Each participant was tested using the E.Co.Tech prototype device and an iHealth COVID-19
antigen rapid test. The performance of the device was assessed by calculating sensitivity, specificity,
positive predictive value, and negative predictive value (NPV). The results demonstrated high specificity
(91.11%) and NPV (97.62%) for the device in this demographic group. This case study underscores the
potential of E.Co.Tech as a valuable tool for point-of-care COVID-19 diagnosis, particularly in
populations with unique smoking histories. The technology’s high sensitivity and specificity, along with its rapid results, make it a
promising candidate for deployment in resource-limited settings and situations where timely detection is crucial for effective public
health management. Further large-scale clinical trials and real-world validations are necessary to establish the device’s utility across
diverse population groups.
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■ INTRODUCTION
The SARS-CoV-2 virus, commonly known as COVID-19,
poses a worldwide threat, impacting millions of individuals and
persisting as an ongoing concern. Its immediate effects have
been evident over the past two years. Vaccination efforts have
reached nearly 13 billion individuals worldwide in the fight
against the pandemic.1 Despite these measures, new cases
continue to emerge due to the evolving nature of the virus
through mutations. A lingering condition known as long
COVID-19, or postacute sequelae of COVID-19, involves a
range of severe symptoms that follow infection with the SARS-
CoV-2 virus.2

Long COVID-19 affects individuals of all age groups and
various levels of disease severity, with the highest diagnosis
rates occurring between 36 and 50 years old. The majority of
long COVID-19 cases are observed in patients who did not
require hospitalization for their initial mild acute illness.3 This
is significant as these nonhospitalized cases constitute the
majority of overall COVID-19 cases. Of the entire population
impacted by COVID-19, approximately 20% have been
hospitalized, underscoring the need to comprehend the long-
term consequences for survivors.4 Exposure to cigarette smoke
accelerates the decline of forced expiratory volume in 1 s
(FEV1), ultimately resulting in a blockage of airflow (FEV1/
FVC < 0.7).5 This obstruction in airflow and the subsequent

reduction in flow rates can be attributed to structural
abnormalities such as emphysema. These changes can occur
independently or in combination with inflammatory cells and
mucus, leading to the narrowing of small airways.6,7 Even if
individuals quit smoking, the accelerated rate of decline in lung
function is not entirely reversible. This implies that individuals
with even minimal smoking histories are at risk of developing
symptomatic respiratory diseases in the long term. Impairment
in the capacity for pulmonary diffusion may manifest before a
reduction in FEV1 and is associated with more severe
symptoms and reduced exercise tolerance. However, FEV1
remains the most commonly used physiological measurement
for diagnosing and monitoring such diseases. Unfortunately,
quantitative assessments of diseases affecting small airways and
emphysema are not routinely performed.8

There is insufficient recognition of the need for a
comprehensive evaluation of various physiological measure-
ments beyond FEV1 when considering the impact of smoking
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exposure. Inhaling cigarette smoke has been demonstrated to
bring about immediate changes in the lungs, affecting factors
such as airway resistance, coughing, and airway irritation.9 This
suggests that even in the early stages of smoking, there could
be effects on respiratory function. In June 2020, the World
Health Organization issued a report cautioning that smoking
habits might have an unfavorable impact on the prognosis of
COVID-19. Drawing from substantial evidence, the report
emphasized the detrimental influence of tobacco use on lung
health and its causal link to both viral and bacterial respiratory
infections.10 In humans, the interaction between the spike
protein and angiotensin-converting enzyme 2 (ACE2) forms a
binding site for the SARS-CoV-2 spike protein. Notably, ACE2
expression was found to be elevated in the small airway
epithelia of smokers, partially accounting for the heightened
risk of severe COVID-19 among this subgroup. However,
studies conducted in various countries, both European and
non-European, such as China, the United States, Mexico,
Israel, France, the United Kingdom, and Italy, have revealed an
unexpectedly low prevalence of active smokers among
hospitalized COVID-19 patients when compared to the
general population. Additionally, an ecological study involving
38 European countries and some nonhospitalized populations
unveiled a negative correlation between the current prevalence
of smoking and the occurrence of COVID-19 at the population
level. Potential biological mechanisms have been suggested to
explain this counterintuitive underrepresentation of smokers
among COVID-19 patients, further highlighting the existence
of the “smoker’s paradox” phenomenon.11,12

Exhaled breath has emerged as a valuable tool for
noninvasive disease diagnosis through a field of study
commonly referred to as “breathomics”.13 Exhaled breath is
composed of both a gaseous and a liquid phase. The gaseous
phase contains elements like oxygen, nitrogen, carbon dioxide,
nitric oxide (NO), and volatile organic compounds (VOCs)
present in concentrations ranging from parts per million to
parts per billion.14 These VOCs originate from cellular
metabolic activities within the body.15 Within exhaled breath,
there exist thousands of VOCs that offer insights into various
diseases, including lung cancer, chronic kidney disease, asthma,

chronic obstructive pulmonary disease, and even the highly
lethal SARS-CoV-2 virus16,17,.18−20 The field of metabolomics,
often referred to as breathomics, holds substantial potential for
providing noninvasive diagnostic tools for a range of diseases.
Violi et al. conducted a study that supported the hypothesis of
NOX2 overactivation in COVID-19 patients, showing a more
than 40% increase compared to control subjects.21 The
research indicates that COVID-19 patients, especially those
admitted to the intensive care unit, display heightened NOX2
activation compared to control subjects. Another study
confirmed that the activation of NOX genes is heightened by
the release of NO from human endothelial cells.22 Currently,
there is only one breath analyzer: FeNO by NIOX, available in
the market, which detects fractional NO using electrochemical
method.23 Aside from this, there are only few prototypes
reported in literature suggests the detection of NO.24−26 These
products are observed to have several other issues including
high cost and sophisticated, restricted field use. Advancements
in analytical platforms have facilitated the increased use of
VOCs as markers to indicate disease exposure. This has
consequently raised the potential for developing noninvasive
biomarker-based breath profiling techniques for both acute and
chronic disease detection. Researchers are actively engaged in
creating markers that can aid in the early detection of diseases,
thereby contributing to timely intervention and treatment.27,28

