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A predictive model applicable in both neurophysiological and decision-making studies is 
proposed, bridging the gap between psychological/behavioral and neurophysiological 
studies. Supposing the electromagnetic waves (brainwaves) are carriers of decision-
making, and electromagnetic waves with the same frequency, individual amplitude and 
constant phase triggered by conditions interfere with each other and the resultant intensity 
determines the probability of the decision. Accordingly, brainwave-interference decision-
making model is built mathematically and empirically test with neurophysiological and 
behavioral data. Event-related potential data confirmed the stability of the phase differences 
in a given decision context. Behavioral data analysis shows that phase stability exists 
across categorization-decision, two-stage gambling, and prisoner’s dilemma decisions. 
Irrational decisions occurring in those experiments are actually rational as their phases 
could be quantitatively derived from the phases of the riskiest and safest choices. Model 
fitting result reveals that the root-mean-square deviations between the fitted and actual 
phases of irrational decisions are less than 10°, and the mean absolute percentage errors 
of the fitted probabilities are less than 0.06. The proposed model is similar in mathematical 
form compared with the quantum modeling approach, but endowed with physiological/
psychological connection and predictive ability, and promising in the integration of 
neurophysiological and behavioral research to explore the origin of the decision.

Keywords: irrational decision, quantum cognition, brainwave, interference, phase stability, predictive modeling

INTRODUCTION

Irrational behaviors, such as the disjunction effect (Tversky and Shafir, 1992), question order 
effect (Wang et  al., 2014b), and categorization-decision effect (Wang and Busemeyer, 2016), 
challenge the sure-thing principle, the law of total probability, and classical decision-making 
theory. Researchers have offered various explanations to address these paradoxical phenomena 
with two strategies: one adjusts the classical decision-making model; the other builds new paradigms.

Quantum decision theory is one of the most promising new paradigms (Bruza et  al., 2015; 
Broekaert et  al., 2020), applying the concepts and mathematical techniques of quantum theory 
in physics to decision making. The quantum prospect decision theory (Yukalov and Sornette, 
2011), quantum-like Bayesian network (Moreira and Wichert, 2016, 2017, 2018; Wichert et  al., 
2020), and belief entropy quantum-like Bayesian network (Huang et  al., 2019) are some of 
the developments that enable the quantum theory to better fit and explain irrational behaviors 
(Xin et  al., 2019).
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Meanwhile, many approaches have been proposed to overcome 
the limitations of classical models in accommodating the paradoxical 
findings. The main idea is adding extra variables to classical 
models to simulate these decision scenarios under high levels 
of uncertainty. Prospect theory, which replace expected utility 
with subjective expected utility (Kahneman and Tversky, 1979), 
is among the most renowned solutions. Other effort includes 
various Markov models, Bayesian network, equate-to-differentiate, 
and Dempster–Shafer theory, or their combination (Klir and 
Ramer, 1990; Li, 2004; He and Jiang, 2018b).

The disputes between quantum and classical models continue 
to deepen the knowledge about decision making, and some 
studies are trying to reconcile the conflicts and unify these 
two models. Moreira and Wichert (2018) concluded that the 
classical model with latent variables could explain paradoxical 
findings in the prisoner’s dilemma game. More recently, 
Rashkovskiy and Khrennikov (2020) showed that, in special 
cases, the classical probabilistic model can give the same results 
as the quantum model.

However, both the modified classical model and quantum 
theory are unsatisfactory. The latter is widely accepted to be more 
explanatory than the former of most irrational behaviors, but 
both suffer the problem of the exponentially increasing complexity. 
Quantum theory is mostly limited to conceptual explanations 
of corresponding phenomena; it lacks predictive ability and is 
deficient in physiological and biological relevancy (Busemeyer 
et  al., 2015; Moreira and Wichert, 2018; Surov et  al., 2019).

This article presents a hypothesis for brainwave interference 
during decision making and proposes a concise brainwave-
interference decision model (BIDM). Preliminary analysis of 
existing event-related potential (ERP) data supports the 
psychological inherence of the model. Tested with empirical 
data, the proposed model efficiently explains and fits the 
disjunction effect of two-stage gambling and prisoner’s dilemma 
game, as well as the categorization-decision effect. Moreover, 
the stability of the interference-phase differences of brainwaves 
under “unknown” conditions across subject backgrounds, which 
Surov et  al. (2019) recently found in two-stage gambling, is 
confirmed and extended to other kinds of experiments. The 
proposed model reveals that the interference-phase differences 
under “unknown” conditions is evolved from corresponding 
interference-phase differences, which is nearly constant across 
subject groups as well, under “known” conditions.

