
healthcare

Article

Enhancing Privacy and Data Security across
Healthcare Applications Using Blockchain and
Distributed Ledger Concepts

Haibing Liu 1,2,*, Rubén González Crespo 3 and Oscar Sanjuán Martínez 3,*
1 Evergrande School of Management, Wuhan University of Science and Technology, Wuhan 430000, China
2 School of Economics and Management, Lanzhou Jiaotong University, Lanzhou 730070, China
3 Computer Science Department, School of Engineering and Technology, Universidad Internacional de la Rioja

(UNIR), 26006 Logroño, Spain; ruben.gonzalez@unir.net
* Correspondence: liuhb13@lzu.edu.cn (H.L.); oscar.sanjuan@ieee.org (O.S.M.)

Received: 21 May 2020; Accepted: 22 July 2020; Published: 29 July 2020
����������
�������

Abstract: Nowadays, blockchain is developing as a secure and trustworthy platform for secure
information sharing in areas of application like banking, supply chain management, food industry,
energy, the Internet, and medical services. Besides, the blockchain can be described in a decentralized
manner as an immutable ledger for recording data entries. Furthermore, this new technology has
been developed to interrupt a variety of data-driven fields, including the health sector. However,
blockchain refers to the distributed ledger technology, which constitutes an innovation in the
information recording and sharing without a trusted third party. In this paper, blockchain and
Distributed Ledger-based Improved Biomedical Security system (BDL-IBS) has been proposed to
enhance the privacy and data security across healthcare applications. Further, our goal is to make
it possible for patients to use the data to support their care and to provide strong consent systems
for sharing data among different organizations and applications, since this includes managing and
accessing a high amount of medical information, and this technology can maintain data to ensure
reliability. Finally, results show that new blockchain-based digital platforms allow for fast, easy,
and seamless interactions between data suppliers to enhance privacy and data security, including for
patients themselves.

Keywords: data security; privacy; healthcare applications; blockchain technology; distributed
ledger technology

1. Introduction

Recent trends in technology are exploited for diverse real-world applications to provide definite
solutions for end users. Assimilating technological aspects in user-related application provides diverse
advantages, from the quality of service (QoS) to security [1]. The healthcare platform is visualized
using electronic health records (EHRs) in its digital and technical format, providing unrestricted access
to the end users. Diagnosis centers and healthcare infrastructures provide different access and data
sharing processes for their users through EHRs [2–4]. EHR is an organized set of patient-/user-related
information that is digitally shared through a secure platform for ubiquitous access [5]. User applications
and graphical user interfaces designed for EHR access provide access to the healthcare data through
simple authorization and authentication procedures. Since sensitive information, end-to-end security,
and privacy are the prime concerns in sharing EHR’s between users [6], this is vital as the technology
requires additional infrastructures such as cloud, Internet of things, mobile devices, etc. for sharing
EHR’s [7].
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Blockchain is another technology that is commonly used in different applications for providing
distributed access to resources and unalterable information [8]. The blockchain paradigm is used for
administering security in different communicating and processing systems. Healthcare application does
not require trusted third-parties for administering security [9]. The electronic ledger is distributed across
different communicating and processing systems to improve the swiftness in security administration
and privacy preservation [10]. Besides, blockchain eases EHR sharing between end-user applications
and healthcare infrastructures without interrupting the communication process [11,12]. Such facilities
are provided through line-of-trust and authentication with interoperability using the distributed
electronic ledger technology. Modern healthcare applications concentrate on the privacy of the users
and security of the information shared to prevent anonymous and unauthorized access to illegitimate
users [13,14].

Trust, authentication, and privacy are the major requirements in sharing EHRs between different
users. Administering the blockchain paradigm as a decentralized ledger for monitoring shared
information is becoming a familiar practice in recent years [15,16]. Blockchain-assisted authentication
and trust-based security are assimilated with the medical systems for improving the quality of
information sharing and preventing unauthorized interruptions [17,18]. Knowing the significance of
the data, biomedical systems rely on robust authentication and trust schemes for confronting diverse
attacks, data leakage, tampering, and loss. EHR access control, defining security levels, verifying
users, and sharing sessions are collaboratively performed using the security systems [15,17,19].
Modified and sophisticated access control, encryption/decryption schemes, and auditing features are
required to handle different attacks and illegitimacy in storing and sharing EHRs. In trust-based
schemes, user-centric factors are assessed to differentiate the users to provide access controls,
whereas authentication schemes focus on providing data/EHR security through hashing and
encryption/decryption process [20,21].

However, blockchain refers to the distributed ledger technology, which constitutes an innovation
in the information recording and sharing without a trusted third party. In this paper, Blockchain and
Distributed Ledger based Improved Biomedical Security system (BDL-IBS) has been proposed to
enhance the privacy and data security across healthcare applications.