This work focuses on expanding point-of-care diagnostics via
breathomics. Here, we build off of an innovative Electro-
chemical Breathomics Sensing Technology29 (E.Co.Tech) for
its efficacy in predicting COVID-19 infection in this specific
demographic group. With the work of E.Co.Tech, they define a
point-of-care breathalyzer that leverages electrochemical
principles to detect NO in exhaled breath samples, a
characteristic signature associated with various viral infections
including COVID-19. The methodology employed in this
research combines the device with a machine learning-based
algorithm trained on a diverse data set of breath profiles from
both infected and noninfected individuals. We advance the
work of E.Co.Tech by showing how a similar technology can
be designed such that its performance is not dissuaded by
compounds present in patients who have a large smoking

Figure 1. Schematic representation of the working scheme for the breath analyzer platform.
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history. We hypothesize that a device based on the E.Co.Tech
technology is robust enough to accurately detect high levels of
NO even when confounding factors are present, such as those
found in the breath of heavy smokers. As a result, a cohort of
46 patients containing both nonsmokers and former light
smokers was recruited. Participants were tested using both the
E.Co.Tech based prototype device and an iHealth COVID-19
antigen rapid test. The ensuing data sets were rigorously
subjected to statistical analysis, with the latter acting as the
control. Sensitivity, specificity, positive predictive value, and
negative predictive value (NPV) were calculated to assess the
performance of the device. Results demonstrate a high
correlation between the device response and the underlying
condition. This case study underscores the potential and
robustness of the device as a valuable tool in the point-of-care
diagnosis of COVID-19, particularly in demonstrating the
ability to nullify smoking as a convoluting factor in
electrochemical signals.

■ RESULTS AND DISCUSSION
A use case scenario is illustrated as a schematic diagram in
Figure 1. To evaluate our hypotheses, we developed a portable
NO sensing prototype device in the form of a breath analyzer.
The device contains an electrochemical sensor and two
microcontrollers that work collaboratively�one acting as a

primary controller to coordinate driver functions of the device
and the other as a secondary controller over a potentiostat that
performs analysis on stimuli received by the electrochemical
sensor. In this work, those stimuli are VOCs (Figure 1). The
electrochemical sensor contains an interdigitated electrode
(IDE) spin-coated with room temperature ionic liquid (RTIL)
measuring EMIM[BF4] as the target analyte. We document
our electrochemical response in nanoamperes (nA) but
perform measurement resolution in picoamperes (pA). A
picoampere is an extremely small magnitude in electrical
current. Those familiar with electrical design may observe that
this finite of a measurement could potentially be mistaken as
electromagnetic noise. Solving this came down to careful
electrical engineering. With the device we present here, we
have taken the necessary engineering discipline to electro-
magnetically shield our sensors, potentiostat, and overall
electronic design to ensure that the signal we do measure
cannot be mistaken as noise. A user’s breath is transferred to
the sensor through a single-use disposable mouthpiece that is
inserted at the top of the breath analyzer. In many
electrochemical analyses, excess water can severely convolute
the signal. As a result, the mouthpiece contains desiccant for
the removal of humidity and multiple dual-layer synthetic fiber
filters for filtration of the air as it enters the analysis chamber of
the device. The comprehensive test procedure outlined below

Figure 2. Diagram of the test procedure is shown above, indicating how electrochemical and computational processes occur throughout to obtain a
result for each subject.
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(Figure 2) illustrates the seamless integration of electro-
chemical and computational processes at every stage,
culminating in the acquisition of results for each subject.
From meticulous sample preparation and rigorous electro-
chemical testing to the sophisticated application of computa-
tional modeling, this methodology synergistically combines
experimental data with predictive simulations.
The detailed testing procedure is outlined as follows. The

user initiates a breath test by pressing a button on the device.
Following this initiation, the device instructs the user to wait as
it assesses baseline values for the target analyte in the current
ambient environment. This assessment is conducted through a
chronoamperometric sequence managed by the potentiostat,
referred to as the “baseline sequence”, with the results stored
locally for future reference. Once the baseline sequence
concludes, the user is prompted to exhale into the device
through the mouthpiece. Simultaneously, the device begins an
identical chronoamperometry sequence, known as the
“stimulus sequence”. This sequence evaluates the values of
the target analyte as the patient breathes. The only difference
between the baseline and stimulus sequences is that the latter
occurs as breath passes over the sensor, while the former is
only measuring ambient air. Although a six-second breathing
window is allocated for the stimulus sequence, a mere 3 s are
required to obtain a sufficient result.
Following the stimulus sequence, embedded algorithms

within the device extract the 6 s diffusion current value and
compare it to the results obtained from the baseline sequence.
The difference between the baseline and stimulus sequence is
then saved and categorized as either positive (indicating strong
evidence of NO detection) or negative (suggesting insufficient
evidence of NO to be considered significant). At this stage, the
assessment is deemed complete, with an optional step allowing
for the wireless transmission of assessment results to a database
for storage or to a mobile application for convenient
visualization.
During both the baseline and stimulus sequences, several

other sensors perform local measurements of the environment
around the sensor IDE. Namely, these additional sensors assess
temperature, pressure, and humidity of both the ambient
environment and the observed breath. Environmental factors
can heavily bias the response of the final test readings as the
RTIL-based electrochemical sensors are most accurate within
specific temperature, humidity, and flow pressure windows.
Therefore, the electrochemical response must be corrected to
compensate for this bias. To do so, we leverage the following
equations for temperature and relative humidity