CHALLENGE FACED BY QUANTUM 
DECISION THEORY

Quantum decision theory holds that the subject is in the 
superposition state of all decision options before making a 
decision. The subject’s cognitive state Փ is represented as vector 
|Ψ〉 in a complex vector space. The corresponding cognitive 
state of a particular decision D is |D〉, and the probability of 
that decision is given by squared modulus of the complex-
valued overlap 〈Ψ|D〉, defined as the amplitude of transition 
between the cognitive states. If decision conditions Ci are 
represented by vectors |Ci〉 in the same vector space as decision 

|D〉 and cognitive state |Ψ〉, the amplitude of reaching decision 
A from cognitive state Ψ can be  expressed as

 
〈 〉 = 〈 〉〈 〉∑ψ ψ| | |D C C D

i
i i

 
(1)

The statistical probability of making decision A is

 
p D p DC p C p DC p Ci i i i( ) = ( ) ( ) + ( ) ( )∑ ∏

i i

| |2 ·cosθ
 

(2)

where θ is the interference phase. The first summand in formula 
(2) reproduces the classical law of total probability, while the 
second summand is the interference term between the two 
transition amplitudes.

The existence of an interference term enables the quantum 
model to explain irrational behaviors, but its inability to define 
the interference phase θ before experimentation deprived the 
model of predictive power. However, Surov et  al. (2019) then 
found that the interference phase θ is not a free-fitting parameter 
but a constant (θ = 107 ± 7°) in all two-stage gambling experiments 
including those in the literature and their own test experiment. 
This was a breakthrough in endowing the quantum model 
with predictive capability. Neurophysiological substrate of 
quantum logic was explored constructively (Barros and Suppes, 
2009; Barros, 2012; Suppes et  al., 2012), but the essential 
relationship between quantum theory and the working 
mechanisms of the human brain remains unknown.

HYPOTHESIS

The electromagnetic theory of consciousness claims that the 
electromagnetic field generated by the brain is the actual carrier 
of conscious experience (Pockett, 2012; McFadden, 2020). Different 
minds have distinct, characteristic wave forms with recognizable 
frequencies and intensities in the electromagnetic field of the 
brain. Technologies such as electroencephalography (EEG), 
magnetoencephalography (MEG), and functional magnetic 
resonance imaging (fMRI) are deployed to understand dynamic 
cognitive processes (da Silva, 2013; Bode et  al., 2019; Kraemer 
et  al., 2020). Jain et  al. (2015) explored a novel technique for 
3D full-wave electromagnetic simulation of brainwaves.

Previous research suggests the existence of a correlation 
between the probability of a decision and the level of 
electrophysiological signals. For example, working memory 
reflects reward-based decision making (Curtis and Lee, 2010) 
and the values of the short electrical pulses of neuronal signals 
reveal the decision choices (Torres et  al., 2013; Webb et  al., 
2020). Furthermore, ERP amplitudes are sensitive to the valence 
of outcomes (e.g., win/loss, good/bad) and correlated with the 
magnitudes of feedback rewards (Yeung and Sanfey, 2004; 
Hajcak et  al., 2006). In addition, Van’t Wout et  al. (2006) 
showed that the skin conductance response to unfair offers 
in the Ultimatum game predicted rejection of unfair offers. 
Hewig et  al. (2011) even found that emotional valence ratings, 
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skin conductance responses, and ERP amplitudes together 
explained 84% of the variance in number of rejections.

Given the above theory and evidences, this article deduces 
that electromagnetic waves are the carriers of decision-making 
and proposes the following conjectures:

 a. Conditions trigger corresponding electromagnetic waves 
(“brainwaves” in this study) with individual amplitude and 
constant phase in the brain;

 b. For simultaneously comprehensive and steady detection and 
evaluation by a certain unit in the brain, those brainwaves 
should have the same frequency, and interference should 
occur at the site of evaluation;

 c. The intensity of the resultant brainwave determines the 
final decision.

Let conditions Ci affect decision D and initiate brainwaves 
with amplitude Ai. According to the wave interference rules, 
the amplitude of the resultant wave can be  obtained by

 
A A A A

i

N
i

j i i

N
j i j i

2

1

2

1

2= + −( )
= > =
∑ ∏∏

N

cos θ θ

 
(3)

where θ is the wave phase.
As wave intensity (I) is proportional to the square of the 

amplitude (I∝A2), equation (3) can be  rewritten as
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According to electromagnetic theory, at any location the 
wave intensity is proportional to the probability of detecting 
a photon at that location [p(D)∝I, p(Ci)∝Ii]. Therefore, equation 
(4) can be  transformed to:
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(5)

Equation (5) is equal to formula (2) of the quantum model 
but with a completely different basement, endowed with a 
physiological connection.

Comparing equation (3) and (5), there is an equivalence relation 
between the amplitudes and the square roots of the corresponding 
probabilities mathematically. Since amplitudes can be  treated as 
vectors, the square roots of the corresponding probabilities are 
used to represent the amplitudes in vectors to facilitate the analysis 
of behavioral data. Therefore, the relation of amplitudes (square 
roots of probabilities) could be  visualized as shown in Figure  1, 
where amplitudes (square roots of probabilities) are represented 
as vectors. The difference between phases of the two amplitudes 
is then mapped to the angle θ between the two vectors.

