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Abstract: This paper is a collection of selected contributions of the 1st International Workshop on
Mechanochemistry of Metal Hydrides that was held in Oslo in May 2018. In this paper, the recent
developments in the use of mechanochemistry to synthesize and modify metal hydrides are reviewed.
A special emphasis is made on new techniques beside the traditional way of ball milling. High energy
milling, ball milling under hydrogen reactive gas, cryomilling and severe plastic deformation
techniques such as High-Pressure Torsion (HPT), Surface Mechanical Attrition Treatment (SMAT)
and cold rolling are discussed. The new characterization method of in-situ X-ray diffraction during
milling is described.

Keywords: Mechano-synthesis; cryomilling; high-pressure torsion; cold rolling; metal hydrides;
reactive ball milling; surface mechanical attrition; in-situ characterization.

1. Introduction

Since the pioneering work of Benjamin, mechanochemical treatment has been extensively used to
produce new materials or to enhance properties of existing alloys [1,2]. In the field of metal hydrides,
the most extensively used method has been ball milling. Very interesting and important results were
achieved by using ball milling to synthesize and modify metal hydrides. However, other techniques
should be considered as they could bring other types of effect on the metal hydrides and also may be
more appropriate for industrial applications.
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From an historical point of view, metal or complex hydrides for energy storage applications
were synthesized by solvent-based or by direct solid–gas hydrogenation reactions. Although these
techniques are important, during the past two decades, advanced mechanochemistry has become
increasingly dominating. Traditionally, “ball milling” was used as a grinding technique, e.g., to provide
homogenous well mixed powder samples with reduced particle size for solid-state reactions as well as
for mechanical alloying of metals [3]. Mechanochemistry was considered limited to alloying reactions,
by “random mixing of atoms”.

Today, more advanced techniques are developed, which combine preparation of reactive precursors
for solvent-based synthesis and mechanochemistry [4]. Nevertheless, the technique has advanced
significantly since the usage in “grinding mode”. Today, the ball milling mode is associated with
mechanochemistry. It is one of the most widely accepted and easily employable techniques for materials
scientists, as no Schlenk line manipulations are required [5].

Solid-state chemists widely use “ball milling” for the synthesis and preparation of novel metal
hydrides as new materials for energy storage and battery technologies and, with that, for new solutions
within “sustainable green chemistry”, i.e., solvent free synthesis methods [3,6–8].

Mechanochemical synthesis can be conducted under a range of different conditions, such as
cryogenic temperatures, under inert or reactive atmosphere, or at elevated gas pressures or in a solvent,
and/or with high-impact energy between the reacting compounds [9–11]. Hence, mechanochemistry is
a very versatile technique, which can be employed for preparation of a wide range of novel materials [5].

Hydrogen has an extremely diverse chemistry and forms compounds with most elements in
the periodic table. Mechanochemistry has been widely used to prepare new types of hydrides and
has significantly expanded the variety of compositions and structures of these materials. Initially,
the interest was focused on solid state hydrogen storage [12–15], mainly based on magnesium
hydride [16–18]. Mechanochemistry has provided a variety of new composite samples and knowledge
of additives effect and alloying reactions. In the past two decades, a wide range of complex metal
hydrides have been synthesized using mechanochemistry [19]. These compounds are very interesting
new classes of energy materials for batteries and hydrogen storage applications [20–22].

This review presents the latest achievements in the field using high-energy ball milling, cryomilling,
milling under hydrogen pressure, and milling while investigation via in situ diffraction. In addition,
other mechanochemical methods are discussed. This is justified from a fundamental as well as a
practical point of view. Fundamentally, other techniques could bring different characteristics to the
processed alloys, for example texture, low or high angle grain boundaries, different types of defects,
etc. From a practical point of view, other techniques beside ball milling should be investigated for
large scale applications. Recently, Severe Plastic Deformation (SPD) techniques such as High-Pressure
Torsion (HPT) and Cold Rolling (CR) have been investigated for processing metal hydrides. In the
following, the effect on metal hydrides synthesis and performances of various mechanochemical
techniques are presented and discussed.

2. High-Energy Mechanochemical Synthesis

Deeper knowledge to the chemistry in the “black box”, i.e., the closed ball milling vial, has facilitated
advanced utilization of high-energy mechanochemistry as an adequate tool for material synthesis.
The products obtained with this approach may often be impossible to prepare by standard solvent-based
methods. Moreover, “over-milling” of less stable materials often leads to “destructive chemical
reactions” and to the synthesis of decomposition products. This section introduces the experimental
approach of high-energy ball milling along with selected examples, challenges and pitfalls, which need
to be considered. We add a detailed discussion of which reactions may take place in the vial during
mechanochemical treatment.
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2.1. The Planetary Ball Mill

The planetary ball mill is the focus in this section due to its versatility described below. Nevertheless,
there are types of ball mills with even higher impact energies such as the SPEX shaker mills. Advanced
planetary ball mills, such as the Fritsch Pulverisette (FRITSCH GmbH) No. 4, 5 or 6 are widely used.
And the Pulverisette No. 4 consists of a main disk and two secondary disks, called planets, which have
named the apparatus. Vials containing the reaction mixture and a defined number of balls are mounted
on the top of the planets. The balls and vial are ideally made or coated with the same material, e.g., steel,
tungsten carbide (WC), aluminum oxide (Al2O3) or zirconium oxide (ZrO2). These materials have
different density, hardness and other mechanical properties, which explains why it is best to use the
same material during milling to avoid gradients in hardness and, therefore, avoid destructive forces on
one of the materials.