x x(0.148082 ) 25.478439 e

25.478439

k
temp c raw

(2.694800 e )9
rh= × +_

(1)

x x(0.148082 ) 0.999258 e

0.999258

k
rh c temp c

( 2.233200 e )9
temp= ×

+
_ _

(2)

where xraw denotes the raw electrochemical signal of the breath
uncorrected for any variables, krh denotes the relative humidity
of the breath prior to correction, ktemp denotes the temperature
of the breath prior to correction, xtemp c_ defines the
electrochemical signal after temperature correction, and xrh c_
defines the electrochemical signal after relative humidity
correction. These equations are experimentally derived using
regression techniques over a battery of tests performed in the

laboratory under stepped pressure, temperature, and humidity
levels. The raw electrochemical signal is first corrected for
temperature in eq 1 and then that result is used as input to eq 2
to correct for relative humidity. Examples of regression fits to
these equations can be found in the Supporting Information
(Figures S3 and S4). Pressure had much less influence on the
electrochemical signal and therefore did not require a
correction equation. While these equations help us establish
a common frame of reference, our test data aligns with other
literature in supporting that electrochemical response from
environmental fluctuations are inherently nonlinear, and that
the above correction equations may not apply if outlying
environmental conditions are encountered.30,31 Therefore, we
designed the mouthpiece to instantiate a series of experimental
controls to ensure we captured consistent and reliable data
throughout our study.
Desiccant acts as a normalizing mechanism for pressure,

humidity, and temperature. Humidity is removed from the
breath as it passes through the desiccant. For the results in
these experiments, we selected the sSORB AW13B white silica
gel beads from Interra Global. As a reaction from the humidity
extraction, the desiccant heats up. The desiccant bead size was
carefully selected to ensure consistency in airflow turbulence as
the breath passes through the mouthpiece, which regulates
pressure as a result. Experimental results showed desiccant
bead sizes of 1−3 mm gave optimal throughput of airflow
while slowing the air down enough to a narrow enough
pressure window. The mass of desiccant was also optimized to
320 g to ensure that, upon exit of the mouthpiece, the breath’s
relative humidity was between 10 and 20%, its temperature fell
between 32 and 38 °C, and its exit pressure fell within a 6−7
mPA regardless of the breath’s input condition. As a final form
of control, the analysis chamber was constructed to ensure
airflow hit the sensor at an angle between 12 and 20°. While at
complete rest, the average adult male undergoes an exchange
of approximately 0.5 L (500, 400 mL for females) of air per
breath, known as tidal volume. This exchange occurs at a
frequency of 12 breaths per minute, leading to a minute
ventilation rate of approximately 6 L of air per minute.32

Even after correction, the chronoamperometric signals for
each patient are very noisy. Filtering techniques like Kalman
filters, exponential regression, and inverse regression were
applied to each sample automatically by the software after
acquisition to normalize the signal. In addition, thresholds for
COVID-19 positive and negative signals needed to be
established in order to determine how to classify each patient.
To establish these thresholds, a machine learning algorithm
called K-means clustering was leveraged over data acquired in
the laboratory. A benchtop testing apparatus linked to NO and
compressed try air lines at the university laboratory enabled us
to acquire several hundred synthetic breath samples that
allowed us to establish a data set of 300 in size. This data set
was then used to train the clustering algorithm to cluster each
data point into one of three groups: evidence of COVID-19
(positive), not enough evidence of COVID-19 found
(negative), or not enough information to make a conclusion
(unknown). These thresholds are 23 dimensions in size so this
clustering occurs in high-dimensional space. The 23
dimensions for each sample size include 12 regression
parameters; 2 parameters each for pressure, temperature, and
humidity; 1 time parameter; and 4 electrochemistry parame-
ters. Note that none of these parameters are specific to
smokers which highlights the invariance of our statistical
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methodology to smoker data. The high-dimensional clusters
enable a single 1-dimensional scaler to be returned as an
answer of either “positive” or “negative”. It should be noted
that, although “unknown” was a possible clustering label in our
methodology above, we received tests that fell into this cluster
neither during our benchtop analysis nor during human subject
testing.
The data obtained for the breath sample collected from 46

human subjects can be seen in Figure 3. The x-axis represents

the total number of subjects and the y-axis represents the final
corrected changed in current between the baseline and
stimulus sequences. We emphasize that the y-axis is the
corrected change in current because the change in the current
itself does not present enough information to facilitate an
accurate indication of the respiratory condition; it must be
weighted according to environmental factors discussed above
and the rate of diffusion.
A positive change between the baseline and stimulus

sequences provides strong evidence to support a COVID-19
positive subject while a negative ratio provides strong evidence
to support the absence of the disease. A positive signal is the

current value is greater than the threshold value set, therefore
has a positive change in current. However, in our study, we
received 4 false positive as the subjects were tested using the
iHealth rapid test. These results can be correlated to the
presence of underling respiratory condition which can lead to
the release of higher levels of NO in breath. Conversely, a
negative change between the baseline and stimulus sequences
that the total response is below the threshold set for the
sensing NO.
In this study, 46 human subjects were tested: 19 nonsmokers

and 27 smokers. The signal obtained is first depicted as a raw
current value normalized against humidity, temperature, and
pressure of the exhaled breath. This normalization provides for
a common frame of reference to compare each test against.
This proportion is more succinctly demonstrated by Figure S1,
indicating the maximum absolute value of the measured
current (nA) obtained during the breathing cycle for each
subject. From these plots, one can see that the statistical
difference between smokers and nonsmokers is not signifi-
cantly different (p > 0.05).
Furthermore, we conducted principal component analysis

(PCA) over 46 subjects to better assess the results. As
mentioned above, each sample is 23 dimensions in size;
humans cannot easily visualize greater than 3 dimensions. PCA
is a dimensionality reduction technique commonly used within
statistics and machine learning for visualizing multidimensional
data sets.33,34 Depending on the field of use, it is also known as
singular value decomposition and the discrete Karhunen−
Loev̀e transform.35 Other dimensionality reduction techniques
such as t-distributed stochastic neighbor embedding (tSNE)
was also investigated. However, tSNE attempts to preserve
local relationships among data set features as a function of their
distance in embedding space while PCA emphasizes the
preservation of global structure as a function of covariances
between features.36 For this application, there is a need to
ensure that global consensus across all data points is
maintained, which is why PCA takes preference here. tSNE
also requires training and hyperparameter tuning that may not
generalize well in all scenarios. The test for each subject is

Figure 3. Sensor output indicating the change in electrical current as
recorded by the breath analyzer device for 46 subjects. The response
is plotted as a ratio metric signal wherein the signal is compared to the
baseline.