2. Related Works

Tang et al. [22] proposed privacy-preserving healthcare in the trusted network to enhance the
trustiness among the patient and caregivers. The Sybil attack is used to find the fake patient and
terminate it from the network. The proposed method is used to make the authenticated person access
the healthcare center.

Computer-aid design is implemented for security, and privacy of the trusted systems is introduced
by Salnitri et al. [23]. It also gives the specification of experts to use the system from various
characteristics. They are also using the higher goal for the business, and external threats are maintained
for the trustworthiness in the network.

S-Alex convolution neural network and dynamic game theory (SCNN-DGT) designed by
Kong et al. [24] are used in the IoT-cloud computing environment for health data management.
The initial step is obtaining the information of the healthcare and classifying them in Alex’s net
convolutional network. This method is designed to evaluate security in the healthcare system.
It validates the index screening to verify the user.

Data integrity is used for sharing the records of healthcare in a verifiable way and is introduced by
Wang et al. [25]. The author developed a blockchain for privacy usage through symmetric encryption
and attribute-based encryption. It attains the fine-grained access control.

Zhao et al. [26], developed key management for healthcare blockchain. The efficient key
management method is used as a privacy and security mechanism in the healthcare system. It is
observed by embedding the sensor to analyze the blockchain. The proposed method is used to enhance
the effectiveness and high security.
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Guo et al. [27] modeled a multi-authority for the Tele-medical system to improve the efficient
blockchain based on the ABE scheme. In this paper, both the dynamic authentication and authorization
are used for MoD service under telemedicine. ABE is mainly used to manage the system in real-time
scenarios for private healthcare data. This is done in a cloud-based environment.

A blockchain is proposed for the medical records to access and permits the MedChain process,
which is addressed by Daraghmi et al. [28]. Medchain is used for interoperating, secure, and effective
access for patients’ privacy. The security is time-based access that gives the degree of health providers.

A blockchain is used for the Electronic Health Record system (EHRs) and is proposed by
Guo et al. [29]. The authors implemented a secure attribute based on signature with multi authorities.
The patients send the text according to the health as the attribute evidence to the healthcare center.
The trust is given to the authorities to access the message, and both use the public and private keys to
avoid the escrow problem.

The medical service framework is designed to store the secure records of the patient by using the
blockchain method and is introduced by Chen et al. [30]. The storage is done on the cloud for large
data access. The records are shared by its aspect based on its service related to the authorized user.

Tian et al. [31], observed medical data management with private access. The blockchain is used
to protect the data in two aspects such as storing the data in the local database, encrypting the data,
and sharing the key to the patient for further viewing. The shared key for security and integrity
is established using sibling intractable function families (SIFF) aided by blockchain. The proposed
method uses integrity, availability, and privacy of medical data for better efficiency.

Wang et al. [32] presented an e-healthcare system by using Wireless Body Area Networks WBAN.
The blockchain is used to generate security and resolve the low power healthcare system. The WBAN
is placed in the patient’s body and transmits the data by using the blockchain process.

A blockchain -based healthcare system using formal methods is developed by Brunese et al. [33].
This paper aims to exchange information from the patients to the hospital network by using magnetic
resonance images. The data are transmitted by the formal equivalent for validation. They are modeled
by radiomic features for automata.

Uddin et al. [34] proposed blockchain leveraged decentralized eHealth architecture (BDeHA).
This architecture consists of three layers, including a sensing layer for obtaining the data through the
sensor. The second is NEAR processing for sensing the IoT devices and the third one is FAR processing,
which is comprised of cloud computing servers.

Griggs et al. [35] observed a healthcare blockchain using smart contracts for patient monitoring.
The smart contracts are used for secure analysis management for communication with the sensor.
They are also used to monitor the patients and professionals to give notification regarding the health.

Brodersen et al. [36], globally and across several industries, present an innovation model that will
allow business to business-and-consumer transactions to be faster, more efficient, and highly secure.
Many healthcare participants hope the same distributive database technologies allowing this new
model can lead to similar outcomes within the industry and recognize that confusion, like many other
major innovations.

3. Blockchain and Distributed Ledger Based Improved Bio-Medical Security System

The proposed BDL-IBS is designed to improve the trust- and privacy-related specifications of
the electronic shareable health records. The system focused on maximizing the sharing rate of the
secured records along with less adversary impact. In this system, blockchain technology is exploited
by the medical server that tracks the trust privacy factors between the users and records. In Figure 1,
an illustration of a biomedical security system with blockchain technology is presented.

