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A computational approach 
for the discovery of significant 
cancer genes by weighted mutation 
and asymmetric spreading strength 
in networks
Jorge Francisco Cutigi1,3*, Adriane Feijo Evangelista2, Rui Manuel Reis2 & Adenilso Simao3

Identifying significantly mutated genes in cancer is essential for understanding the mechanisms 
of tumor initiation and progression. This task is a key challenge since large-scale genomic studies 
have reported an endless number of genes mutated at a shallow frequency. Towards uncovering 
infrequently mutated genes, gene interaction networks combined with mutation data have been 
explored. This work proposes Discovering Significant Cancer Genes (DiSCaGe), a computational 
method for discovering significant genes for cancer. DiSCaGe computes a mutation score for the genes 
based on the type of mutations they have. The influence received for their neighbors in the network is 
also considered and obtained through an asymmetric spreading strength applied to a consensus gene 
network. DiSCaGe produces a ranking of prioritized possible cancer genes. An experimental evaluation 
with six types of cancer revealed the potential of DiSCaGe for discovering known and possible novel 
significant cancer genes.

Cancer cells undergo a large number of somatic mutations, of which most are passenger mutations, i.e., typically 
random mutations that do not contribute to carcinogenesis1. A critical issue in cancer genomics is identifying 
a small group of significant mutations for cancer, i.e., those responsible for cancer initiation and progression, 
called driver mutations (a gene containing driver mutations can be called driver gene or significant gene). Such 
a task is challenging since cancer is characterized by a high heterogeneity of genetic mutations, i.e., a small num-
ber of genes is mutated at high frequency in a cohort of patients, and a high number of genes is low-frequency 
mutated2,3. This phenomenon is known as “long tail”, and is related to an intrinsic difficulty in identifying 
commonly mutated genes through their mutation frequency. Some mutated genes in the tail (at low mutation 
frequency) can have an important biological role in tumorigenesis, thus posing a statistical difficulty since it 
is not enough to mention that genes with the highest frequency of mutation are drivers. The advent of next-
generation sequencing technologies (NGS) has generated a large volume of biological data in a short time, which 
are subsidies for several computational methods for the identification of significant mutations in cancer genes4–8.

Computational methods have adopted several strategies to overcome this issue, such as gene interaction 
networks, used to study mutated gene’s interactions and their influence on networks9–13. Network analysis is 
essential, since genes affected by driver mutations tend to participate in common biological activities14. Further-
more, somatic mutations can alter gene function and, therefore, its entire pathways15.

This manuscript introduces DiSCaGe (Discovering Significant Cancer Genes), a computational method for 
prioritizing significant genes for cancer. Such significance is directly related to the impact of different mutation 
types and gene interactions on networks. DiSCaGe is based on the hypothesis that genes involved in cancer tend 
to interact with each other16, and the mutations they undergo can influence their neighborhood. This influence 
is extracted from asymmetric spreading strength measures of all node pairs, which take into account direct and 
indirect neighbors on the network. Such spreading strength is used to quantify how much its neighborhood’s 
mutated genes can perturb a gene.

DiSCaGe prioritized mutated genes in six types of cancer: breast invasive carcinoma (BRCA), colorectal ade-
nocarcinoma (COADREAD), glioblastoma multiforme (GBM), lung adenocarcinoma, prostate adenocarcinoma 
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(PRAD), and stomach adenocarcinoma (STAD). The method uses mutation data sets and two gene interaction 
networks: Reactome Functional Interactions (ReactomeFI) and Human Protein Reference Database (HPRD). 
Cancer mutation data were subjected to a preprocessing routine, and networks underwent a link prediction 
process. Lists of prioritized genes were evaluated concerning precision and discounted cumulative gain, using 
recent cancer driver genes benchmarks. The results showed DiSCaGe’s potential for discovering known and 
possible novel cancer genes, including very-low-frequency mutated genes.