In reality, when people make decisions under uncertainty, 
they weigh the conditions and results repeatedly. Lacking a 
single mapping feature, they treat both the conditions and 

results as stimuli to define the decision, and the evoked waves 
will interfere with one another.

If decision D and condition C both have two states  
(D+/D− and C+/C−), and the probabilities of each state are 
p(D+), p(D−), p(C+) and p(C−), respectively, the final decision 
will have four combinations: D+C+, D+C−, D−C+, and D−C−. 
Thus, formula (5) becomes
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(6)

where θ1, θ2, θ3, and θ4 are the corresponding interference-
phase differences.

Given p(D+), p(D−), p(C+) and p(C−), p(D+C+), p(D+C−), 
p(D−C+) and p(D−C−) can have infinite mathematical solutions. 
However, after millions of years of evolution the θ1, θ2, θ3, 
and θ4 of each decision should have settled in the human 
brain. Therefore, the probability of each combination should 
be  relatively stable especially for people in the same cultural 
groups as Surov et  al. (2019) found, and p(D+C+), p(D+C−), 
p(D−C+) and p(D−C−) each have unique solutions.

If subjects under the “unknown” condition know the empirical/
theoretical value of p(C+) and p(C−) but not the exact condition, 
such as unknown the result of the first round in two-stage 
gambling task, they will first evaluate the probabilities of C+ 
and C− as p(C+) and p(C−) or other values in their neighborhood, 
respectively. Then the brainwaves of D+C+ and D+C− will interfere, 
and the probability of subjects making the D+ decision could 
be  calculated by:

FIGURE 1 | Relations of amplitudes (square roots of probabilities) 
visualized in vector form. Phase θ is the angle between the interfering 
amplitudes of conditions.
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where p(D+|C+) and p(D+|C−) also represent the empirical/
theoretical probabilities.

Except for θ, all the parameters on the right side of equation 
(7) can be measured under the “known” condition. It is natural 
to suppose that θ is the function of θ1, θ2, θ3, and θ4. 
Mathematically, if the relationship between θ and θ1, θ2, θ3 
and θ4 could be  found, the probability of the “unknown” 
condition could be  predicted.

Based on experiments in the literature, this study conducted 
a reverse-engineering process: First, calculate θ1, θ2, θ3, and 
θ4 from formula (6) with the statistical probabilities of “known” 
conditions in the experiment. Then, derive the experimental 
cosθ, defined as cosθexpt, from formula (7) with the observed 
probabilities of “unknown” condition in the experiment:

 

cos =
D | C unknown D C D C

2 D C D C
expt

+ + + + -

+ + + -
θ

p p p

p p

- - -( ) ( ) ( )
( ) • ( )

 

(8)

Finally, the relationship between θexpt and θ1, θ2, θ3, and θ4 
can be  analyzed. The estimation of θ, defined as θfit, could 
be  described as

 θ θ θ θ θfit F= ( )1 2 3 4, , ,  (9)

Now, with θfit and observed probabilities of “known” conditions 
in the experiments, one is able to predict the corresponding 
probability under “unknown” conditions from formula (7).

EMPIRICAL TEST

Data
Event-Related Potential Data
The primary work of verifying the proposed model is to test 
whether interference really happens between brainwaves in the 
decision-making process. Given the status of electrophysiological 

research to date, the exact intensity of brainwaves cannot 
be  measured. EEG and MEG only partially describe the whole 
picture of brainwaves. Fortunately, the phase of a brainwave 
should be stable no matter how it attenuates during transmission 
or detection, which gives an alternative way to test the hypothesis 
of brainwave interference. During decision making, the valence 
of the stimulus will be  classified into three categories (positive, 
negative, neutral), but from the perspective of structure and 
energy consumption optimization there should be only two scales 
in the brain: positive (e.g., 1, 2, X) and negative (e.g., −1, −2, 
−X), with the neutral expressed as the interference of the former 
two. Therefore, one of the test methods is to investigate the 
brainwaves of the positive, negative and neutral conditions to 
ascertain whether the brainwave of the neutral condition represents 
the interference of the brainwaves of the other two conditions.

Although it cannot be assumed that electroencephalographic 
waves are exact copies of brainwaves in the human brain, this 
study use ERP to represent the brainwaves and treats the 
voltage amplitude as the amplitude of the waves. The intensity 
of the brainwave with a certain stimulus may vary at different 
cerebral cortex locations, but the interference-phase difference 
should be  stable across all locations when it interacts with 
another brainwave. ERP data are abundant in literature, but 
it is rare to find experiments involving all three kinds of 
valences. Following three experiments are available:

Experiment A: Mao and Wang (2011) recorded the ERP 
N270 while participants performed a dual-attribute matching 
task under different attentive conditions. Visual stimulus spots 
were sequentially presented in pair of four categories: same 
color and position; same color but different position; same 
position but different color; and different color and position. 
Participants were instructed to discriminate whether the attributes 
of the first stimulus were the same as those of the second 
with different attention instructions: attending to color and 
attending to position, yielding three categories: task-irrelevant 
conflict (the conflict was irrelevant to the attention task, namely, 
the color was different when attending to position), task-relevant 
conflict, and conjunction conflicts (both the color and position 
were different in both kinds of attention task). Table  1 shows 
the average N270 amplitudes of each category.