The components of the bio-medical system include storage and a medical server. The storage
contains the health records of the end-users in a digital format. The medical server is responsible
for processing user requests and responding to them with appropriate records. A common sharing
platform such as cloud and associated infrastructures are responsible for sharing EHRs. The blockchain
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and distributed ledger are used in both the medical server and end-user applications. In the blockchain
associated with the medical server, the trust and privacy factors are analyzed, whereas the privacy
factors are alone assessed in the end-user blockchain. The trust factors include successful access and
response to request ration, and privacy relies on convergence and complexity. The trust process is
analyzed and explained in detail in the following subsections.
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Figure 1. Biomedical Security System with blockchain.

Adversary Model: In this bio-medical security system, malicious access due to man-in-middle and
data tempering adversary models are considered. In a man-in-middle attack, the adversary overlaps
the end user to gain access to the HER. This results in sharing health information to an adversary
and thus degrading the design of a secure biomedical system. In the case of a data tempering attack,
the adversary breaches HER from any node communicating with the biomedical system. It either
modifies the actual data/tracks the communication through the HER information. Figure 2a,b portrays
the representation of the man-in-middle and data tampering attacks over the EHR.

For thwarting the above attack, the trust model and concentric authentication are introduced
using the blockchain paradigm. As referred to earlier, the blockchain process is differentiated in both
the medical server and end-user functions.

Apart from the regular two-layer network, the man-in-middle attack can be overcome by the
server-client based blockchain technology as shown in Figure 2c. Since it is a server–client network,
it is well suited for the medical user and end-user functions. To reduce the man-in-middle issue, a pure
application-oriented implementation is followed in the objective of the proposed idea. A proper set of
protocols should be determined in the server domain, and the appropriate application receives the
data from the client side.

The process of trust-based validation is performed using linear decision-making,
and authentication is augmented through classification-based learning.

Trust model based on Linear Decision Making: In the trust model, the factors are successful access
and end-user application to fetch HER. Through conventional communication standards, the end-user
application generates a query for accessing HER. The initial authorization for the end-user is provided
using login ID/name and password information. This information is validated by the medical server
to ensure the reputation of the user. The medical server is associated with the blockchain with the
following entries, as in Table 1.



Healthcare 2020, 8, 243 5 of 17

Healthcare 2020, 8, x 4 of 17 

 

 
Figure 1. Biomedical Security System with blockchain. 

The components of the bio-medical system include storage and a medical server. The storage 
contains the health records of the end-users in a digital format. The medical server is responsible for 
processing user requests and responding to them with appropriate records. A common sharing 
platform such as cloud and associated infrastructures are responsible for sharing EHRs. The 
blockchain and distributed ledger are used in both the medical server and end-user applications. In 
the blockchain associated with the medical server, the trust and privacy factors are analyzed, whereas 
the privacy factors are alone assessed in the end-user blockchain. The trust factors include successful 
access and response to request ration, and privacy relies on convergence and complexity. The trust 
process is analyzed and explained in detail in the following subsections. 

Adversary Model: In this bio-medical security system, malicious access due to man-in-middle 
and data tempering adversary models are considered. In a man-in-middle attack, the adversary 
overlaps the end user to gain access to the HER. This results in sharing health information to an 
adversary and thus degrading the design of a secure biomedical system. In the case of a data 
tempering attack, the adversary breaches HER from any node communicating with the biomedical 
system. It either modifies the actual data/tracks the communication through the HER information. 
Figure 2a,b portrays the representation of the man-in-middle and data tampering attacks over the 
EHR. 

 
 

(a) (b) Healthcare 2020, 8, x 5 of 17 

 

 
(c) 

Figure 2. (a) Man-in-middle attack. (b) Data tampering attack. (c) Server-client based blockchain 
technology. 

For thwarting the above attack, the trust model and concentric authentication are introduced 
using the blockchain paradigm. As referred to earlier, the blockchain process is differentiated in both 
the medical server and end-user functions.  

Apart from the regular two-layer network, the man-in-middle attack can be overcome by the 
server-client based blockchain technology as shown in Figure 2c. Since it is a server–client network, 
it is well suited for the medical user and end-user functions. To reduce the man-in-middle issue, a 
pure application-oriented implementation is followed in the objective of the proposed idea. A proper 
set of protocols should be determined in the server domain, and the appropriate application receives 
the data from the client side. 

The process of trust-based validation is performed using linear decision-making, and 
authentication is augmented through classification-based learning. 

Trust model based on Linear Decision Making: In the trust model, the factors are successful 
access and end-user application to fetch HER. Through conventional communication standards, the 
end-user application generates a query for accessing HER. The initial authorization for the end-user 
is provided using login ID/name and password information. This information is validated by the 
medical server to ensure the reputation of the user. The medical server is associated with the 
blockchain with the following entries, as in Table 1. 
  