Figure 4. Dimensionality reduction to two and three dimensions performed via PCA is shown here. PCA works by breaking down the highest
contributing components to the variance within the data, so the top 2 and 3 contributors (out of the full 23 parameters) to variance are shown here.
They are dimensionless parameters. We note that, while there is no statistical difference between the results of smokers and nonsmokers for this
study, their PCA results show that breath responses between the two categories are subtly different.
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saved as a 23-dimensional vector, so dimensionality reduction
through PCA significantly helps in the interpretation of
statistical significance between the smoker and nonsmoker
tests. Figure 4 shows these PCA results for both two and three
dimensions. With all dimensionality reduction techniques, we
seek to gain interpretation at the cost of some information loss
from compressing dimensions. We can see this method in
effect as we transition from two-to three-dimensional PCA in
Figure 4. We see general uniform randomness between data
points presented by the PCA plots in Figure 4. This is desired
with PCA because it indicates that breath responses between
smokers and nonsmokers are uncorrelated, providing more
evidence to support our hypothesis that a patient’s pulmonary
history does not induce significant bias on our device’s
performance. However, in the transition from two dimensions
to three dimensions, one may notice that smokers and
nonsmokers seem to become easily separable. As we scale
higher, we approach the true dimensionality with which each
patient test was measured so we gain additional information.
While the final results between smokers and nonsmokers

showed no statistical difference, PCA reveals that the
differences that do appear are the rates at which those results
converge. In other words, the electrical signal for nonsmokers
converged to the steady-state response faster than that for
smokers supported by a p-value less than 0.05 as conducted via
the Wilcoxon Signed Rank test. This supports the power and
sensitivity of our electrochemical sensors in that the true
stimulus can be detected across varying levels of noise, but the
parameters with which that detection occurs allows us to use
this noise to inform us more about the category of stimulus.
Finally, we calculated statistical performance from the

confusion matrix of the data in Table 1. We find a NPV of

97.6% and a specificity of 91.1%, with an overall accuracy of
89.1. In our study, we received 4 false positives and 1 false
negative. Patients 5, 8, 11, and 21 were classified as positive
when they were confirmed as negative by the control, while
patient 2 was classified as negative when they were confirmed
as positive by the control. We show the change in
electrochemical response for each patient’s breath against a
positive response for reference in Figure S2. Our electro-
chemical sensors were trained to establish a positive threshold
according to what the control indicated as a “positive
response.” In this manner, the control method of testing was
considered as ground truth, and the electrochemical threshold
for a positive response was constructed to attempt to maintain
consistency with ground truth. Here, each bar in the chart
measures nanoamperes (nA) and represents the electro-
chemical measurement corrected for ambient temperature,
relative humidity, and pressure. Our hypothesis that the
E.Co.Tech based device is robust to potential chemical
interferents when screening for NO is supported by the
above metrics as a result. We have summarized the materials/
methods/techniques that have been used for COVID-19
sensing along with our work (Table S1).

■ CONCLUSION
Electrochemistry has undiscovered potential in healthcare
applications. We set out to develop a method that confirms our
hypothesis that NO levels are significantly higher in the
exhaled breath of COVID-19 positive patients, and that those
levels are invariant to various respiratory conditions. The data
acquired supports our hypothesis and the statistical method-
ology provides evidence that it appropriately compensates for
the various factors influencing a breathomics result. Our work
here gives further support for electrochemical methods to find
biomarkers indicative of different respiratory conditions while
remaining largely unbiased by other variables that may
influence comparative methods in other works. In any clinical
experiment, a patient’s medical history can present many
unknown confounding factors, and especially with pulmonary
function experiments, a patient’s smoking history is commonly
known to be a differentiating factor in the results. With our
work here, we demonstrate a device that is robust to a patient’s
current and past pulmonary conditions which helps strengthen
the statistical power and overall confidence of electrochemistry
as a viable technology for point-of-care diagnostics. We
demonstrate our E.Co.Tech technology on a real device over
46 patients and present compelling evidence for the device’s
invariance to conditions such as asthma, latent tuberculosis,
and the flu when analyzing a patient’s fundamental respiratory
response via NO detection. In future work, we intend to
multiplex multiple sensors together to analyze several chemical
compounds simultaneously for an even more elaborate
respiratory analysis and aim to incorporate modern machine
learning practices to do so. We hope our work inspires similar
research in the field to emphasize the strong benefits of
electrochemistry in healthcare.

■ MATERIALS AND METHODS

Reagents and Materials
Ionic liquid such as 1-ethyl-3-methylimidazolium tetrafluoroborate
([EMIM]BF4) ≥99.0% (HPLC) was procured from MilliporeSigma.
Custom-designed IDEs were procured from PCB Way. For
electrochemical sensing application, we use an IDE design to develop
a planar capacitive sensor using RTIL as the transducer. An IDE offers
an advantage for gas sensing as it allows increased signal response due
to electric field confinement. It helps in capturing the change in
dielectric permittivity upon diffusion of the target gas. Moreover, gold
is appropriate as the electrode material since it is electrochemically
stable and possesses chemical inertness. Proper protective equipment
and all safety precautions were always followed while running
experiments with the toxic gas to avoid skin and eye contact or
accidental inhalation and digestion of the gas.