Results
DiSCaGe overview.  DiSCaGe uses cancer mutation data (SNVs and InDels in an MAF file format) and a 
set of N ≥ 1 undirected and unweighted gene interaction networks (in edge lists) as input, whereas the output is 
a ranking of prioritized mutated cancer genes. DiSCaGe is composed of 6 steps, as illustrated in Fig. 1. In Step 1, 
a weighted mutation matrix (WMM) is built and assigned a real value for each patient-gene pair, according to 
the weight defined for the variant classification of the mutation and the number of mutated patients. Step 2 uses 
WMM to obtain a mutation score for each gene, called weighted mutation frequency. Next, in Step 3, a union 
operation is performed on the gene interactions networks, resulting in an undirected and weighted consensus 
gene interaction network. In Step 4, a gene spreading strength network (GSSN) is obtained, according to the 
spreading strength from a gene to its direct and indirect neighbors. Step 5 extracts a mutation influence exerted 
on all genes by their neighbors, based on GSSN and gene mutation scores. Finally, in Step 6, each gene mutation 
score is enriched with the neighbors’ influence, and a sorted list of prioritized genes is obtained. All the steps are 
described in the Methods section. The algorithms and a running example can be found in the supplementary 
material.

Experimental study.  The following six cancer mutation data sets were selected for the experiments that 
aimed at finding significant mutations. Such types are among the most common types of cancer, according to 
World Health Organization17, and GBM commonly appears in method’s evaluation in several studies: (1) Breast 
invasive carcinoma (BRCA); (2) Colorectal adenocarcinoma (COADREAD); (3) Glioblastoma multiforme 
(GBM); (4) Lung adenocarcinoma (LUAD); (5) Prostate adenocarcinoma (PRAD); and (6) Stomach adenocar-
cinoma (STAD). MAF files (Mutation Annotation Format) with Single Nucleotide Variants (SNVs) and Inser-
tions and Deletions (InDels) were extracted from a Pan-Cancer study of TCGA​3 through cBioPortal (https://​
www.​cbiop​ortal.​org/​datas​ets), which is an interactive platform for the exploration of cancer data18,19. Mutation 
weights used in the experiments are presented in the supplementary material. The enriched versions of the fol-
lowing two gene interaction networks were used on DiSCaGe execution: (1) Reactome Functional Interactions 
(ReactomeFI)20–22; and (2) Human Protein Reference Database (HPRD)23,24. The selected networks were sub-

Figure 1.   DiSCaGe overview.

https://www.cbioportal.org/datasets
https://www.cbioportal.org/datasets
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jected to an enrichment process towards inferences about possible new interactions among the genes (see Gene 
interaction networks for further details).

Evaluation metrics.  The evaluation of computational methods that identify significant mutations in cancer 
remains a challenging task. The lack of gold-standard databases for driver and passenger genes hampers obtain-
ing an optimal measure of the output. Nonetheless, some gene databases are widely used and continuously 
updated. Towards a well-defined set of known cancer genes, the following six reliable and recent available bench-
marks were considered: 

1.	 A DNCG set of 711 known cancer drivers extracted from the Network of Cancer Genes (NCG) (Version 
6.0—http://​ncg.​kcl.​ac.​uk/​downl​oad.​php)25.

2.	 A DCGC set of 723 driver genes extracted from Cancer Gene Census (CGC) (Version 92, 27-Aug-20—https://​
cancer.​sanger.​ac.​uk/​census)26,27.

3.	 A DIntOGen set of 568 driver genes extracted from Integrative OncoGenomics (IntOGen) (Release 2020-02-
01—https://​www.​intog​en.​org/​search)28.

4.	 A DBailey set of 299 driver genes extracted from the recent and extensive study conducted by3 (Baylei et al. 
2018—https://​pubmed.​ncbi.​nlm.​nih.​gov/​29625​053/).

5.	 An FDNCG set of 250 genes listed as possible false positive drivers (Version 6.0—http://​ncg.​kcl.​ac.​uk/​false_​
posit​ives.​php) by the Network of Cancer Genes (NCG).

6.	 Six SDcancer_type
IntOGen  sets of specific drivers for each type of cancer, based on the known specific driver from 

IntOGen, i.e., each set contains genes related to a specific type of cancer, whose specific benchmark is essen-
tial, since many genes are important in specific types of cancer, and probably irrelevant in others29. The sets 
SDBRCA

IntOGen , SD
COADREAD
IntOGen  , SDGBM

IntOGen , SD
LUAD
IntOGen , SD

PRAD
IntOGen , and SDSTAD

IntOGen have 99, 72, 35, 42, 82 and 61 specific 
drivers, respectively.