Experiment B: Suo et  al. (2012) recorded the ERPs of 
participants engaged in a slot gambling task to investigate how 
the closeness of outcome influenced evaluation of the win. 
Table  2 lists the average N300 amplitudes under different 
outcome distances (near, medium, and far).

Experiment C: Wang et  al. (2014a) recorded participants’ 
ERP while they watched photos depicting two actors’ actions 

TABLE 1 | Average amplitudes of N270 under different conflict conditions of color and position and interference phase differences.

Electrode location Task-relevant conflict Task-irrelevant conflict Conjunction conflicts θ

F7 7.93 4.6 5.19 141.26°
F8 8.42 5.13 6.45 129.79°
T5 5.66 2.69 3.61 149.32°
T6 5.18 2.24 3.36 152.87°

Columns 2–4 show the average amplitudes (unit: μν) of N270 in the experiments of Mao and Wang (2011), column 5 are the computed interference-phase differences.
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and performed an intention inference task. Three action intentions 
were involved: kindness, hostility and non-interactiveness. 
Table  3 presents the average P300 amplitudes.

The scalp electrodes in above experiments were placed 
following the international 10–20 system.

Categorization-Decision Experiment Data
Townsend et  al. (2000), Busemeyer et  al. (2009), and Wang 
and Busemeyer (2016) successively conducted categorization-
decision experiments with similar methods. On each trial, 
participants were shown pictures of faces that varied in facial 
width. Participants were asked to categorize the faces as belonging 
to either a “good” guy or “bad” guy and/or were asked to 
decide whether to attack or withdraw. In the C-then-D condition, 
participants made a categorization followed by an action decision, 
and in the D-alone condition, participants made only an action 
decision. The researchers found that the law of total probability 
was nearly satisfied for the wide faces but was violated for 
the narrow faces. According to the law of total probability, 
the probability of attack in the D-alone condition should within 
the probabilities of attack when the face was categorize to 
“good” [p(attack|good)] and “bad” [p(attack|bad)] in the 
C-then-D condition. However, the experiment shown that the 
proportion of attack actions in the D-alone condition was 
higher than both p(attack|good) and p(attack|bad) for narrow 
faces (Table  4).

Two-Stage Gambling Experiment Data
Tversky and Shafir (1992), Kühberger et  al. (2001), Lambdin 
and Burdsal (2007), and Surov et al. (2019) studied two-stage 
gambling experiments in which participants were asked at 
each stage to decide whether or not to replay a gamble with 
an equal chance of winning or losing if they had either 
won, lost or did not know the outcome of the first gamble. 
The results revealed that some participants decided to play 
again no matter they had won or lost the first gamble. 
Through Savage’s sure-thing principle, those participants were 

expected to choose to play again even if they did not know 
the outcome of the first one. And according to the law of 
total probability, the probability of choosing to play the 
second gamble when the outcome of the first one was unknown 
[p(again|unknown)] should within the minimum and maximum 
values of the probability of deciding to play again while 
won [p(again|win)] or lost [p(again|lose)] the first gamble. 
However, it came out that only a part of them (less than 
the minimum probability) decided to play the second gamble 
(Table  5), violating the law of total probability and the sure-
thing principle.

Data of the Prisoner’s Dilemma Experiments
Li and Taplin (2002) faced violation to the law of total 
probability and the sure-thing principle in their prisoner’s 
dilemma experiments. This game consisted of two players 
who were separately confined and could not communicate 
with each other. The researchers tested three conditions in 
the prisoner’s dilemma game: the player knew that the other 
defected (k-d), the player knew that the other cooperated 
(k-c), or the player did not know the other player’s action 
(unknown). The last condition showed a deviation from the 
classical probability theory, suggesting that a significant 
percentage of players did not act according to the law of 
total probability (Table  6).

Results
Brainwave Interference Test
As stated above (Event-Related Potential Data), it is implicitly 
assumed that a brainwave evoked by a neutral stimulus could 
be  treated as the interference of the brainwaves produced by 
the positive and negative stimuli. From formula (5), the following 
equation is obtained and used to define the interference-phase 
difference θ:

 I I I I Ineutral positive negative positive negative= + + ⋅2 cosθ  (10)

TABLE 2 | Average amplitudes of P300 under different outcome distances and interference phase differences.

Electrode location Far Near Medium θ

Fz 20.93 14.94 16.29 129.05°
FCz 22.91 16.95 18.29 128.32°
Cz 23.88 18.83 20.23 124.75°

Columns 2–4 show the average amplitudes (unit: μν) of P300 in the experiments of Suo et al. (2012), column 5 are the computed interference-phase differences.