Participants and Data
Breath sampling was performed under written consent as part of an
ongoing observational study for “collection of breath samples for
determination of endogenously produced VOCs and other metabo-
lites for respiratory disease screening” regulated by the Institutional
Review Board at The University of Texas at Dallas (IRB 21-442). A
total of 46 subjects were recruited. Mainly 20 nonsmokers and 26
smokers were tested to study their breath profiles. Written informed
consent was obtained from all participants. The study design and
experimental protocols were also approved by the Institutional Review
Board at The University of Texas at Dallas (IRB) number 21-442.
Table 2 indicates which subjects had underlying conditions. We

report this to evaluate our technology’s robustness to potentially
interfering conditions. The goal of this study is to report the analytes
semiquantitatively in exhaled breath of test subjects. The rationale for
this study is to detect the analytes present in exhaled breath and

Table 1. Confusion Matrix for the 46 Observed Subjects

positive negative

true 0 41
false 4 1
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correlate their concentrations to the physiological state of the body.
We hypothesize that there is no statistically significant difference in
the electrical response between smokers and nonsmokers for this
study. This can help in the development of technology that can be
used as a noninvasive method for disease diagnosis using exhaled
breath. The identification and recruitment of participants were done
in an ethically and legally acceptable manner and were free of
coercion. It should be noted that only COVID-19-negative subjects
were recruited for the study. Before collecting the breath, we
conducted a rapid COVID19 antigen test using commercially
available test kits (iHealth COVID-19 antigen rapid test). This
method shall be denoted as the control for our experiments. Once the
test result was negative, the participant exhaled into the research
device, and the result was represented via the accompanying custom-
developed mobile application. The data obtained was deidentified and
used for device performance analysis only. All the methods and study
protocols on human subjects were carried out in accordance with the
IRB guidelines and regulations.

Low-Cost Power Portable Microelectronic Breath Analyzer
Our original hypothesis stipulates that RTIL-based electrochemical
sensors can detect a target biomarker via chronoamperometry and can
do so in such a way that it is largely unbiased by other confounding
factors. To validate this hypothesis, we began with a simple benchtop
setup with the large electrochemical processor and a varying
concentration of ambient air mixed with NO. However, in order to
make this setup as practical to a real healthcare setting as possible, we
developed a low-cost hand-held device with a custom circuit board
and the ability to measure a single analyte, which for this application
was NO. We also developed a simple iOS mobile application that
could blindly receive and secure data from the device via bluetooth
low-energy as each patient performed a test. The device itself
performed the computation of results, but the app allowed results to
be safely hidden from both the test administrator and the patient in
order to preserve the blindness of the study and prevent data loss.

■ ASSOCIATED CONTENT

Data Availability Statement

All data generated or analyzed during this study are included in
this published article [and its Supporting Information files].
*sı Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsmeasuresciau.4c00020.

Confusion matrix for the data obtained using the breath
analyzer device, final steady state values of the
electrochemical response from each subject, temperature
correction equation showing how temperature is
rescaled for humidity values on the range of 10−15%
(postdesiccant) and controlled for a 4.0 nA current,
relative humidity correction equation showing how
relative humidity is rescaled for temperature values on
the range of 30−35 °C and controlled for a 4.0 nA
current, table of comparison of different techniques or
methods with their application (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Shalini Prasad − Department of Biomedical Engineering,
University of Texas at Dallas, Richardson, Texas 75080,
United States; orcid.org/0000-0002-2404-3801;
Email: shalini.prasad@utdallas.edu

Authors
Ivneet Banga − Department of Biomedical Engineering,

University of Texas at Dallas, Richardson, Texas 75080,
United States

Kordel France − Department of Computer Science, University
of Texas at Dallas, Richardson, Texas 75080, United States

Anirban Paul − Department of Biomedical Engineering,
University of Texas at Dallas, Richardson, Texas 75080,
United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsmeasuresciau.4c00020

Author Contributions
§I.B. and K.F. share equal contributions. S.P., I.B., A.P., K.F.
conceived the theoretical framework of the detection scheme
and design of experiments. I.B., A.P. performed the sensor
functionalization used in the experiments. I.B. performed the
experiments. I.B., A.P., and K.F. analyzed the experimental data
and drafted the paper. CRediT: Ivneet Kaur Banga
conceptualization, data curation, formal analysis, methodology,
validation, visualization, writing-original draft, writing-review &
editing; Kordel Kade France data curation, formal analysis,
methodology, validation, visualization, writing-original draft,
writing-review & editing; Anirban Paul conceptualization,
formal analysis, methodology, writing-original draft, writing-
review & editing; Shalini Prasad conceptualization, data
curation, investigation, methodology, project administration,
resources, supervision, writing-original draft, writing-review &
editing.
Notes
The authors declare no competing financial interest.
Statistical analyses: All the data analysis and interpretations
were done using OriginPro and Python.
Ethics declarations: Dr. Shalini Prasad, Dr. Anirban Paul, Dr.
Ivneet Kaur Banga and Kordel France do not have any
competing interests.