 

 

 

 

SERVER 

CLIENT 

Figure 2. (a) Man-in-middle attack. (b) Data tampering attack. (c) Server-client based blockchain technology.

Table 1. Blockchain Entries.

Field Description

Name/Id User Name/Login Credential
Q Query Request
R Response
c Count of EHR shared
ts Sharing Time
tv Validity Time
τ Trust Factor

For each Q generated and received in the medical server, the state of R (i.e., sharing EHR),
the factors c, ts, tv, and τ are updated. This information remains unchanged in the blockchain
paradigm. It is to be noted that τ is valid for tv, within which the sharing of EHR is completed. For any
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case of tv < ts, the τ→ 0 and the user is marked as illegitimate. For validating the above conditions,
τ is computed as a linear combination of (R, Q) and successful access probability (ρa). In a given tv,
the τ is computed as

τ(tv) =
R(ts)

Q + ρa

where,
ρa =

(
c
Q

)
+

(
1− R

Q

)
R

 (1)

The factor R
Q is the ratio of response to the query request received by the medical server.

The linearity in identifying the trust for a period of tv relies on R
Q and ρa, where both the factors are

proportional to each other. The above linear relationship between ρa and R
Q is ts is recurrently analyzed

using the ts
c instance, i.e., the τ in all c instances is verified from its previous shared count that is

given as
τ = 1

c

[ R1
Q1

(
ts
1

)
− ρa

(
ts
2

)
+ R2

Q2

(
ts
2

)
− ρa2

(
ts
2

)
+ · · ·+ Rc

Qc

(
ts
c

)
− ρac

(
ts
c

)]
= 1

c

[
c∑

i=1

Ri
Qi

(
ts
i

)
− ρa

(
ts
i

)]
= ts

c

[
c∑

i=1

1
i

( Ri
Qi
− ρa

)]
 (2)

From the above sequence, the varying R
Q or ρa in ts is estimated for all the c shared to the

end-user. In this sequence, the varying point p initiating the change in proportionality between ρa

and R
Q is identified. Such identification helps to reduce the computations and security mechanisms

(authentication) to prevent losses in sharing EHR. This point from the sequence ts is computed using
Equation (3) as

p =
c∑

i=1

[1− τ(tv)i]

[τi − τ(tv)i]
(3)

This validating point helps to hold the verification process and trust update in the blockchain,
where the actual c is updated until p ∈ τ sequence. The decision for pursuing/halting EHR sharing is
determined using the conditions formulated in Table 2.

Table 2. Decision conditions.

Condition Description Solution

c∑
i=1

(
R
Q − ρa

)
i
<

c∑
i=1

(
R
Q − ρa

)
i−1

Current trust is less than the
previous trust in any of the

instance of the sequence

Pause sharing until the next
update is received

p < c The actual share count is high that
the identified point

Continue sharing until p = c
is reached.

p ≥ c The identified point is greater than
the shared EHRs. Halt EHR sharing

τ = τ(tv)
Sequence trust is the same as the

instance trust value computed Not feasible until c = 1

τ < τ(tv)
Sequence trust is high that the

instance trust value Halt EHR sharing

The last three conditions in Table 2 represent the unfeasible conditions as τ < τ(tv) results in a
negative p that is not possible in case c > 1. Similarly, the sequence and instant trust are the same in
case of sharing only 1 record, after which p = ∞. This provides continuous chances for EHR sharing,
whereas, in practical EHR based biomedical systems, the condition does not hold. For p ≥ c condition,
the point is detected after all the counts are shared. Therefore, the previous state of name/ID for which
it is τ with the new ts or tv period. The blockchain is updated for the above and hence for further
sharing of EHRs. The case of the first two conditions is different, where p < c follows τ and τ(tv) as in
Equations (3) and (2), respectively. The different case of condition 1 is to be differentiated from the
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other conditions as a trial to the user is given if the current trust is less than the previous sequence of
trust. This impacts either ρa or R

Q and hence Equation (1) is modified as

τ(tv) =


[
1− R(ts)

Q

]
+ ρa

(
ts
c × tv

)
, i f R

Q isnotaconstant
R(ts)

Q + Q−R
Q ρa, i f ρa isnotaconstant

(4)

If both the R
Q and ρa factors are not constant, then the sharing process is halted. Based on the

different instances for R
Q (or) ρa, the decision is made such that the sharing is not halted, whereas it

is paused until the next update if τ is observed. In this pausing instance, the sharing session of the
end-user application is expired. Therefore, the user has to login again to re-initiate the EHR sharing
session. The time of validity based on different instances of τ(tv) is determined using Equations (5)
and (6), respectively.