TABLE 3 | Average amplitudes of P300 under different action intentions and interference phase differences.

Electrode location Kind Hostile Non-interactive θ

Central zero 8.86 12.11 10.31 123.37°
Right part 9.95 12.38 10.36 126.16°
Central zone 8.35 10.91 9.41 123.36°
Parietal zone 11.72 15.49 12.54 127.59°

Columns 2–4 show the average amplitudes (unit: μν) of P300 in the experiments of Wang et al. (2014a), column 5 are the computed interference-phase differences.
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TABLE 4 | Categorization-decision experiments results in literature and model fitting.

Literature Face type p(attack|good) p(attack|bad) p(good) p(bad) p(attack|D-
Alone)

θexpt θ1 θ2 θ3 θ4 θfit Pfit

Townsend et al., 
2000

W 0.35 0.52 0.84 0.16 0.39 87.65° 129.33° 145.09° 180.00° 157.52° 85.58° 0.40
N 0.41 0.63 0.17 0.83 0.69 75.22° 155.02° 180.00° 143.12° 129.90° 75.08° 0.69

Busemeyer et al., 
2009

W 0.37 0.53 0.8 0.2 0.39 91.94° 130.26° 143.02° 180.00° 151.00° 86.72° 0.42
N 0.45 0.64 0.2 0.8 0.69 78.17° 149.86° 180.00° 143.74° 129.88° 80.25° 0.67

Wang and 
Busemeyer, 2016 
Experiment 1

W 0.39 0.52 0.78 0.22 0.42 89.79° 131.11° 141.50° 166.60° 149.73° 87.39° 0.44
N 0.41 0.58 0.21 0.79 0.59 83.39° 151.13° 171.19° 139.60° 131.91° 76.96° 0.63

Wang and 
Busemeyer, 2016 
Experiment 2

W 0.33 0.53 0.78 0.22 0.37 90.66° 129.21° 146.10° 180.00° 146.32° 84.69° 0.41
N 0.37 0.61 0.24 0.76 0.6 83.26° 144.91° 165.06° 141.37° 130.92° 84.17° 0.59

Wang and 
Busemeyer, 2016 
Experiment 3

W 0.34 0.58 0.77 0.23 0.39 90.80° 129.42° 144.97° 171.74° 144.65° 85.62° 0.42
N 0.33 0.66 0.24 0.76 0.62 84.36° 141.78° 173.30° 144.65° 129.17° 89.05° 0.59

Columns 3–7 show the observed probabilities in the experiments. θexpt, θ1, θ2, θ3, and θ4 are the computed interference-phase differences of p(attack|D-Alone), p(withdraw|good), p(attack|good), p(withdraw|bad), and p(attack|good), 
respectively, from observed probabilities. θ = 180° when cosθ is slightly <−1 due to random error. θfit is the fit value of θexpt by BIDM model. pfit is the p(attack|D-alone) fitted by BIDM model with θfit.

TABLE 5 | Results of two-stage gambling experiments in literature and model fitting.

Literature p(again|win) p(again|lose) p(win) p(lose) p(again|unknown) θexpt θ1 θ2 θ3 θ4 θfit pfit

Tversky and Shafir, 
1992 Experiment 1

0.69 0.57 0.5 0.5 0.38 113.49° 134.37° 146.22° 138.83° 139.59° 106.89° 0.45

Tversky and Shafir, 
1992 Experiment 2

0.69 0.59 0.5 0.5 0.35 117.03° 134.64° 146.19° 138.32° 140.53° 106.91° 0.4

Tversky and Shafir, 
1992 Experiment 3

0.71 0.56 0.5 0.5 0.84 71.03° 133.80° 147.43° 139.35° 139.02° 106.29° 0.46

Kühberger et al., 
2001Experiment 1

0.6 0.47 0.5 0.5 0.47 97.03° 135.28° 142.49° 140.66° 136.54° 108.75° 0.36

Kühberger et al., 
2001 Experiment 2

0.83 0.7 0.5 0.5 0.62 100.97° 133.41° 161.46° 137.71° 148.57° 99.27° 0.64

Kühberger et al., 
2001 Experiment 3

0.8 0.37 0.5 0.5 0.43 106.55° 129.29° 153.45° 146.31° 131.19° 103.27° 0.46

Kühberger et al., 
2001 Experiment 4

0.68 0.32 0.5 0.5 0.38 104.91° 131.30° 147.14° 147.14° 131.30° 106.43° 0.37

Lambdin and 
Burdsal, 2007

0.64 0.47 0.5 0.5 0.38 108.61° 134.24° 144.18° 141.11° 136.12° 107.91° 0.39

Surov et al., 2019 0.3 0.24 0.5 0.5 0.17 111.88° 147.53° 136.74° 152.19° 134.71° 111.63° 0.17

Columns 2–6 show the observed probabilities in the experiments. θexpt, θ1, θ2, θ3, and θ4 are the computed interference-phase differences of p(again|unknown), p(again|win), p(stop|win), p(again|lose), and p(stop|win), respectively, from 
observed probabilities. θfit is the fit value of θexpt by BIDM model. pfit is the p(again|unknown) fitted by BIDM model with θfit.
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In experiment A, the brainwave of the conjunction conflict 
is the interference result of the brainwaves of the task-irrelevant 
and task-relevant conflicts. The calculation shows that the 
interference-phase differences are relatively stable with a lower 
coefficient of variation (CV = 0.07) than that of the amplitudes 
(CV = 0.24 ~ 0.39; Table  1).