■ REFERENCES
(1) Davis, H. E.; McCorkell, L.; Vogel, J. M.; Topol, E. J. Long
COVID: Major Findings, Mechanisms and Recommendations. Nat.
Rev. Microbiol. 2023, 21 (3), 133−146.
(2) Ballering, A. V.; van Zon, S. K. R.; olde Hartman, T. C.;
Rosmalen, J. G. M. Persistence of Somatic Symptoms after COVID-
19 in the Netherlands: An Observational Cohort Study. Lancet 2022,
400 (10350), 452−461.
(3) Bull-Otterson, L.; Baca, S.; Saydah, S. H.; Boehmer, T. K.; Adjei,
S.; Gray, S.; Harris, A. M. Post−COVID Conditions Among Adult
COVID-19 Survivors Aged 18−64 and ≥ 65 Years � United States,
March 2020−November 2021. Morb. Mortal. Wkly. Rep. 2022, 71,
713−717.
(4) Hartung, T. J.; Neumann, C.; Bahmer, T.; Chaplinskaya-Sobol,
I.; Endres, M.; Geritz, J.; Haeusler, K. G.; Heuschmann, P. U.;
Hildesheim, H.; Hinz, A.; Hopff, S.; Horn, A.; Krawczak, M.; Krist, L.;
Kudelka, J.; Lieb, W.; Maetzler, C.; Mehnert-Theuerkauf, A.;
Montellano, F. A.; Morbach, C.; Schmidt, S.; Schreiber, S.;
Steigerwald, F.; Störk, S.; Maetzler, W.; Finke, C. Fatigue and

Table 2. Those Subjects of Whom Underlying Conditions
Were Present

subject ID underlying condition smoker

000017 flu no
000019 asthma yes
000022 latent TB yes

ACS Measurement Science Au pubs.acs.org/measureau Article

https://doi.org/10.1021/acsmeasuresciau.4c00020
ACS Meas. Sci. Au 2024, 4, 496−503

502

https://pubs.acs.org/doi/suppl/10.1021/acsmeasuresciau.4c00020/suppl_file/tg4c00020_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsmeasuresciau.4c00020?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsmeasuresciau.4c00020/suppl_file/tg4c00020_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shalini+Prasad"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-2404-3801
mailto:shalini.prasad@utdallas.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ivneet+Banga"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kordel+France"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Anirban+Paul"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmeasuresciau.4c00020?ref=pdf
https://doi.org/10.1038/s41579-022-00846-2
https://doi.org/10.1038/s41579-022-00846-2
https://doi.org/10.1016/S0140-6736(22)01214-4
https://doi.org/10.1016/S0140-6736(22)01214-4
https://doi.org/10.15585/mmwr.mm7121e1
https://doi.org/10.15585/mmwr.mm7121e1
https://doi.org/10.15585/mmwr.mm7121e1
https://doi.org/10.1016/j.eclinm.2022.101651
pubs.acs.org/measureau?ref=pdf
https://doi.org/10.1021/acsmeasuresciau.4c00020?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Cognitive Impairment after COVID-19: A Prospective Multicentre
Study. eClinicalMedicine 2022, 53, 101651.
(5) Adatia, A.; Wahab, M.; Shahid, I.; Moinuddin, A.; Killian, K. J.;
Satia, I. Effects of Cigarette Smoke Exposure on Pulmonary
Physiology, Muscle Strength and Exercise Capacity in a Retrospective
Cohort with 30,000 Subjects. PLoS One 2021, 16 (6), No. e0250957.
(6) Maestrelli, P.; Saetta, M.; Mapp, C. E.; Fabbri, L. M. Remodeling
in Response to Infection and Injury. Airway Inflammation and
Hypersecretion of Mucus in Smoking Subjects with Chronic
Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2001,
164, S76−S80.
(7) Mullen, J. B.; Wright, J. L.; Wiggs, B. R.; Pare, P. D.; Hogg, J. C.
Structure of Central Airways in Current Smokers and Ex-Smokers
with and without Mucus Hypersecretion: Relationship to Lung
Function. Thorax 1987, 42 (11), 843−848.
(8) Isajevs, S.; Taivans, I.; Strazda, G.; Kopeika, U.; Bukovskis, M.;
Gordjusina, V.; Kratovska, A. Decreased FOXP3 Expression in Small
Airways of Smokers with COPD. Eur. Respir. J. 2009, 33 (1), 61−67.
(9) Tantisuwat, A.; Thaveeratitham, P. Effects of Smoking on Chest
Expansion, Lung Function, and Respiratory Muscle Strength of
Youths. J. Phys. Ther. Sci. 2014, 26 (2), 167−170.
(10) van Westen-Lagerweij, N. A.; Meijer, E.; Meeuwsen, E. G.;
Chavannes, N. H.; Willemsen, M. C.; Croes, E. A. Are Smokers
Protected against SARS-CoV-2 Infection (COVID-19)? The Origins
of the Myth. npj Prim. Care Respir. Med. 2021, 31 (1), 10.
(11) Korzeniowska, A.; Ręka, G.; Bilska, M.; Piecewicz-Szczęsna, H.
The Smoker’s Paradox during the COVID-19 Pandemic? The
Influence of Smoking and Vaping on the Incidence and Course of
SARS-CoV-2 Virus Infection as Well as Possibility of Using Nicotine
in the Treatment of COVID-19 − Review of the Literature. Przegl.
Epidemiol. 2021, 75 (1), 27−44.
(12) Usman, M. S.; Siddiqi, T. J.; Khan, M. S.; Patel, U. K.; Shahid,
I.; Ahmed, J.; Kalra, A.; Michos, E. D. Is There a Smoker’s Paradox in
COVID-19? BMJ Evid. Based Med. 2021, 26 (6), 279−284.
(13) Boots, A. W.; Bos, L. D.; van der Schee, M. P.; van Schooten,
F.-J.; Sterk, P. J. Exhaled Molecular Fingerprinting in Diagnosis and
Monitoring: Validating Volatile Promises. Trends Mol. Med. 2015, 21
(10), 633−644.
(14) Jia, Z.; Patra, A.; Kutty, V. K.; Venkatesan, T. Critical Review of
Volatile Organic Compound Analysis in Breath and In Vitro Cell
Culture for Detection of Lung Cancer. Metabolites 2019, 9 (3), 52.
(15) Banga, I.; Paul, A.; Poudyal, D. C.; Muthukumar, S.; Prasad, S.
Recent Advances in Gas Detection Methodologies with a Special
Focus on Environmental Sensing and Health Monitoring Applica-
tions−A Critical Review. ACS Sens. 2023, 8 (9), 3307−3319.
(16) Taylor, D. R.; Pijnenburg, M. W.; Smith, A. D.; De Jongste, J.
C. Exhaled Nitric Oxide Measurements: Clinical Application and
Interpretation. Thorax 2006, 61 (9), 817−827.
(17) Austin, V.; Crack, P. J.; Bozinovski, S.; Miller, A. A.; Vlahos, R.
COPD and Stroke: Are Systemic Inflammation and Oxidative Stress
the Missing Links? Clin. Sci. 2016, 130 (13), 1039−1050.
(18) Banga, I.; Paul, A.; Sardesai, A. U.; Muthukumar, S.; Prasad, S.
ZEUS (ZIF-Based Electrochemical Ultrasensitive Screening) Device
for Isopentane Analytics with Focus on Lung Cancer Diagnosis. RSC
Adv. 2021, 11 (33), 20519−20528.
(19) Banga, I.; Paul, A.; Churcher, N. K. M.; Kumar, R. M.;
Muthukumar, S.; Prasad, S. Passive Breathomics for Ultrasensitive
Characterization of Acute and Chronic Respiratory Diseases Using
Electrochemical Transduction Mechanism. TrAC, Trends Anal. Chem.
2024, 170, 117455.
(20) Banga, I.; Paul, A.; Muthukumar, S.; Prasad, S. HELP
(Hydrogen Peroxide Electrochemical Profiling): A Novel Biosensor
for Measuring Hydrogen Peroxide Levels Expressed in Breath for
Monitoring Airway Inflammation Using Electrochemical Methods.
Biosens. Bioelectron.: X 2022, 10, 100139.
(21) Violi, F.; Oliva, A.; Cangemi, R.; Ceccarelli, G.; Pignatelli, P.;
Carnevale, R.; Cammisotto, V.; Lichtner, M.; Alessandri, F.; De
Angelis, M.; Miele, M. C.; D’Ettorre, G.; Ruberto, F.; Venditti, M.;