The vials can be loaded in an inert atmosphere inside a glove box. Typical ball-to-powder mass
ratio is between ~10:1 and ~35:1. The lower is the ratio, the lower is the ball-to-ball and ball-to-vial
friction. Thus, a higher ratio favors a higher contamination of the sample with impurities from balls and
vial material, combined with the hardness and mechanical properties of balls and vial. Modifications
in experimental parameters may compromise the purity of the obtained products.

The main disk and the planets are rotating in opposite directions, and the planets rotate reversely
usually at twice the speed of the main disk. Typical speeds are between 200 and 400 rpm, causing the
balls to move and fly inside the vials. The Fritsch Pulverisette No. 4 allows the speed of the planets,ω,
to be varied independently of the main disk speed, Ω [23]. In fact, the relative rotation speed, ω/Ω,
during mechanochemical treatment determines the trajectory of the balls inside the vial [24]. The ball
trajectories also depend on the mill geometry, i.e., the ratio between the main disk radius, R, and the
vial radius, r. The ball trajectories can be used to subdivide the approach in two regimes: (a) the
traditional grinding mode where the balls follow the circumference of the vial; and (b) the high-energy
mode with ball trajectories approaching the center of the vial. The main focus here is on the latter
high-energy regime.

The ball trajectories through the center of the vial produce large impact energies mainly between
balls and vial wall. This energy can be further optimized using a vial with limited height and larger
diameter. However, ball material density, ball diameter (i.e., mass of balls), ball-to-powder ratio also
determine the impact energy. The impact energy can be calculated according to Refs. [25,26] and are
further discussed in Ref. [3]. The high energies produced by collisions of the balls and vial walls
indicates that few larger balls facilitate high-impact energies rather than many smaller balls.

The variation of the main disk speed, Ω, is necessary to obtain different milling energies,
i.e., higher rotational speeds provide larger impact energies of the balls on the powder material in the
vial. Furthermore, the larger main disk speed provides a larger number of impacts per unit time and,
thereby, increases the total amount of energy transferred to the powder [3]. However, the higher energy
transferred to the material along with the unavoidable frictional energy will heat up the material and
temperatures higher than 100 ◦C may readily be achieved. This, often unwanted, heating effect may be
limited by intervening the mechanochemical treatment by pauses, e.g., 2–5 min milling followed by
2–5 min pause, etc.

2.2. Solvent Free Synthesis of Metal Borohydrides

Metal borohydrides are well known as a reducing agent in organic chemistry [27]. The first
mechanochemical synthesis of metal borohydride was shown in 1953 for the synthesis of sodium
borohydride from boric oxide and sodium hydride (see Reaction (1)) [28,29].

4NaH + 2B2O3→ NaBH4 + 3NaBO2 (1)

A comprehensive overview of the borohydrides and their derivatives can be found in Refs. [30,31].
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Initially, the preferred procedure for synthesizing RE borohydrides was the “solvent-free” approach,
where a RE-chloride and an alkali metal borohydride (Li, Na, and K) are reacted in a one-step
mechanochemical synthesis [31,32]. Thus far, LiBH4 has proven to be the most efficient precursor
during these reactions, possibly due to formation of the stable reaction product LiCl [31–48]. However,
other alkali metal borohydrides, i.e., NaBH4 and KBH4, have been employed as well as rare earth
metal hydrides [49].

Metathesis reaction. The above-mentioned examples mainly utilize the metathesis, or double
substitution reaction. A classic example is the synthesis of Y(BH4)3 from the reactants YCl3−LiBH4 (1:3),
which also results in the formation of the unwanted product LiCl, according to Reaction (2) [36,37].

YCl3 + 3LiBH4→ Y(BH4)3 + 3LiCl (2)

The polymorph α−Y(BH4)3 was previously obtained by a solvent-based method in diethyl ether
using solutions of LiBH4 and YCl3 at room temperature (RT), but this polymorph was also obtained
by ball milling with varying amounts of another new polymorph, β−Y(BH4)3 [36,37]. α−Y(BH4)3

is considered the stable polymorph at ambient conditions, whereas β−Y(BH4)3, is assumed to be a
high-pressure polymorph, but the β-polymorph is also stable at RT [35–37,50]. The β-polymorph
is suggested to form by a α- to β-Y(BH4)3 polymorphic transition due to the high pressure during
mechanochemical treatment.

Addition reaction. Another established but less often observed reaction is the addition. This is
illustrated by the synthesis of KZn(BH4)Cl2 obtained by mechanochemical treatment of a mixture of
ZnCl2 and KBH4 (1:1) [5,51], as shown in Reaction (3).