In experiment B, the brainwave when the outcome distance 
is moderate counted as the interference result of brainwaves 
when the outcome distances are near and far. The calculation 
also showed that the interference-phase differences are more 
stable (CV = 0.02) than that of the amplitudes (CV = 0.07 ~ 0.12; 
Table  2).

In experiment C, the brainwave of non-interactive action 
is treated as the interference result of brainwaves of kind and 
hostile actions. Again, the interference-phase differences are 
almost constant (CV = 0.02) compared with that of the amplitudes 
(CV = 0.13 ~ 0.15; Table  3).

These results support the hypothesis that when two stimulus 
inputs are involved in the decision, the brainwaves triggered 
by both may interfere and lead to the decision (Figure  2), 
laying the physiological (psychological) foundation for the 
brainwave-interference model.

Test With Categorization-Decision Experimental 
Data
Table  4 presents the interference-phase differences θ1, θ2, θ3, 
and θ4 calculated from equation (6) using the measured 
probabilities in the experiments. They are stable under the 
same face types (wide face: θ1 = 129.87 ± 0.81°, θ2 = 144.14 ± 1.85°, 
θ3 = 175.67 ± 6.20°, θ4 = 149.84 ± 4.99°; narrow face: 
θ1 = 148.54 ± 5.23°, θ2 = 173.91 ± 6.33°, θ3 = 142.50 ± 2.01°, 
θ4 = 130.36 ± 1.07°).

After applying the measured probabilities p(attack|D-alone), 
p(good), p(bad), p(attack|good), p(attack|bad) to formula (7), 
θexpt is obtained (Table  4; wide face: θexpt = 90.17 ± 1.60°, 
Figure 3A; narrow face: θexpt = 80.88 ± 3.98°, Figure 3B). Fitting 
θexpt with θ1, θ2, θ3, and θ4, θfit is given by

 θ θ θfit 1 2= 2 +π-( )  (11)

for the wide-face experiments (θfit = 86.00 ± 1.06°, RMSD = 4.67°), 
where θ1 and θ2 are the interference-phase differences of 
p(withdraw|good) and p(attack|good), respectively, and.

 θ θ θfit = +( )2 1 4π-  (12)

for the narrow-face experiments (θfit = 81.10 ± 5.63°, 
RMSD = 3.70°), where θ1 and θ2 are the interference-phase 
differences of p(withdraw|good) and p(attack|bad), 
respectively.

Then, p(attack|D-alone) for wide face could be  estimated as

 

p fit attack D alone p good p attack good p bad p attack| |− = ⋅ + ⋅( ) ( ) ( ) ( ) ||

| |

bad

p good p attack good p bad p attack bad

( )
( ) ( ) ( ) ( )+ ⋅ ⋅ ⋅ ⋅ ⋅2 cos θ11 2+( )θ  

(13)
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and p(attack|D-alone) for narrow face could be  estimated as

 
p fit attack D p good p attack good p bad p attack| alone |-( ) ( ) ( ) ( )= ⋅ + ⋅ ||

| |

bad

p good p attack good p bad p attack bad

( )
( ) ( ) ( ) ( )+ ⋅ ⋅ ⋅ ⋅ ⋅2 cos θ11 4+( )θ  

(14)

The estimated probabilities of both equations could fit the 
observed results with a minor mean absolute percentage error 
(MAPE; for wide face: MAPE = 0.06; for narrow face: MAPE = 0.03).

A B C

FIGURE 2 | Verification of the interference of brainwave. (A) Experiment A (Mao and Wang, 2011). ATiC, ATrC, and ACC represent the amplitudes of task-irrelevant 
conflict, task-relevant conflict, and conjunction conflicts, respectively. (B) Experiment B (Suo et al., 2012). Afar, Anear, and Amedium represent the amplitudes under far, 
near, and medium outcome distances, respectively. (C) Experiment C (Wang et al., 2014a). Akind, Ahostile, and Anon-interactive represent the amplitudes under kindness, 
hostility and non-interactiveness action intentions, respectively. Phase θ are the angles between the interfering amplitudes of conditions.