ts1 = tv −
(Q1−R1

Q1

)
ts = tv(asts = 0 f or the f irst instance), ∀

(
1− R

Q

)
< ρa

ts2 = tv −
(Q2−R2

Q2

) ts1
2

...
tsc = tv −

(Qc−Rc
Qc

)
tsc
c


(5)

ts1 = tv −
(
1− R1

Q1

)
ρatso = tv , ∀

(Q−R
Q

)
ρa < R

Q

ts2 = tv −
(
1− R2

Q2

)
ρats1

...
tsc = tv −

(
1− Rc

Qc

)
ρatsc


(6)

For the above Equation of computing tv for fluctuating τ(tv), tn Figure 3a,b, respectively.
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The process of trust-based update in the blockchain is performed using ts using R
Q and ρa factors

independently. The process is consecutive if ts and tv is updated based on R
Q and concurrent if the update

is based on ρa. The process of differentiation relies on the p that is identified for both the conditions
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where
(

R
Q − ρa

)
i
<

(
R
Q − ρa

)
i−1
∀ i ∈ c. Finally, the user with max{τ} or max{{τ}(ts)} is identified in all

the instances for providing better authentication. The linear representation in Equation (2) is either
fluctuate between ts based on R

A and ρa independently. The fluctuation is based on the varying ts and
tv instances as differentiated by p. This trust-based decision-making helps to improve the ratio of
successful sharing under controlled response time. In Table 3, the observed records that are classified
under different conditions of Table 1 is presented for the different sharing times.

Table 3. Records Classified under Table 1 Condition.

Sharing Time (s) Condition 1 Condition 2 Conditions 3/5 Condition 4

10 374 7152 36 0
20 718 8089 44 0
30 433 8452 17 0
40 847 7843 82 0
50 622 8741 139 0
60 249 9527 86 0
70 506 8719 152 7
80 521 9013 127 0
90 362 9486 92 0

There is only one ending transmission in the sharing time of 70, where condition 4 is satisfied by
sharing count of c. The records classified under conditions 3/5 are not sent to the end user, and hence
their sessions are logged out.

4. Classification-Based Concentric Authentication

In the classification-based concentric authentication, EHR is shared. In a concentric authentication,
the common classification on point p serves as the decision-making for generating authentic records.
The classification-based learning allocates two types of non-sequential session keys for authenticating
the sharing session. This classification is based on the fluctuating τ(tv) as in Equation (4). The impact
of either of the fluctuation varies the administration of session keys to prevent the data tampering
attacks. Initially, the session is set up between the medical server, and the end-user application follows
a linear mapping map: RX Rc → RU . Here, Rc is the group of response until a count c, and RU is
the random function of the end-user (U). The group consists of a random generator r ∈ Rc along
with a differential prime number pn. For the different τ(tv), the variable r ∈ Rc relies on computing
hashes HMS and HU for the medical server and end-user, respectively. The general format of an initial
authentication is denoted as

{
Rc, RU, pn, r, HMS, HU, c

}
. The shared record count is obtained from the

blockchain, where the trust of user access coupled with the records is stored. The distributed access
to blockchain stored information is assessed in both end-user and medical server levels. For this
authentication process, the classification occurrences of

(
1− R

Q

)
and ρa in ts is performed. As stated

previously, the sequential and concurrent update of the medical server blockchain process requires
different session keys and authentication procedures. Therefore, the occurrence of p for condition 1 from
Table 2 is the determining factor. Let ρp and ρs represent the fluctuating and sequential probabilities in
a given time ts; then,

such that
ρ(s

∣∣∣p) = ρ(p|s)ρs
ρp

ρ(p
∣∣∣s) = c∏

i=1
ρ(pi

∣∣∣s)
 (7)

As ρ(s
∣∣∣p) = ∏c

i=1 ρ(pi|s).ρs
ρp

=
∏c

i=1 ρ(pi|s)ρs

(1−ρs)
, the above classification of probability, s over p is

computed for all ρs instead of ρp to linearize the solutions as in Equation (1). Based on the relationship
between R

Q and ρa, the classification of ρ(p
∣∣∣s) is performed as
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(or)

ρ(s|p1, p2, . . . pc) =
ρs ρ(p1,p2,...pc |s)
ρ(p1,p2,...pc)

ρ(s1, s2, . . . sc|p) =
ρ(p|s1,s2,...sc)ρp

ρp
= ρ(p|s1, s2, . . . , sc)

 (8)

where ρ(p|s1, s2, . . . sc) =
ρp

∏c
i=1 ρ(p|si)

ρ(p1,p2,...pc)
. For condition 1, the classification rule is framed as in Equation (9)

for identifying p over s as in Equation (8)