With these sets of known driver gene benchmarks, the following metrics were used to evaluate the proposed 
approach:

•	 Precision: the fraction of prioritized genes that are known to be related to cancer. The precision of the rank-
ing can be computed and is obtained by Precision =

|PG∩D|
|PG|  , where PG is the set of prioritized genes, and D 

is the set of known driver genes. A union of the four described benchmarks was performed to obtain set D, 
resulting in a single set of 951 known cancer drivers, i.e., D = DNCG ∪ DCGC ∪ DIntOGen ∪ DBailey.

•	 Discounted Cumulative Gain (DCG): a measure that considers the relevance of the genes and their position 
in the ranking, being reduced logarithmically, proportional to this position30. DCGp of a ranking of genes up 

to position p is defined as DCGp =
∑PGp

i=1
rel

ctj
gi

log2(i+1) , where PGp is the ranking list of p prioritized genes and 

rel
ctj
gi  is the relevance of a gene gi in cancer type ctj . Such relevance is calculated by incrementing 1 whenever 

gi is contained in DNCG , DCGC , DIntOGen , or DBailey . If gi is contained in specific driver benchmark SDctj
IntOGen , 

then relctjgi  is incremented by 4 (thus, specific cancer drivers have the same weight if it appears in all four 
general benchmarks), if it is contained in FDNCG , then relctjgi  is decreased by 1. Finally, if gi is not in any gene 
set, its value is zero.

Top 30 genes on benchmarks.  The top 30 prioritized genes for each type of cancer were selected to be presented 
in a matrix for each type, that shows the presence of prioritized genes on the benchmarks, as seen in Fig. 2. 
Each driver gene benchmark is presented in a row with a specific color, and genes discovered by DiSCaGe are 
presented in the columns; for example, NCG is the first row and has the green color. If a gene is contained in the 
benchmark, the matrix cell is colored; otherwise, it is white. It can be noticed how the genes are arranged on the 
benchmarks and show that results are consistent. Some important genes appear in the results, which are reported 
on most benchmarks. Few genes do not appear in any benchmark, which can be subjected to further analysis.

Comparison with related methods.  In this experiment, DiSCaGe is compared with related methods MutSigCV31, 
MUFFINN10, and nCOP11, which were employed with standard parameters and configurations towards avoid-
ing possible running influence, described as follows: (1) MutSigCV: executed with only MAF file. A difference 
in the preprocessing routine was assigned to MAF files for MutSigCV, in which Silent mutations were kept in 
MAF, as they are mandatory data for the method, which uses them to extract the background mutation rate; (2) 
MUFFIN: executed with the number of mutated patients for each gene as the gene mutation score (mutation 
occurrence data). MUFFINN has four variations, which are a combination of the approach (DNmax or 
DNsum) with the gene network (STRING or HumanNet). DNmax + HumanNet was selected for this experi-
ment because it provided the best results; and (3) nCOP: executed with its preprocessed HPRD gene network 
with no weights for the nodes in the network. The optimal value for alpha was obtained for nCOP itself.

Figures 3 and 4 display precision and DCG, respectively, for all methods. The results show variations accord-
ing to the type of cancer and the top N value. For example, considering precision, for BRCA, nCOP is better for 
N nearly from 15 to 100. In general, DiSCaGe outperformed all methods for most values of N for COADREAD, 
GBM, PRAD, and STAD. DCG showed a higher variation in the results. Although DiSCaGe outperformed all 
methods for PRAD, this performance was neither dominant nor explicit for the other types of cancer. nCOP is 

http://ncg.kcl.ac.uk/download.php
https://cancer.sanger.ac.uk/census
https://cancer.sanger.ac.uk/census
https://www.intogen.org/search
https://pubmed.ncbi.nlm.nih.gov/29625053/
http://ncg.kcl.ac.uk/false_positives.php
http://ncg.kcl.ac.uk/false_positives.php
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clearly better for BRCA, and MutSigCV yielded promising results for STAD and GBM up to N nearly 60. DiS-
CaGe outperformed all methods for COADREAD, GBM, and STAD for N larger than nearly 75.