Pugliese, F.; Mastroianni, C. M. Nox2 Activation in Covid-19. Redox
Biol. 2020, 36, 101655.
(22) Loffredo, L.; Carnevale, R.; Cangemi, R.; Angelico, F.;
Augelletti, T.; Di Santo, S.; Calabrese, C. M.; Della Volpe, L.;
Pignatelli, P.; Perri, L.; Basili, S.; Violi, F. NOX2 Up-Regulation Is
Associated with Artery Dysfunction in Patients with Peripheral Artery
Disease. Int. J. Cardiol. 2013, 165 (1), 184−192.
(23) Brooks, C. R.; Brogan, S.-B. M.; van Dalen, C. J.; Lampshire, P.
K.; Crane, J.; Douwes, J. Measurement of Exhaled Nitric Oxide in a
General Population Sample: A Comparison of the Medisoft HypAir
FE NO and Aerocrine NIOX Analyzers. J. Asthma 2011, 48 (4), 324−
328.
(24) Robinson, J. K.; Bollinger, M. J.; Birks, J. W. Luminol/H2O2
Chemiluminescence Detector for the Analysis of Nitric Oxide in
Exhaled Breath. Anal. Chem. 1999, 71 (22), 5131−5136.
(25) Horváth, I.; Barnes, P. J.; Loukides, S.; Sterk, P. J.; Högman,
M.; Olin, A.-C.; Amann, A.; Antus, B.; Baraldi, E.; Bikov, A.; Boots, A.
W.; Bos, L. D.; Brinkman, P.; Bucca, C.; Carpagnano, G. E.; Corradi,
M.; Cristescu, S.; de Jongste, J. C.; Dinh-Xuan, A.-T.; Dompeling, E.;
Fens, N.; Fowler, S.; Hohlfeld, J. M.; Holz, O.; Jöbsis, Q.; Van De
Kant, K.; Knobel, H. H.; Kostikas, K.; Lehtimäki, L.; Lundberg, J. O.;
Montuschi, P.; Van Muylem, A.; Pennazza, G.; Reinhold, P.;
Ricciardolo, F. L. M.; Rosias, P.; Santonico, M.; van der Schee, M.
P.; van Schooten, F.-J.; Spanevello, A.; Tonia, T.; Vink, T. J. A
European Respiratory Society Technical Standard: Exhaled Bio-
markers in Lung Disease. Eur. Respir. J. 2017, 49 (4), 1600965.
(26) Cristescu, S. M.; Mandon, J.; Harren, F. J. M.; Meriläinen, P.;
Högman, M. Methods of NO Detection in Exhaled Breath. J. Breath
Res. 2013, 7 (1), 017104.
(27) Ibrahim, W.; Carr, L.; Cordell, R.; Wilde, M. J.; Salman, D.;
Monks, P. S.; Thomas, P.; Brightling, C. E.; Siddiqui, S.; Greening, N.
J. Breathomics for the Clinician: The Use of Volatile Organic
Compounds in Respiratory Diseases. Thorax 2021, 76 (5), 514−521.
(28) Carraro, S.; Rezzi, S.; Reniero, F.; Héberger, K.; Giordano, G.;
Zanconato, S.; Guillou, C.; Baraldi, E. Metabolomics Applied to
Exhaled Breath Condensate in Childhood Asthma. Am. J. Respir. Crit.
Care Med. 2007, 175 (10), 986−990.
(29) Banga, I.; Paul, A.; France, K.; Micklich, B.; Cardwell, B.;
Micklich, C.; Prasad, S. E.Co.Tech-electrochemical handheld breath-
alyzer COVID sensing technology. Sci. Rep. 2022, 12 (1), 4370.
(30) Farquhar, A. K.; Henshaw, G. S.; Williams, D. E. Understanding
and Correcting Unwanted Influences on the Signal from Electro-
chemical Gas Sensors. ACS Sens. 2021, 6 (3), 1295−1304.
(31) Hitchman, M. L.; Saffell, J. R. Considerations of Thermody-
namics and Kinetics for the Effects of Relative Humidity on the
Electrolyte in Electrochemical Toxic Gas Sensors. ACS Sens. 2021, 6
(11), 3985−3993.
(32) Karvonen, T.; Lehtimäki, L. Effect of Exhalation Flow Rates
and Level of Nitric Oxide Output on Accuracy of Linear
Approximation of Pulmonary Nitric Oxide Dynamics. J. Breath Res.
2021, 15 (3), 036003.
(33) Hotelling, H. Analysis of a Complex of Statistical Variables into
Principal Components. J. Educ. Psychol. 1933, 24, 498−520.
(34) Karl Pearson, F. R. S. LIII. On Lines and Planes of Closest Fit
to Systems of Points in Space. Philos. Mag Ser. 1901, 2, 559−572.
(35) Karhunen, K.; Selin, I. On Linear Methods in Probability Theory;
RAND Corporation: Santa Monica, CA: Santa Monica, CA, 1960.
(36) van der Maaten, L.; Hinton, G. Visualizing Data Using T-SNE.