ZnCl2 + KBH4→ KZn(BH4)Cl2 (3)

It is highly interesting to note that the new compound KZn(BH4)Cl2 contains the heteroleptic
complex ion [Zn(BH4)Cl2]− where Zn coordinates to two chloride ions and two hydrogen atoms in
η2
−BH4, CN(Zn) = 4 [51].

The addition reaction, Reaction (3), clearly create a material with a fully ordered crystal structure,
hence, contrasts the synthesis of the solid solution shown in Reaction (4).

(1−x)LiBH4 + xLiCl→ Li(BH4)1−xClx (4)

Complex mechanochemical reactions. Mechanochemistry has provided a series of new lithium ion
conductors, LiRE(BH4)3Cl, RE = Ce, La, Gd, which likely cannot be prepared by any other method [52].
Initially, a new compound, LiCe(BH4)3Cl, was discovered in a mechanochemically treated sample of
CeCl3–LiBH4 (1:3). The complex reaction is believed to be a coupled metathesis and addition reaction,
described by Reactions (5) and (6), below.

CeCl3 + 3LiBH4→ Ce(BH4)3 + 3LiCl (5)

Ce(BH4)3 + LiCl→ LiCe(BH4)3Cl (6)

The system LaCl3–LiBH4 can be used to illustrate the complexity of the mechanochemical synthesis
as ball milling of this mixture (1:6) results in an addition reaction and a product of LiLa(BH4)3Cl [44,53].

Mechanochemical synthesis experiments in the ZnCl2−MBH4 system clearly proceeds via more
complex chemical reactions [54].

2ZnCl2 + 5LiBH4→ LiZn2(BH4)5 + 4LiCl (7)

2ZnCl2 + 5NaBH4→ NaZn2(BH4)5 + 4NaCl (8)

ZnCl2 + 3NaBH4→ NaZn(BH4)3 + 2NaCl (9)
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Reactions (7)–(9) are assumed to be complex combinations of metathesis and addition reactions.
Surprisingly, Reactions (8) and (9) provide different products despite being conducted at the
same mechanochemical conditions, but only with small differences in composition of reactants.
These observations tend to suggest that a state of chemical equilibrium occurs during mechanochemical
synthesis. Mechanochemistry of reactants with dominantly ionic and covalent bonding clearly can
lead to distinct chemical reactions and are not a statistical distribution of reactants as expected,
e.g., for mechanical alloying of metals.

The structural topology of NaZn(BH4)3 and MZn2(BH4)5, M = Li or Na, are significantly different,
possibly owing to differences in the mechanisms in Reactions (7)–(9). Interestingly, the structures
of MZn2(BH4)5, M = Li or Na, are isostructural and built from two identical interpenetrated 3D
frameworks consisting of isolated complex anions, [Zn2(BH4)5]−. This type of structural motif is
known from open-structured molecular frameworks, so-called metallic organic frameworks (MOF).
The compound NaZn(BH4)3 consists of a single three-dimensional network, containing [Zn(BH4)3]−

(see Figure 1) [54,55] and, thus, reveals the complexity of mechanochemistry.
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Figure 1. Crystal structure of MZn2(BH4)5, M = Li or Na: (a) built from isolated complex anions,
[Zn2(BH4)5] and NaZn(BH4)3; and (b) consisting of a single three-dimensional network, containing
[Zn(BH4)3]− anions [54,55].

Coupled chemical reactions. Reactions (7)–(9) illustrate the general drawback of metathesis related
reactions. It shows that ionic compounds may contaminate the products—most often binary alkali
metal halides but in some cases also ternary halides. Formation of LiZn2(BH4)5 in Reaction (7) proceeds
completely, i.e., with formation of LiCl as the only side product, in contrast to NaZn2(BH4)5 and
NaZn(BH4)3, Reactions (8) and (9), which only proceeds partly due to presence of a simultaneous and
competing reaction forming a ternary metal chloride (see Reaction (10)).

ZnX2 + 2MX→M2ZnX4 (10)

This type of side reactions seems to be more pronounced the heavier the halide and alkali metal
elements are, e.g., the ease of formation order of: Na2ZnBr4 > Na2ZnCl4 > Li2ZnCl4 [56]. These three
compounds are prepared mechanochemically using stoichiometric mixtures of MX and ZnX2. However,
formation of minor amounts of M2ZnX4 suggests that Reaction (10) is only weakly coupled with the
formation of the metal borohydrides, i.e., Reactions (8) and (9) are faster than Reaction (10).

Side reaction may also be strongly coupled to the reaction forming the product, which has
strong consequences for composition of the product and the optimal reactant composition. An
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illustrative example is the synthesis of alkali metal scandium borohydrides, NaSc(BH4)4 and KSc(BH4)4,
by mechanochemistry from the reactants ScCl3 and NaBH4 or KBH4 (Reactions (11) and (12)) [57,58].