Prioritization of low‑frequency mutated genes.  DiSCaGe can find low-frequency cancer mutated genes. Fig-
ure 5 shows the long-tail chart for each cancer data set studied. The top 30 prioritized genes are highlighted 
in the charts, where red dots are genes known to be related to cancer, and blue ones are possible cancer genes 
prioritized by DiSCaGe. The gene names can be observed in the matrix of Fig. 2, in which the blue genes are not 
contained in any benchmark, i.e., the matrix column is composed of only white cells. Several prioritized genes 
are on the tail of the graph, thus showing the potential of DiSCaGe for prioritizing known and low-frequency 
cancer genes and possible novel ones.

Automated literature‑based analysis and in silico validation.  As shown in Figs. 2 and 5, some genes are not in 
any driver gene benchmarks. Their prioritization suggests they can potentially be novel cancer genes. Towards 

Figure 2.   How top 30 genes appear in benchmarks.
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Figure 3.   Precision of DiSCaGe and related methods: shows the fraction of prioritized genes (y-axis) contained 
in the known driver benchmarks for a specific number of genes (x-axis).

Figure 4.   DCG of DiSCaGe and related methods: the relevance (y-axis) of a ranking of a specific number of 
genes (x-axis), taking into account their position in the ranking and their appearance in the driver benchmarks.

Figure 5.   Low-frequency mutated genes.
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a secondary study on those genes, an automated literature review was performed using CancerMine29, a recent 
tool based on text mining. CancerMine provides information on genes in the cancer context, classifying them 
as drivers, oncogenes, and tumor-suppressor genes, through mining research papers. Figure 6 displays, for each 
type of cancer, the genes that are not in the driver benchmarks and their respective number of citations found by 
CancerMine (Query performed on February 2021).

Most genes were cited as cancer genes at least once in the research papers, which suggests even prioritized 
genes that are not in driver benchmarks can be related to cancer. The remaining non-classified genes should be 
further evaluated and suggested as possible novel genes for their respective cancer types. Although it is a second-
ary study, this experiment allows comparing genes known to be drivers with genes not yet known.

To address the biological impact of the findings, we also used the Cancer Genome Interpreter (CGI) datasets 
to identify drug response and known drivers32. The CGI knowledge bases for drug predictions are represented 
by several publications, the CIVIC database, ASCO and ESMO abstracts, FDA guidelines, among others. The 
known drivers from CGI datasets represent a complete reference from literature, also including the OncoKB 
precision oncology knowledge base and ClinVar information about genomic variation. Such analysis showed 
that genes found by DiSCaGe are associated with drugs and are known drivers, reinforcing the relevance of the 
findings. The gene sets are presented in the supplementary material.

Discussion
This work introduced DiSCaGe, a computational method for discovering significant genes for cancer, which takes 
into account weighted mutations in genes and how they can affect network neighborhood through an asymmetric 
spreading strength measure. DiSCaGe was built to be easy to use by the end-user, demanding mutation data and 
gene networks as input in standard formats. Additionally, the user must define mutation weights, with no need 
to define unclear hyper-parameters, thus facilitating the use. An experimental evaluation was conducted with 
a set of known cancer genes benchmarks and an automated literature review of genes prioritized by DiSCaGe. 
DiSCaGe was able to (1) prioritize genes known to be related to cancer, (2) prioritize genes related to cancer 
with low mutation frequency, (3) suggest genes that are not in benchmarks but are cited in research papers as 
cancer-related ones, and (4) suggest possible novel cancer genes.