A

C D

B

FIGURE 3 | Verification of the interference-phase difference stability. (A) Categorization-decision experiment (wide face), (B) categorization-decision experiment 
(wide face), (C) two-stage gambling experiment, (D) prisoner’s dilemma experiment. Probabilities of the relevant experiments in vector amplitude form are shown in 
black. Interference-phase difference θexpt of “unknown” conditions computed with brainwave-interference decision model (BIDM) are shown in blue.
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Test With Two-Stage Gambling Experimental Data
The interference-phase differences obtained from equation (6) 
are relatively stable (θ1 = 134.87 ± 5.09°, θ2 = 147.26 ± 6.94°, 
θ3 = 142.40 ± 4.99°, θ4 = 137.51 ± 5.33°; Table  5). The θexpt 
for p(again|unknown) calculated from formula (7) is 
103.5 ± 13.66° (Figure  3C). Fitting θexpt with θ1, θ2, θ3, and θ4, 
θfit is given by

 
θ

θ
fit =

2
2

2π-

 
(15)

where θ2 is the interference-phase difference of p(not play|win). 
θfit is 106.37 ± 3.47° (RMSD = 13.09°).

Then, p(again|unknown) could be  estimated by

 

p fit again unknown p win p again w p lose p again l| | in | os( ) ( ) ( ) ( )= ⋅ + ⋅ ee

| in | ose

( )
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p win p again w p lose p again l cos
π - θ(( )

 

(16)

The pfit(again|unknown) fits the real data (Table  5). 
Only experiment 3 of Tversky and Shafir (1992) deviated 
from this trend. All three decision tasks in this experiment 
were presented on the same instruction page, which 
presumably aimed to encourage subjects toward 
rationally consistent decision making. This led to a much 
higher p(again|unknown) than that of the other 
experiments, in which decisions were separated in time or 
assigned to different subjects. Experiment 3 of Kühberger 
et  al. (2001) used the same method as the experiment 3 
of Tversky and Shafir (1992), and after excluding these two 
experiments, θfit is 106.83 ± 3.77° (RMSD = 6.12°) and the 
fitting MAPE of the probabilities of remaining experiments 
is 0.06.

Test With Prisoner’s Dilemma Experimental Data
The interference-phase differences obtained from equation (6) 
were relatively stable (θ1 = 134.65 ± 1.00°, θ2 = 166.08 ± 11.75°, 
θ3 = 136.20 ± 1.12°, θ4 = 159.74 ± 11.67°; Table  6).

The θexpt for p(defect|unknown) obtained from formula (7) 
is 95.33 ± 4.24° (Figure  3D). Fitting θexpt with θ1, θ2, θ3, and 
θ4, θfit is given by

 
θ

θ
fit =

2
2

2π-

 
(17)

where θ2 is the interference-phase difference of p(defect|k-c). 
θfit is 96.96 ± 5.87° (RMSD = 5.46°).

Then, p(defect|unknown) can be  estimated by the following 
equation with MAPE of 0.06.
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DISCUSSION

Phase Stability
In all these three behavior experiments mentioned above, 
θ1, θ2, θ3 and θ4 remained relatively stable (Figure  4). The 
SD of their distribution from the mean was 1°–18°. In 
reality, the probabilities of five random numbers from the 
uniform distribution on the interval [0°, 180°] falling into 
window of 2° and 36° are <1/59000000000 and <1/3125, 
respectively. This compactness of the phase distribution was 
not a coincidence but a regularity, thus supporting the 
hypothesis that evolution has settled the phase in the 
human brain.

However, this stability is relatively and culturally specific. 
In the two-stage gambling experiments, the phase of the 
last experiment was obviously distinct (Table 5). For example, 
θ1 was ~134° for subjects from the US (Tversky and Shafir, 
1992; Lambdin and Burdsal, 2007) and Austria (Kühberger 
et  al., 2001) but was 147° for subjects from Russia (Surov 
et  al., 2019), possibly due to the diversity of risk appetite 
in different cultures. Nevertheless, the BIDM model can 
precisely predicted the disjunction effect, regardless of phase 
variation across cultures.

In the categorization-decision experiment, an interesting 
symmetrical relationship occurred in the interference phase 
difference of each experimental pair (Table  4), which was 
similar to the QQ equality in the question order effect proposed 
by Wang et  al. (2014b). θ1 of the narrow faces approximately 
equaled θ4 of the wide faces, and θ2 of the narrow faces was 
close to θ3 of the wide faces and vice versa.

Moreover, the sum of θ1 and θ2 was close to the sum of 
θ3 and θ4 in both the two-stage gambling experiments and 
the prisoner’s dilemma experiments. This may caused by the 
50/50 chance of winning/losing and other player defect/
collaborate.

Unification of the Interference Phase of an 
Unknown Condition
Surov et  al. (2019) directly obtained phase θ of an unknown 
condition from the quantum model, missing the relationship 
between the phases of the different conditions of 
known and unknown. The BIDM model bridges the 
phases θ1, θ2, θ3 and θ4 with θ, meaning that the decision 
mechanism in the unknown condition is not a new one 
but the synthesis of the decision mechanism under the known 
condition. Surov et  al. (2021) combined the four individual 
phases to a single four-phase difference as a fitting parameter 
allowing to tune concurrence value in the quantum model, 
similar in form of θ = θ1 + θ2−θ3−θ4, which is totally different 
from their functional relation and the implicit interference 
logic in BIDM.