ScCl3 + 4NaBH4→ NaSc(BH4)4 + 3NaCl (11)

ScCl3 + 4KBH4→ KSc(BH4)4 + 3KCl (12)

However, alkali metal halides were not detected by powder X-ray diffraction in the product
of any of the ball-milled samples of ScCl3−MBH4 (M = Na or K) in molar ratios 1:2, 1:3 or 1:4.
This suggests that other, faster, reactions take place simultaneously, which consume the formed
alkali metal halide, and indeed a new ternary alkali scandium chloride M3ScCl6 was identified.
Surprisingly, the ScCl3−MBH4 (1:2) samples show diffraction from neither ScCl3 nor MBH4 and appear
to contain the largest fraction of products NaSc(BH4)4 and KSc(BH4)4 [57,58]. Furthermore, the sample
ratios ScCl3−MBH4 (1:3) and (1:4) contain different amounts of MBH4 but no diffraction from ScCl3.
These observations are assigned to an addition reaction, which is responsible for the formation of
Na3ScCl6 and K3ScCl6 (see Reactions (13) and (14)).

ScCl3 + 3NaCl→ Na3ScCl6 (13)

ScCl3 + 3KCl→ K3ScCl6 (14)

Assuming that the reactions for the formation of the ternary salts, M3ScCl6, Reactions (13) and (14)
are much faster as compared to the formation of the metal borohydrides, MSc(BH4)4 (see Reactions
(11) and (12)). Therefore, the Reactions (13) and (14) are strongly coupled to Reactions (11) and (12),
respectively. Such reactions can be added together to form a reaction scheme for the overall reactions
(see Reactions (15) and (16)). These reactions reveal that the optimal ratio for formation of MSc(BH4)4

and M3ScCl6 is in fact ScCl3−MBH4 (1:2) and the maximum yields of NaSc(BH4)4 and KSc(BH4)4 were
22 and 18 wt%, respectively.

2ScCl3 + 4NaBH4→ NaSc(BH4)4 + Na3ScCl6 (15)

2ScCl3 + 4KBH4→ KSc(BH4)4 + K3ScCl6 (16)

The lithium system ScCl3−LiBH4 did not show any formation of ternary metal halides and one
reaction scheme explains the formation of LiSc(BH4)4 and LiCl [57,58]. Table 1 summarizes selected
mechanochemical reactions.

Table 1. Metal borohydrides synthesized by mechanochemical methods, reactants used for the synthesis,
optimal reactant ratio, formed side products, total milling time (tmt in minutes) and milling speed
(revolutions per minute, rpm) used in the synthesis [5].

Compound Reactants Opt. Ratio Side Products tmt rpm Ref.

NaBH4 MgH2 + Na2B4O7 4:1 MgO, B2O3 60 2750 [28,59]
KBH4 MgH2 + KBO2 2:1 MgO 120 490 [60]

Sr(BH4)Cl LiBH4 + SrCl2 1:1 LiCl, Sr(BH4)2 120 400 [61]
Sr(BH4)2 LiBH4 + SrCl2 1:1 LiCl, Sr(BH4)Cl 120 400 [61]

LiSc(BH4)4 LiBH4 + ScCl3 4:1 LiCl 180 500 [62–64]
NaSc(BH4)4 NaBH4 + ScCl3 2:1 Na3ScCl6 120 400 [57]
KSc(BH4)4 KBH4 + ScCl3 2:1 K3ScCl6 120 400 [58]

Y(BH4)3 LiBH4 + YCl3 3:1 LiCl 120 200 [36,37]
NaY(BH4)2Cl2 NaBH4 + YCl3 2:1 Na3YCl6, Na(BH4)1–xClx 120 200 [65]

Mn(BH4)2 LiBH4 + MnCl2 2:1 LiCl 350 600 [66]
Mn(BH4)2 NaBH4 + MnCl2 2:1 NaCl 350 600 [66]

LiZn2(BH4)5 LiBH4 + ZnCl2 5:2 LiCl 120 200 [54]
NaZn2(BH4)5 NaBH4 + ZnCl2 5:2 Na2ZnCl4, NaCl 120 200 [54]
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Table 1. Cont.

Compound Reactants Opt. Ratio Side Products tmt rpm Ref.

NaZn(BH4)3 NaBH4 + ZnCl2 3:1 Na2ZnCl4, NaCl 120 200 [54]
KZn(BH4)Cl2 KBH4 + ZnCl2 1:1 - 120 200 [51]

Cd(BH4)2 LiBH4 + CdCl2 2:1 LiCl 30 200 [67]
Cd(BH4)2 NaBH4 + CdCl2 14:9 NaCl, Na6CdCl8 30 200 [67]

KCd(BH4)3 KBH4 + CdCl2 1:1 KCdCl3, K2Cd(BH4)4, Cd(BH4)2 20 200 [67]
K2Cd(BH4)4 KBH4 + CdCl2 4:3 KCdCl3 20 200 [67]

Li4Al3(BH4)13 LiBH4 + AlCl3 13:3 LiCl 300 500 [68]
Li(BH4)0.9Cl0.1 LiBH4 + LiCl - - 120 200 [69,70]

Li(BH4)0.47Br0.53 LiBH4 + LiBr - - 120 200 [71]
Li(BH4)0.3I0.7 LiBH4 + LiI - - 120 200 [72]
LiBH4-NaBH4 LiBH4+NaBH4 1:1 LiNaBH4 300 175 [73,74]