DiSCaGe presents several differences in comparison with related methods. Most methods use the simple 
frequency or a binary mutation matrix to compute the mutation score, such as MUFFINN10, nCOP11, and 
MEMo9. DiSCaGe employs a simple way to get weighted frequency based on the definition of weights on the 
impact of each type o mutation. Such impacts are user-centric, i.e., the final user can define the weights based 
on the objective of the analysis. DriverML33 automatizes the definition of the impact of mutation types through 
a machine-learning approach, based on previous information. Related to the use of gene interaction networks, 
nCOP seeks to identify connected subnetworks that are significant altered across the patients, using these find-
ing to ranking the genes, while DiSCaGe does not consider the subnetworks, only the gene neighborhood. In 
this way, MUFFINN is closely related to DiSCaGe, but the neighborhood influence is obtained through the 
maximum of the direct neighbor mutation score or the sum of the direct neighbor, divided by its degree. Also, 
DiSCaGe differs on using the union network to infer the spread strength from a mutated gene, thus consider-
ing it on the neighbor influence. Gene interaction networks are the only previous knowledge information that 
DiSCaGe employs for cancer gene prioritization. None previous information about the gene cancer significance 
is used. The machine-learning methods use these known cancer genes in order to discover possible novel ones. 
MutSigCV31 is a frequency-based method that estimates the background mutation, while other methods, such 

Figure 6.   A secondary study for the DiSCaGe results: Number of papers (y-axis), reported by CancerMine, 
that mention specific genes (x-axis) as “cancer gene”. DiSCaGe prioritized the presented genes, and they are not 
contained in any known driver gene benchmark.
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as Dendrix34 and WExT35 uses only mutation data to infer a group of mutually exclusive genes. DiSCaGe does 
not employ such features.

A limitation of the work refers to a lack of a systematic biological evaluation of the findings. Despite being a 
complex task, further laboratory in-vitro and in-vivo investigations can be performed to confirm the results of 
experiments. In this study, it was used an in silico validation using datasets from knowledge bases to assess the 
relevance of the findings, showing the potential of DiSCaGe to find several genes associated with drugs. However, 
several other genes could be evaluated as potential novel information, which is beyond the scope of this study. 
Also, DiSCaGe can be subjected to a pan-cancer study to be evaluated in a large number of cancer types, thus 
providing subsidies for its characterization and understanding of cases in which it can be appropriately used. 
Furthermore, DiSCage could allow the analysis of synonymous mutation. A natural extension of DiSCaGe is 
to allow the method to suggest possible driver pathways with the use of the final network and gene mutation 
score for finding significantly related genes. Finally, the development of an online tool will facilitate the use of 
DiSCaGe by end-users.

Methods
Step 1: Building the weighted mutation matrix.  In this first step, the preprocessed MAF file is used as 
a source for the construction of the Weighted Mutation Matrix (WMM), in which rows are patients and columns 
are genes. In WMM matrix wmm, entry wmmpigj , for each pair of patient pi in the set of patients P and gene gj in 
the set of genes G, a score is obtained according to its type of mutation vc (Variant_Classification from 
MAF input file) and in a weight w(vc) assigned for each vc. Such weights can be defined by the user in the input 
of the method according to the purpose of the analysis and the user’s knowledge about the mutation data. How-
ever, there is a list of predefined weights in the method, which was predefined based on the functional impact of 
each mutation related by experts in cancer genomics.

Considering a patient pi , and all mutations in a gene gj , entry wmmpigj is defined as

where VCpigj is the list of mutations that patient pi undergoes in gene gj , and w(vc) is the weight defined for the 
type of specific mutation.

Such a process is performed for all patient-gene pairs. Therefore, all pairs of a mutated gene gj in a patient pi 
have a score wmmpigj , which represents the importance of that mutation in that patient. The weighted frequency 
of mutations is used to consider the mutations and the possible functional impact of them and because some-
times it is necessary a set of mutations to initiate the cell carcinogenesis. Furthermore, the use of average avoids 
possible errors and noise in the sequencing data.

Step 2: Generating a mutation score for each gene.  A single score for each gene is extracted from 
wmm, and called weighted frequency wf (gi) , which is the sum of the gene scores for all patients, divided by the 
number of patients, defined as

where P is the set of patients. Such a frequency is extracted for all genes, generating a set wf with weighted fre-
quencies for all genes. The single final score is normalized by the largest value in wf, thus yielding a normalized 
weighted frequency nwf (gi) , defined as

Step 3: Consensus of gene interaction networks.  An important component of DiSCaGe is the gene 
network, which significantly impacts the method result. Towards reducing the bias of choice of a single network, 
DiSCaGe accepts multiple networks as input, i.e., the method can be executed with one or more networks.