Their relationship appears to have regularity for various 
behaviors. For categorization-decision behavior, θfit is defined 
by the phases of the safest and riskiest choices. Wide faces 
were most likely to be labeled as good; thus, p(withdraw|good) 
and p(attack|good) were the most reliable and risky choices, 
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with the maximum and minimum probabilities among those 
four combination of conditions and decisions in the 
experiments, respectively, and their phases θ1 and θ4 determined 
θ (equation 13). Narrow faces had the opposite result (equation 
14). For disjunction effects in both the two-stage gambling 
and prisoner’s dilemma, θfit was defined by the phase of the 
highest risky choices with the minimum probability in the 
experiments [p(not play|win) and p(defect|k-c) respectively]. 
Therefore, the function of θfit and θ1, θ2, θ3, θ4 could 
be  integrated as

 θ θ θfit riskiest= +( )2π- safest  (19)

for categorization-decision behaviors (RMSD = 4.10°), and

 
θ

θ
fit

riskiest=
2

2
π-

 
(20)

for disjunction effect behaviors (RMSD = 5.96°), where θsafest 
and θriskiest are the phases of the safest and riskiest choices, 
respectively.

Both (19) and (20) are involving the riskiest choice, revealing 
that humans mainly show aversion to risk under 
unknown conditions.

Predictive Power Comparison
BIDM model make it convenient and precisely to predict the 
probability under “unknown” conditions with probabilities under 
“known” conditions (Figure 5). He and Jiang (2018a) proposed 
an evidential Markov (EM) model to predict the disjunction 
effect in categorization-decision experiments, which has fewer 
free parameters than do the seven existing models. However, 
the BIDM model fits the experiments results more accurate 
(MAPE = 0.03) than the EM model (MAPE = 0.06; Figure  6) 
with merely one free parameter.

FIGURE 4 | Phase stability in different kinds of behavior experiments. Grids represent the value of phase from 0° to 180°. θ1, θ2, θ3, θ4, and θexpt are the computed 
interference-phase differences from observed probabilities in each experiment. θt is the fitted value of θexpt by BIDM model. The closeness of the lines at each axis 
indicates the stability.
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Huang et  al. (2019) proposed a new quantum-like Bayesian 
network model to accommodate the paradoxical phenomenon 
in the prisoner’s dilemma game; its predictive power was better 
than that of the quantum prospect decision theory (Yukalov 
and Sornette, 2011) and quantum-like Bayesian network model 
(Moreira and Wichert, 2016). However, Figure  7 shows that 

the fitting accuracy of the BIDM model is comparable 
(MAPE = 0.04) with the models of Moreira and Wichert (2016; 
MAPE = 0.03) and Huang et  al. (2019; MAPE = 0.04).

This study, however, is subject to several limitations, mainly 
concerning the data. First, applicable experiment recording 
both the neurophysiological and behavioral data is not available, 
and this study has to divide the verification into two separate 
parts, weakening the linkage between neural activity and 
behavior. Second, the results are based on small data set. Third, 
existing experimental data are used without scrutiny of their 
contexts, which may increase the risk of bias. Although, to 
some extent, this demonstrates the robustness of the model 
from another point of view.

CONCLUSION

The proposed brainwave-interference decision-making model 
is applicable in both neurophysiological and decision-making 
analysis. The hypothesis of brainwave interference is verified 
by psychological experimental data. Results of applying the 
proposed model in behavior experimental data show that the 
interference-phase differences under “unknown” conditions are 
derived from corresponding interference-phase differences of 
the highest-risk choices under “known” conditions, and all 
those interference-phase differences are stable across subject 
backgrounds. Testing the predictive power of brainwave-
interference decision-making model in other kinds of human 
behavior with much larger set of data, and detailed analysis 
of psychological meaning of the phase of the brainwave and 

FIGURE 5 | Fitting quality of the BIDM model. X-axis represents the 
probabilities under “unknown” conditions in the categorization-decision 
experiment, two-stage gambling experiment, and prisoner’s dilemma 
experiment, and Y-axis represents the probabilities fitted with BIDM model.

FIGURE 6 | Predicted disjunction effect of different models in categorization-decisions. p0 is the p(attack|D-alone) observed in experiments; p1, p2, and p3 are the 
predictions of BIDM model, evidential Markov model (He and Jiang, 2018a), and the classical law of total probability, respectively. Exp. 1–5: experiments regarding 
narrow-face types in Townsend et al. (2000), Busemeyer et al. (2009), and Wang and Busemeyer (2016), experiments 1–3.
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the carrier/transmission of the brainwave, are some of the 
subjects for future study.
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