LiBH4-NaBH4-Ni LiBH4+NaBH4 +Ni - Ni4B3, Ni2B, Ni3B 300 175 [74]
Na(BH4)0.9Cl0.1 NaBH4 + NaCl - - 120 200 [75]
Ca(BH4)1.6I0.4 Ca(BH4)2 + CaI2 - - 120 250 [76]
LiLa(BH4)3Cl La(BH4)3 + LiCl 1:1 unknown phase 120 350 [77]
LiLa(BH4)3Br La(BH4)3 + LiBr 1:1 unknown phase 120 350 [77]
LiLa(BH4)3I La(BH4)3 + LiI 1:1 unknown phase 120 350 [77]
NaCe(BH4)4 NaBH4 + Ce(BH4)3 1:1 β-Ce(BH4)3, unknown phase 120 350 [78]
NaPr(BH4)4 NaBH4 + Pr(BH4)3 1:1 unknown phase 120 350 [78]
NaEr(BH4)4 NaBH4 + Er(BH4)3 1:1 - 120 350 [78]

Na(BH4)1-xBrx NaBH4 + NaBr 1:1 - 360 200 [79]
KEr(BH4)4 KBH4 + Er(BH4)3 1:1 - 60 - [80]

2.3. Solvent Free Synthesis of “Reactive Hydride Composites”

Reactive hydride composites (RHC) are a combination of materials following an approach to
destabilize metal hydrides by the formation of multicomponent hydride mixtures and, thereby, lowering
the stability or reaction enthalpy. This was first described by Reilly and Wiswall with the example of
MgH2 + MgCu2 formation upon absorption, and Mg2Cu + H2 upon desorption [81]. The advantage of
RHC is the possibility to conserve the high hydrogen content of the original materials while anion
substitution may occur but decrease the hydrogen capacity only slightly.

In the early 2000s, Chen et al. described the RHC including LiNH2 and LiH (Reaction (17)).

LiNH2 + 2 LiH→ Li2NH + LiH + H2→ Li3N + 2H2 (17)

In the following years, further RHC were investigated including MgH2 + NaBH4, MgH2 + LiBH4

and MgH2 + Ca(BH4)2 [82–85]. It was discovered that MgB2, as a thermal reaction product, is crucial for
rehydrogenation and offers a pathway for the formation of new borohydrides [82–84,86,87]. Eventually,
a possibility to hydrogenate 2LiH and MgB2 including a catalyst (2–3 mol% TiCl3) following Reaction
(18) was presented [82].

2LiBH4 + MgH2→ 2LiH + MgB2 + 4H2 (18)

This RHC revealed a reduction in enthalpy from 67 kJ mol−1 of H2 for the LiBH4/LiH and B
system to 42 kJ mol−1 of H2, therefore improving thermodynamic properties compared to pure LiBH4

immensely [82].
Further efforts have been made in investigating NaH + MgB2, with a theoretical hydrogen capacity

of 7.8 wt% for a 2:1 molar equivalent. The suggested reaction products upon hydrogenation are
2NaBH4 and MgH2, but an intermediate reaction product, NaMgH3, is formed, which decreases the
hydrogen capacity substantially. Furthermore, the reaction is plagued with slow hydrogen sorption
kinetics, meaning that 1 h is required to absorb 3.8 wt% H at 50 bar hydrogen and 400 ◦C, and this is
the maximum experimentally obtained hydrogen absorption capacity [88–91]. To improve kinetics
and absorption capacity, the approach of anion substitution and the influence of long-time milling has
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been investigated [92]. By substituting 10 mol% of NaH by NaF and forming the RHC of NaF + 9NaH
+ MgB2, reaction pathway in Reaction (19) is expected upon hydrogenation.

NaF + 9NaH + 5MgB2 + 20H2→ 10NaBH3.9F0.1 + 5MgH2 (19)

With a nominal hydrogen capacity of 7.7 wt%, the hydrogen capacity is slightly decreased
compared to the original RHC (7.8 wt%). Additionally, the effect of ball milling was investigated
with milling times of 87 h (long milled) and 5 h (short milled). These two samples absorb 6.0 and
6.3 wt% H, respectively. Therefore, the uptake of hydrogen is almost doubled compared to the original
investigation under the reported conditions. However, a different hydrogenation pathway, with the
products being NaBH4, MgH2 and NaMgH3−xFx (0 ≤ x ≤ 1), is observed. The thermodynamics are
modified for the temperature of formation of NaBH4, which decreases from 380 ◦C [91] to 206 ◦C in the
long milled RHC. In a previous investigation, NaMgH3 was observed before the formation of NaBH4,
which is contrary to the reported findings with formation NaBH4 before NaMgH3−xFx. Curiously, in
the long milled RHC, NaBH4 and NaMgH3−xFx reaction products form in greater amounts (~40 wt%),
while, in the short milled system, under the same conditions, those products only appeared in minor
amounts (~10 wt%). For the latter, it is assumed that a hydrogen containing, but purely scattering,
boron rich phase (“B48”) is responsible for the lack of NaBH4 and NaMgH3−xFx [90].