Each gene network GNi of the input set GN1, ...,GNN was treated as undirected and unweighted networks. 
The union operation on these networks generates an undirected and weighted network UGN. Weights on UGN 
interactions are the average of times an interaction occurs in each network, i.e., the original interactions are 
maintained, and a bigger weight is assigned to the interactions that appear more times. With this, such interac-
tions would be more likely to exist, once they are in more networks.

Step 4: Extraction of the Gene Spreading Strength Network (GSSN).  According to the local 
hypothesis16, genes (and their associated proteins) involved in a specific disease tend to interact with each other, 
and some mutations can influence other genes in the same pathway36. In this context, if a gene is mutated, such 
a mutation can impact its neighbors and propagate to the network.

An adapted spreading strength measure proposed by37 was defined for quantifying the spreading strength of 
a mutated gene through the neighborhood in UGN. Such a measure takes into account both direct and indirect 
neighbors, and quantifies the spread of a mutation from a node gi to a node gj , defined as

wmmpigj =
1∣∣∣VCpigj

∣∣∣

∑

vc∈VCpigj

w(vc)

wf (gi) =
1

|P|

∑

pj∈P

wmmpjgi

nwf (gi) =
wf (gi)

maxg∈G(wf (g))
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where ri is the sum of the edge weights of gi ; routj  is the sum of the edge weights of gj that are not edges of gi , i.e, 
routj =

∑
g∈(N(gj)\N(gi))

p(gj , g) , where N(g) is the set of neighbors of g and p(gi , gj) is the weight of edge 
(gi , gj) ∈ UGN  ; and pij = p(gi , gj) . The spreading strength is an asymmetric measure, i.e, ss(gi , gj)  = ss(gj , gi) . 
Considering the term (1+ ri × routj ) , value 1 represents a single spreading from gi to gj and ri × routj  denotes the 
impact of gi through gj , taking into account their indirect neighbors which are direct neighbors of gj . At the end, 
such a value is tuned by the weight of the edge (gi , gj) . The final spreading strength measure is normalized by the 
largest value of ss, thus obtaining a normalized spreading strength nss(gi , gj) , defined as

After the extraction of the normalized spreading strength measure for all neighbor genes, a directed and weighted 
network, called Gene Spreading Strength Network (GSSN), is obtained. In GSSN, directed interaction weights 
represent the degree of spreading at which a mutation in a gene gi can pass through a gene gj . Finally, the muta-
tion score of each gene is assigned to the GSSN network.

Step 5: Extraction of mutation neighbors influence.  The spreading strength among genes represents 
how much a single gene can be affected by mutations of its neighborhood, and how much it can affect its neigh-
bors. In this step, the received influence of a mutated gene is extracted by a function r(gi) , which represents how 
much influence gi receives from its neighbors, defined as

where N(gi) are direct neighbors of gi on GSSN. After the calculation of r(gi) for all genes of GSSN, a maximum 
value normalization is applied on r(gi) , as follows:

Step 6: Gene mutation score enrichment based on GSSN and gene prioritization.  In this step, 
the final mutation score of each mutated gene g is obtained, taking into account the individual mutation score of 
gene nwf(g) and the influence nr(g) score from its neighbors. The final mutation score ms(gi) of a gene gi is the 
sum of its mutation score and its neighbor’s mutations influence, given by

After ms(g) has been obtained for all genes, the final ranking of prioritized mutated genes is extracted through 
their sorting by ms. Genes with the highest ms values are likely to be significantly mutated and related with 
significantly mutated neighbors.