J. Mach. Learn. Res. 2008, 9, 2579−2605.

ACS Measurement Science Au pubs.acs.org/measureau Article

https://doi.org/10.1021/acsmeasuresciau.4c00020
ACS Meas. Sci. Au 2024, 4, 496−503

503

https://doi.org/10.1016/j.eclinm.2022.101651
https://doi.org/10.1016/j.eclinm.2022.101651
https://doi.org/10.1371/journal.pone.0250957
https://doi.org/10.1371/journal.pone.0250957
https://doi.org/10.1371/journal.pone.0250957
https://doi.org/10.1164/ajrccm.164.supplement_2.2106067
https://doi.org/10.1164/ajrccm.164.supplement_2.2106067
https://doi.org/10.1164/ajrccm.164.supplement_2.2106067
https://doi.org/10.1164/ajrccm.164.supplement_2.2106067
https://doi.org/10.1136/thx.42.11.843
https://doi.org/10.1136/thx.42.11.843
https://doi.org/10.1136/thx.42.11.843
https://doi.org/10.1183/09031936.00145307
https://doi.org/10.1183/09031936.00145307
https://doi.org/10.1589/jpts.26.167
https://doi.org/10.1589/jpts.26.167
https://doi.org/10.1589/jpts.26.167
https://doi.org/10.1038/s41533-021-00223-1
https://doi.org/10.1038/s41533-021-00223-1
https://doi.org/10.1038/s41533-021-00223-1
https://doi.org/10.32394/pe.75.03
https://doi.org/10.32394/pe.75.03
https://doi.org/10.32394/pe.75.03
https://doi.org/10.32394/pe.75.03
https://doi.org/10.1136/bmjebm-2020-111492
https://doi.org/10.1136/bmjebm-2020-111492
https://doi.org/10.1016/j.molmed.2015.08.001
https://doi.org/10.1016/j.molmed.2015.08.001
https://doi.org/10.3390/metabo9030052
https://doi.org/10.3390/metabo9030052
https://doi.org/10.3390/metabo9030052
https://doi.org/10.1021/acssensors.3c00959?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssensors.3c00959?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssensors.3c00959?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1136/thx.2005.056093
https://doi.org/10.1136/thx.2005.056093
https://doi.org/10.1042/CS20160043
https://doi.org/10.1042/CS20160043
https://doi.org/10.1039/D1RA03093K
https://doi.org/10.1039/D1RA03093K
https://doi.org/10.1016/j.trac.2023.117455
https://doi.org/10.1016/j.trac.2023.117455
https://doi.org/10.1016/j.trac.2023.117455
https://doi.org/10.1016/j.biosx.2022.100139
https://doi.org/10.1016/j.biosx.2022.100139
https://doi.org/10.1016/j.biosx.2022.100139
https://doi.org/10.1016/j.biosx.2022.100139
https://doi.org/10.1016/j.redox.2020.101655
https://doi.org/10.1016/j.ijcard.2012.01.069
https://doi.org/10.1016/j.ijcard.2012.01.069
https://doi.org/10.1016/j.ijcard.2012.01.069
https://doi.org/10.3109/02770903.2011.560322
https://doi.org/10.3109/02770903.2011.560322
https://doi.org/10.3109/02770903.2011.560322
https://doi.org/10.1021/ac990646d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac990646d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac990646d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1183/13993003.00965-2016
https://doi.org/10.1183/13993003.00965-2016
https://doi.org/10.1183/13993003.00965-2016
https://doi.org/10.1088/1752-7155/7/1/017104
https://doi.org/10.1136/thoraxjnl-2020-215667
https://doi.org/10.1136/thoraxjnl-2020-215667
https://doi.org/10.1164/rccm.200606-769OC
https://doi.org/10.1164/rccm.200606-769OC
https://doi.org/10.1038/s41598-022-08321-x
https://doi.org/10.1038/s41598-022-08321-x
https://doi.org/10.1021/acssensors.0c02589?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssensors.0c02589?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssensors.0c02589?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssensors.1c01339?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssensors.1c01339?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssensors.1c01339?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1088/1752-7163/abf3ab
https://doi.org/10.1088/1752-7163/abf3ab
https://doi.org/10.1088/1752-7163/abf3ab
https://doi.org/10.1037/h0070888
https://doi.org/10.1037/h0070888
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
pubs.acs.org/measureau?ref=pdf
https://doi.org/10.1021/acsmeasuresciau.4c00020?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