2.4. Challenges, Pitfalls and Deliberate Destructive Mechanochemistry

Although mechanochemical synthesis is a widely used technique, there are challenges, pitfalls
and certain aspects to consider when it comes to its destructive use. Traditional ball milling conducted
in the “grinding mode” is often a continuous process lasting over many hours and may lead to
significant heating of particles. With this high-energy method, it is possible to synthesize stable as
well as metastable compounds [3]. To further emphasize the challenges of steel equipment and the
continuous process of milling, it is worth noting that induced impurities of Fe can be as high as 4 wt%
after extended milling intervals [92]. Materials such as WC coated vials and WC balls are used to avoid
iron contamination. Nevertheless, as these are very brittle, contamination is again unavoidable.

The observations from “grinding mode” may lead to the misconception that mechanochemistry
is “just” random mixing of elements, but in truth, it has become clear that complex reactions often
take place. However, prolonged mechanochemical treatment in the “grinding mode” may lead to
decomposition of the sample and has in fact been utilized to develop novel “deliberate destructive
mechanochemistry” synthesis strategies. A concept being illustrated by synthesis of nanosized
vanadium boride in a matrix of halides, which are readily dissolved and removed by water [93]. It also
led to the development of a new approach to synthesize anion-substituted sodium chloride [93–95].

In several cases, a metal chloride and an alkali metal borohydride are mechanochemically treated.
The reaction product reveals clear diffraction from the alkali metal chloride and some minor unidentified
diffraction peaks, e.g., for the synthesis of Sc(BH4)3 [96], V(BH4)2 and Cr(BH4)2 [97–100]. This suggests
that the sample was “over-milled” or that the synthesis product was amorphous. A mechanochemical
synthesis of Zn(BH4)2 was also reported [96,101], but the diffraction data did not allow for determination
of the structure. Nonetheless, the synthesis product appears to be a mixture of NaZn2(BH4)5 and
NaZn(BH4)3 [54,55].

2.4.1. Reaction Byproduct

Meanwhile, the solvent-based synthesis of metal borohydrides has been employed for over
50 years [102]. The advantage of this method is the ability to remove the byproducts (e.g., LiCl) to yield
pure products, thus allowing for the accurate determination of their physical properties [32,44,103,104].
The detriment of the solvent-based synthesis is the possible decomposition of, for instance the RE
borohydride upon removal of the solvent [105]. On the contrary, mechanochemical synthesis does
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allow for the facile synthesis of these materials without complicated in vacuo manipulations and
possible decomposition of the desired product [102].

2.4.2. LiBH4 and the Influence of its Deliberate Destructive Decomposition Product

Previous methods for the synthesis of trivalent rare earth (RE) metal borohydrides are based on
the reaction of LiBH4 with RECl3 [106,107]. The products obtained are reported to be contaminated
with amorphous LiBH4 as the metathesis reaction of LiBH4 and RECl3 does not go to completion.
Instead of a complete conversion into RE(BH4)3 and LiCl, it is plausible that some LiBH4 is among the
reaction products. LiBH4 in minor amounts can be hard to observe utilizing laboratory powder X-ray
diffraction (PXD) due to its weak scattering or possibly even amorphous phases.

The presence of amorphous LiBH4 has consequences for the thermal properties and chemical
reactivity of samples prepared. For example, La(BH4)3 synthesized according to the aforementioned
method forms Li3K3La2(BH4)12 upon the reaction with KBH4 [108]. Therefore, the focus has been on
new synthetic strategies and investigations of chemical, physical and structural properties of the pure
compounds. A new method to obtain solvate complexes, RE(BH4)3S(CH3)2, RE = Pr, Nd, and the
corresponding borohydrides, RE(BH4)3, RE = Pr, Nd, allows detailed investigation of the polymorphic
transformations [109]. Although a solvate-based synthesis is reported, the activation step of the
samples remains high-energy mechanochemical milling.

An intriguing detail for the understanding of the influence of amorphous LiBH4 has been reported
and explains a rehydrogenation pathway of an erbium borohydride composite [47]. Recent reports
have shown that in pure Er(BH4)3, synthesized by mechanochemical milling of ErCl3+ LiBH4, up to
20% of the initial released hydrogen could be rehydrogenated [110]. Although an explanation of
reaction products was not given, it was shown later that pure Er(BH4)3, from a solvent-based synthesis,
does not reabsorb hydrogen, e.g., at 400 ◦C and 100 bar H2. Nevertheless, by mixing 50 wt% LiH into a
desorbed sample of Er(BH4)3 and applying similar rehydrogenation conditions as described above,
ErH3 and LiBH4 were formed [47].

Summarizing, amorphous LiBH4 in minor amounts are impossible to observe in PXD but
its decomposition product LiH, is most likely the starting point for the rehydrogenation pathway
reported in Ref. [47]. A RHC using this knowledge, showed that Er(BH4)3 with additional LiH and
LiBH4 can have very decent rehydrogenation behavior of 88% and 83% after the second and third
desorption/absorption cycles, respectively [111].