Data and preprocessing
Cancer data.  The selected cancer mutation data sets were subjected to a preprocessing routine. This is a cru-
cial activity in cancer data analyses, since such data contain a large amount of information that can be suppressed 
(intron region, for example) when exome mutation data are analyzed. Furthermore, outlier samples can also be 
removed from the original data sets. The preprocessing routine involves the following two steps: (1) Mainte-
nance of specific somatic variants: only the following somatic variants were kept in MAF file: 3’UTR​, 5’UTR​
, Frame_Shift_Del, Frame_Shift_Ins, In_Frame_Del, In_Frame_Ins, Missense_Muta-
tion, Nonsense_Mutation, Nonstop_Mutation, Splice_Site, and Translation_Start_
Site; and (2) Removal of hypermutated samples: patients are considered hypermutated when they have a much 
greater number of mutations than most patients in the set. Hypermutated samples should be removed, since 
they are usually noisy or outliers, which can bias the analyses. Among the several strategies that identify such 
samples, we used the one proposed by38, according to which a sample is hypermutated when it contains more 
than (Q3+ 4.5× IQR) somatic mutations, where Q3 is the third quartile, and IQR is the interquartile range of 
the distribution of mutations across all data samples. If a set of hypermutated samples is identified, it is removed 
from the MAF file.

No specific genes were removed from the data set. For example, FLAGS (frequently mutated genes)39 were 
kept in the analyses, since the aim was the evaluation of the proposed approach with all genes of the preproc-
essed data set.

Gene interaction networks.  The following two gene networks that use protein-protein interaction (PPIs) 
as the main source of interactions were selected for the development of the computational approach and the 
experiments: 1) Reactome Functional Interactions (Reactome); and 2) Human Protein Reference Database 
(HPRD). Each network was treated as undirected and unweighted network G = (V ,E) , where set of vertices 
V = {g1, g2, ..., gn} are genes and (gi , gj) ∈ E if gene gi interacts with gene gj.

ss(gi , gj) = (1+ ri × routj )× pij

nss(gi , gj) =
ss(gi , gj)

max(g ,g ′)∈G×G(ss(g , g ′))

r(gi) =
∑

gk∈N(gi)

nwf (gk)× nss(gk , gi)

nr(gi) =
r(gi)

maxg∈G(r(g))

ms(gi) = nwf (gi)+ nr(gi)
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Biological networks are known to be incomplete40,41. A link prediction approach was used in this research 
for inferring interactions among genes in a network. According to the local hypothesis16, two functionally related 
genes are likely to share common neighbors9. Szymkiewicz–Simpson coefficient ( ssc(gi , gj))42, also known as 
overlap coefficient, was used for determining how similar two genes gi and gj can be, as follows: 
ssc(gi , gj) =

|N∗(gi)∩N
∗(gj)|

min(|N∗(gi)|,|N∗(gj)|)
 , where N(g) is the set of neighbors of g, and N∗(g) = N(g) ∪ {g} , which requires 

the union operator so that the direct link between gi and gj can be considered. The overlap coefficient is extracted 
for each pair of nodes of a gene network GN, thus resulting in a new weighted gene network wGN, where the 
weight on the links is the overlap coefficient. A threshold γ was defined for keeping the most significant links in 
wGN, in which only edges of a coefficient higher than γ are maintained in the network. A similar approach used 
by9 was applied for the choice of an appropriate γ threshold, using 186 known pathways derived from KEGG43,44 
and extracted from MSigBD (database v7.2, updated September 2020)45,46. For each pathway p, all links among 
the genes of p are selected and the weight is verified in wGN. The average overlap coefficient among all links of 
p is calculated, while ten random pathways of same size of p are extracted in wGN. The link weight average is 
obtained for each random pathway. As a result, the average overlap coefficient in the network is extracted for 
each real pathway, considering the known pathway and the set of random pathways, in which, as expected, the 
known pathways show a higher overlap coefficient. The results of this analysis suggest only links whose overlap 
coefficient is higher than random choices should be kept in wGN for maintaining interactions likely to participate 
in biological processes. Therefore, the median of values of all random pathways was considered. The thresholds 
obtained were γ = 0.16 , and γ = 0.20 , for Reactome, and HPRD, respectively. A non-weighted enriched gene 
network eGN was extracted for each network wGN, in which the weight of all links in eGN is higher than γ in 
the respective wGN. The enriched gene networks were called by their original names, with prefix e (e.g., the 
enriched version of HPRD was called eHPRD).
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