ρ(p|s1, s2, . . . sc) ' ρp
c∏

i=1
ρ(pi|s)

}
(9)

where s = argmax
c

ρp
∏c

i=1 ρ(pi
∣∣∣s). Here in Equation (9), the probability of ρp is computed based on the

likelihood of p′s instances and its normalization as

N(p) =
c× ρp + s

ρp + (c× s)
(10)

The above likelihood normalization of p helps to classify p ∈
(
1− R

Q

)
< ρa condition or p ∈ ρa < R

Q
condition. This helps to decide between sequential and concurrent authentication procedure through
the same concentric point from the fluctuating sequence of ts. The normalization identifies precise p in
the series of ρ(p

∣∣∣s) such that ρ(s
∣∣∣p) follows sequential authentication, whereas the previous occurrence

relies on random concurrent security measures. Here, the priority of authentication is initiated from
the first occurrence of ρp of ρs as determined by N(p). For all the first occurrences of ρp and ρs,

the sequence follows ρ(p
∣∣∣s1, s2, . . . sc) or

c∏
i=1

ρ(p

∣∣∣∣∣∣si), and
∏c

i=1 ρ( p|s i)ρs

(1−ρs)
(as in Equation (6)). Using this

sequence and concurrency, the authentication is presented as follows. In two cases, the occurrence of
the sequence and concurrency observed is discussed below.

Case 1: The sequence initiates with ρs

Analysis 1: The hash sequence for both HMS and HU is formulated as

HMS(p) = ri
∣∣∣pn

∣∣∣+ ri−1
∣∣∣pn

∣∣∣+ . . .+ ri−c
∣∣∣pn

∣∣∣pc−1, ∀ i ∈ c
and

HU(c) = ri−c
∣∣∣pn

∣∣∣+ ri−c+1
∣∣∣pn

∣∣∣+ . . .+ ri
∣∣∣pn

∣∣∣ρ(p∣∣∣si), ∀ i ∈ p

 (11)

This hash is composed of [Rc, HU(p), c] and [RU, Hu(c), c] ∀
{
Rc, RU, pn, r, c

}
and is subject to

verification using the user ID and session key as follows,

Ksi j = HMS
[
HU j(Id)

]∣∣∣pn
∣∣∣+ ri− j , ∀ i ∈ c and j ∈ p

and

Kv =
c∏

i=1
gi
∣∣∣pn

∣∣∣− (i− p)

 (12)

where Ks and Kv are the secret and verification keys generated for the hashes, and therefore in the
sharing process, Ks[HMS(p), R, c] is contributed to the end-user. At the receiver end, the Kv is used
for verification. If the process of sharing the records is sequential, then i ∈ c is sequential until p or
the likelihood N(p) occurs. This is followed for all [HMS(p), R] until the c = p is reached, and then
the coherency of HU(c) = HU(p) until ρ(s

∣∣∣p) is observed. The verification of the process is also
sequential by mapping R×R1 to p → RU where RU is observed from the range of hashes from 1 to
ρ(s

∣∣∣p1, p2, . . . pc) . The first sharing verification is performed as
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[HMS(1||B), r] =[HMS(1||B), Ks]

[HMS(2||B), r] =[HMS(2||B), Ks]
...

[HMS(p||B), r] =[HMS(p||B), Ks]


(13)

where, B denotes the blockchain record for the grouped storage of [R, c] after the hashing process.
In the verification at the user end, the relevance is first validated, followed by the verification process
as in Equations (14) and (15) respectively.

HMS(p||B), r] =



[Hu (p
∣∣∣∣∣∣B) pn

, r
]

(or)
[Hu(p

∣∣∣∣∣∣B), rc−p

(or)
[Hu(p||B), cρ(si|P)], i ∈ c)

(14)

∏c
i=1 ρ(pi

∣∣∣s)ρs

(1− ρs)
, HMS(P||B), Ks

 =
 c∏

i=1

Bi.HU(Id)iKvi , r

 (15)

In the above, the range of c is valid until p, i.e., the N(p) is the halting factor for sequential
authentication. In the verification process, sequence as mapped in R×RC → RU is the balancing
factors where the sending and receiving sequence until ρ(p

∣∣∣s) is obtained. In this case, the converging
interval of the proposed method is extended until the c, i.e., the restricted time from 1 to p is extended
from p to c in a concentric manner. The next sequence for p to c authentication is discussed in Case 2.