2.4.3. Conclusions

To finalize this section, all aforementioned investigations indicate that pressure induced transitions
as well as composition are of major importance, in particular for high-energy ball milling. Ball milling
can induce high pressure and mechanical stress between the reacting materials. Thus, facilitating
chemical reactions, in contrast to traditional solid-state synthesis techniques, which are mainly
temperature “driven”, i.e., reactions occur due to cation diffusion in the solid state [112]. Previously,
ball milling was mainly devoted to the preparation of alloys and solid solutions of metals, but nowadays
comprises ionic, ionic/covalent and organic molecules. In some cases, novel materials are only accessible
through mechanochemistry and, apparently, cannot be obtained by other means.

3. Cryomilling—Mechanical Processing and Synthesis at Low Temperatures

Cryomilling is used for mechanochemical processing and synthesis of materials at low
temperatures. In a SPEX Freezer/Mill, the vial with powder and a stainless-steel impactor is placed
in liquid nitrogen (77 K). The impactor is the only moving part, and it moves back and forth by an
oscillating electromagnetic field. The powder is trapped between the impactor and the ends of the vial
each time a collision occurs. The impact frequency is up to 30 Hz.

When ductile metals/materials are cryomilled, the low temperature will promote embrittlement
of the ductile phase, the cold welding to the milling media is limited and there will be a limited
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deviation from the nominal composition. The increased embrittlement at low temperature will also
lead to reduced particle sizes and shortened diffusion paths. Cryomilling is for example used to
process Mg-based alloys [113,114]. Furthermore, cryomilling is important for synthesis of metastable
compounds/phases since the heat released in the wanted reaction may be absorbed by the vial
before critical temperatures for thermal decomposition are reached. This implies that, compared to
room temperature, the metastable compounds are less likely to decompose due to reduced mobility.
One example is synthesis of the unstable borohydride LiZn2(BH4)5 [115]. Another important example
is the synthesis of aluminum hydride AlH3 (alane), and here we review and present new results of
properties of AlH3 synthesized by cryomilling.

AlH3 has a high gravimetric (10.1 wt%) and volumetric hydrogen density (148 g H2/L). Hydrogen
can be released at moderate temperatures, which makes the compound interesting for hydrogen
storage applications. AlH3 has been found to take at least six different crystal structures depending
on the synthesis route: α, α’, β, γ, δ and ε [116–122]. AlH3 is metastable at ambient conditions,
decomposing into aluminum metal and hydrogen gas at 60–80 ◦C [123–125]. This reaction is not
reversible at moderate conditions; H2 pressure larger than 2.5 GPa is required to rehydride Al powder.

AlH3 polymorphs have traditionally been synthesized by organometallic methods. Since AlH3

is not thermally stable at room temperature (RT), dehydrogenation during ball milling at ambient
conditions must be avoided. When 3LiAlD4 + AlCl3 are ball milled in a planetary ball mill at RT,
small amounts of α- and α’-AlD3 were detected along with LiCl and Al [117]. By cryomilling 3LiAlD3

+ AlCl3 in a SPEX Freezer/Mill, significant amounts of α- and α’-AlD3 together with LiCl were
detected, and the quantitative phase analysis indicated a mixture of 34% α’-AlD3 and 66% α-AlD3 [117]
(see Figure 2).

Cryomilling the mixture 3NaAlH4 + AlCl3 gave an increased total amount of alanes compared to
the synthesis based on 3LiAlD3 + AlCl3: the ratio α’/α was increased to 1.04, but the synthesized alane
has lower thermal stability [126]. The ratio of polymorphs can to some extent be controlled by adding
additives and seed crystals. Small amounts of FeF3 (isostructural to β-AlH3 and α’ is similar to the β
polymorph ) added to 3LiAlD4 + AlCl3 increased the α’/α ratio to 1.05 [126]. α-AlF3 is isostructural
to α-AlH3, and cryomilling 3 mol% of AlF3 with β-AlD3 gave a significant decrease of the α’/α ratio,
and thus highest amount of α-AlD3 [127]. Additional of TiF3 lead to full decomposition to Al.
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Figure 2. Observed intensities (circles) and calculated intensities from Rietveld refinements (upper
line) of cryomilled 3LiAlD4 + AlCl3 at RT for powder neutron diffraction (PUS, JEEP II, and IFE)
data. Positions of Bragg reflections are shown with bars for LiCl, α-AlD3, and α’-AlD3 (from top).
The difference between observed and calculated intensities is shown with the bottom line. Taken
from [117].



Materials 2019, 12, 2778 11 of 44

Since α-AlH3 takes the same structure as α-AlF3 and α’-AlH3 is isostructural to β-AlF3, it has
been investigated experimentally, by ab initio calculations and thermodynamic modeling, if fluorine
anion substation can take place in AlH3 [128]. The samples were prepared by cryomilling. However,
fluorine substitution does not seem feasible for the alane system, and thus not similar to F-substitution
in Na3AlH6 [129].

To assess the potential of cryomilled AlH3 for hydrogen storage applications, tests were recently
carried out with two aims: (i) gain information about reactivity and influence of passivation layers
(mainly oxides) on the decomposition behavior of alane; and (ii) study the metastability of alane after
partial decomposition.