Case 2: The sharing sequence experiences ρp.
Analysis 2: This case is unique as both sequential and concurrent authentication is performed

with interfering with other processes. It is to be noted that the convergence time from the sequential
process is experienced to ρ(p

∣∣∣s1, s2, . . . sc) from the ρp. This helps to identify more ρ(s
∣∣∣p) , and thus the

concentricity of the authentication process is expanded, reducing the chances of convergence. In this
authentication process, both HMS and HU are used for performing secure sharing between the medical
server and the end user. The blockchain is updated with p andN(p) along with the previous sequence
for the appropriate user ID. Therefore, the session is initiated by verifying the following

[HMS(p||B), (c− p)] =[HMS(p||B), Ks, p], ∀ p to c in the medical server
and

[HU( c− p||B), c] =[HU(c− p)
∣∣∣∣∣∣B, Kv, c], ∀ preceived by the end user application

 (16)

There are two verification steps followed for authenticating the sharing due to the fluctuating
instances in ts. The first authentication follows Equation (14), whereas the range from p to c follows

[HMS(p||B), c− p] =


[HMS (p

∣∣∣∣∣∣B) c−p
, c

]
(or)

HMS(c− p)
∣∣∣∣∣∣B, ρ(p

∣∣∣si), i ∈ c
and

[HU
(
c− p||B), ρp

]
=

c∏
i=1

Bc−iHU(Id)iKv.(v− p)i


(17)

The above process of authentication in sharing and receiving B is performed in both the medical
server and the end user. Finally, the received B is verified using 1 to p sequence as in Equation (15),
whereas the t to c received B is verified as follows.

[HMS(ρ||B), (c− p), Ks] = [Hu( c− p||B), HU(Id ), Kv, c− p)]∀ i ∈ p to c (18)
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This verification is processed for all the fluctuating shared R through the classification process.
This prevents unnecessary convergence and overload complexity in handling medical records at
different time instances. In Table 4, the ρs and ρp for the varying p in different sharing time along with
the complexity is tabulated.

Table 4. ρs and ρp and Complexity.

p ρs ρp ts(s) Complexity c

1 0.59 0.38 14.72 0.12 380
2 0.74 0.23 37.49 0.069 887
3 0.64 0.33 46.44 0.052 1028
4 0.43 0.52 78.37 0.083 1849
5 0.74 0.24 78.19 0.064 2053
6 0.69 0.29 88.43 0.087 3188
7 0.82 0.15 79.77 0.042 2207
8 0.54 0.43 69.29 0.103 1352
9 0.59 0.38 76.13 0.096 1511
10 0.73 0.26 84.22 0.067 2733

In Table 4, the complexity is computed as the number of additional hashes generated due to ρp to
the actual existing hashes. The complexity is measured in terms of count of additional steps required
for verification and authentication as observed in the keying process. If the impact of attacks is high,
then the ρp factor increases to prevent unnecessary data tampering or modification. Hence, in this case,
the number of c fluctuates as the classification is grouped under both the sharing instances.

5. Performance Analysis

The performance of the proposed BDL–IBS is assessed using simulations using an opportunistic
network environment. In this environment, a maximum of 100,000 EHRs (unique and repeated) are
shared for 110 users in different time instances. A user is capable of generating four Qs at the same
time, for which the sharing interval is 90 s (max). The medical server of storage 4 × 1 TB is used
for storing LHRs, and two blockchain servers with restricted read/write access are configured in this
simulation environment. The medical server is capable of dispatching 20 records of size 70 mb in 1 s
time. The maximum wait time for a record is 60 s, and the hash process follows hyperelliptic curve
cryptography of a maximum size of 160 bits. Similarly, Kv and Ks is fit as 48-bits and 36-bit, respectively.
Using this simulation environment, the existing 31FF [23], BDe HA [26], and SCNN–DGT [16] methods
are considered for comparative analysis. For this comparative analysis, the metrics sharing ratio,
response time, computation time, and convergence time are analyzed.

5.1. Successful Sharing Ratio

The proposed security system relies on record—user-access-based trust and differential
authentication to improve the successful sharing of EHRs. The trust-based relationship between
ρa and R/Q is validated for the possible conditions in Table 2, generating τ(tv) and τ at different
instances. In the sharing instances, pursuing/pausing sharing is determining based on ρa > R

Q or
ρa < R

Q conditions. This condition-based decision-making determines ts for (p + 1) to c instances and

or ts for
( p+1

2 to c
)

instances in either sequential/concurrent manner. The concentric sharing process
follows tsc for any instance of τ(tv); if the τ(tv) is maximum, then the sharing is performed either in a
sequential or concurrent manner. In this process, the blockchain updates the trust for the linear ρa

and R
Q relation, which remains unchanged. Therefore, sharing for varying time and EHRs follows

conditional satisfaction as in Table 2, achieving a high successful sharing ratio (refer to Figure 4a, b).
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Figure 4. (a) Successful sharing ratio versus sharing time. (b) Successful sharing ratio versus
shared records.

5.2. Response Time

The sharing time ts < tv is ensured in all the instances of EHR processing for the received Q.
If tv < ts is observed, then the response time increases. For analyzing the instances of sharing c,
the variable τ and τ(tv) is differentiated. In this case, tsc for ρa > R

Q is estimated as tv −
(Qc−Rc

Qc

)
tsc
c

and tv −
(
1− Rc

Qc

)
ρatsc independently. If the condition ts < tv is achieved, then the varying point p

is identified to differentiate the sharing of EHRs. Therefore, the joint sharing is not facilitated for
trust varying or condition 1 (Table 2), dissatisfying users. Hence, a small wait time in a response is
experienced; this disintegrates the conditions of ts < tv, where concurrent sharing and authentication
is performed without additional wait time. Therefore, for the conditions 1 and 2, the response time for
a Q from the end user is less compared to the other methods (refer to Figure 5).
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5.3. Computation Time

Figure 6 presents the computation time of the proposed system as a comparative analysis with
the existing methods. The authentication computing process requires either of the instances based
on p, from which HMB and Hu are commonly adapted for the varying impact of untrusted users
(classified under conditions 3 and 5 from Table 2). This helps to process the same number of c with
the different authentication process and thereby reduces the complexity and required computations
in the sequential sharing. Instead, the concurrent dissemination process of the records requires a
change in first-level authentication as Equations (12) and (17) to satisfyN(p), confining ts within tv.
Therefore, the required computation increases by 1, and hence some additional time for verifying the
second authentication is required. The verifying process is common in both the instances, demanding
less/same time of computation. Hence, the overall computation time is differentiated by ρp, and ρ(p

∣∣∣s)
and ρ(s

∣∣∣p) is less in the proposed security system.Healthcare 2020, 8, x 14 of 17 
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5.4. Convergence Time

The proposed security system achieves less convergence time in the authentication process.
The convergence is identified using the classification of p based on the occurrence of the ρp and ρs.
Following the classification process,N(p) for ρ(p

∣∣∣s i), i ∈ c or ρ(p i|s ), the converging time is identified
in forehand, restricting in breaches in sharing and shared data tampering. Therefore, the identification
based on p andN(p) helps to divide the authentication for ρa > R

Q and ρa < R
Q instances. The verification

and authentication observed for the above conditions are different, without generating different point
and probabilities. Here, detection of p segregates the authentication process for sequential and
concurrent instances as 1 to p and p to c without requiring a new hash or verification procedure.
As the number of convergence increases, the concurrency is increased without requiring additional

computation steps. Therefore, the probabilistic classification of
c∏

i=1
ρ(pi

∣∣∣∣∣∣s) and
c∏

i=1
ρ(p

∣∣∣∣∣∣si) for N(p)

achieves less convergence in the proposed security system (refer to Figure 7). In Table 5, the comparative
analysis results are tabulated.
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Table 5. Comparative Analysis.

Metrics SIFF BDeHA SCNN-DGT BDL-IBS

Successful sharing (%) 82.92 86.55 89.76 93.44
Avg. Response Time (s) 40.46 32.56 20.12 12.21

Avg. Computation Time (s) 4.192 3.407 1.552 1.172
Converging Time/ms 188.09 169.43 146.89 126.7

From Table 5, it is seen that the proposed security system is capable of achieving better performance
by reducing the response time and increasing the ratio of successful sharing through trust-based
validations. In the authentication process, the computation and converging time are found to be less
since the instances of sharing are segregated based on p.

As in Table 5 and in Figure 8, the proposed security system achieves a very high performance
for analyzing various attacks. The better performance is achieved by consuming low response time,
less computation time and reduced converging time. As opposite, it achieves a high successful
sharing rate.
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6. Conclusions

This paper introduced a blockchain and distributed ledger-based improved biomedical security
system for improving the privacy and security of EHRs. This security system relies on the blockchain
paradigm for providing trust validation through linear decision-making. The authentication of
EHRs is preceded using classification-based learning for identifying sequential and concurrent
sharing. The process is focused on both user-level and sharing-level security and privacy of the
biomedical systems. The classification of sharing instances helps to reduce the complex and overloaded
computations in the authentication process with less computation time. The blockchain technology
coupled with this process helps to share trust-related information and differentiate the sharing based
on classification instances. The experimental analysis of the proposed security system shows that it is
capable of increasing the sharing ratio by 8.077% and 7.03% for sharing time and records, respectively.
It also achieves 20.11% less response time compared to the other methods. In the case of authentication,
the proposed system confines computation and convergence time by 10.26% and 12.31%.
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