Both issues are crucial for application purposes. On the one hand, it is important to know if
impurities due to air exposure will cause a degradation of the material’s performance or change its
characteristics. On the other hand, it is of interest to know if the decomposition process continues after
the temperature of the system is lowered below the onset temperature for thermal desorption.

Reactivity and passivation tests were carried out on two different sets powders: (i) as-prepared
(cryomilled) alane heated from RT to 400 ◦C; and (ii) cryomilled alane exposed to air for 24 h and
heated from RT to 400 ◦C.

The results of the passivation test are summarized in Figures 3 and 4, which display the DSC and
TGA traces for the two samples between 25 and 250 ◦C. The as-prepared cryomilled material (Figure 3)
loses about 6.5 wt% of its storage capacity in the temperature region 25 < T < 250 ◦C. In this case,
the onset temperature for desorption, Ton, was determined to be 121(1) ◦C. A different cryo-milled
sample passivated by air exposure for 24 h (Figure 4) shows a weight loss of about 5 wt% between RT
and 250 ◦C and displays a Ton of 126(1) ◦C. The shift and decrease in capacity could be explained by
the formation of oxides (hydroxides) which create a surface barrier that needs to be overcome.

The reactivity tests were carried out in a fume hood by exposing as-milled and passivated powder
to air. No combustion was observed after ca. 1 min of air exposure. Dripping water (H2O) on the
air-exposed powder produced mild bubbling.

The metastability of cryomilled AlH3 was investigated by DSC-TG and by in situ synchrotron
radiation powder X-ray diffraction (SR-PXD). The aim of these measurements was to test whether the
desorption reaction can be controlled—i.e., stopped—if the temperature is decreased from the onset
temperature for desorption down to RT.
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Figure 4. DSC-TGA data of a passivated sample (exposed to air for 24 h). Data are shown between RT
and 250 ◦C.

The as-synthesized cryomilled alane powder was heated with a constant heating rate (5 K/min)
at three different temperatures: at the onset temperature for desorption Ton; 10 K above the onset
temperature Ton+10K; and 10 K or 15 K below the onset temperature Ton-10K or Ton-15K, respectively.

DSC-TG isotherms carried out on the three samples at RT right after heating (not shown) show
that the signal of the thermobalance stays constant over the duration of the isothermal measurement.
This clearly indicates that there is no sign for a continuation of the desorption process after the
temperature has been lowered to RT. This suggests that alane could be safely stored and that the
decomposition can be fully controlled by lowering the temperature below the onset temperature, e.g.,
when the system is in standby mode.

Synchrotron radiation power X-ray diffraction (SR-PXD) measurements were performed at
the Swiss–Norwegian Beamlines (SNBL) at the European Synchrotron Radiation Facility (ESRF) in
Grenoble, France. Decomposition reactions of alane in closed boroglass capillaries, heated with a hot
air blower, were followed in situ. A diffraction pattern was collected every 30 s. As expected, the RT
SR-PXD data (not shown) revealed a mixture of the phases α- and α’-AlH3, LiCl and Al. Heating the
material from ambient temperature with a rate of 5 K/min, the onset of decomposition was found to be
between 117 and 120 ◦C, from where the alane peaks diminish and the Al peaks increase in intensity.
Figure 5a–c shows the reduction of the Bragg peak intensities of α- and α’-AlH3 after heating at Ton,
Ton+10K, and Ton-15K.
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Figure 5. Bragg peaks from α- and α’-AlH3 during in-situ SR-PXD decomposition after heating at:
(a) Ton; (b) Ton+10K; and (c) Ton-15K and cooling to RT.

As expected, the reduction is larger for the materials after heating 10 K above the Ton (Figure 5a).
There is no significant further decrease in the AlH3 peaks after dwelling 1 h at RT. It is worth pointing out
that a reduction of the AlH3 peaks is also observed for the sample heated to 15 K below Ton (Figure 5c),
thus indicating that some desorption takes place also below the onset temperature determined by
heating with 5 ◦C/min. Furthermore, there was no appreciable change during the 1-h isotherm at RT.

In summary, the tests described above clarified that the reactivity of the powder when exposed
to air is limited and passivation in air does not change significantly the reactivity, while it lowers
the amount of hydrogen released during desorption. Furthermore, the decomposition process of
AlH3 stops when the temperature of the system is lowered below the onset temperature for thermal
desorption. The latter finding is technologically relevant for potential applications in solid-state
hydrogen storage.

4. Formation and Defect Generation of Lightweight Hydrides by Mechanochemistry under
Hydrogen Gas

Mechanochemistry under hydrogen gas is a versatile synthesis route for the formation of hydride
compounds. Indeed, many families of compounds, such as binary and ternary metal hydrides as
well as Mg- and Al-complex hydrides, can be directly synthesized by mechanochemistry of their
constituting metals under hydrogen gas [5]. Hydride formation is achieved for compounds that
are thermodynamically stable at the pressure (P) and temperature (T) conditions at which the solid
gas reactions occur inside the milling jar. As these experiments are performed at high pressure and
temperature and with vials under mechanical stress, it is important to have certified equipment that
meets all safety regulations.

The concept of mechanochemistry under pressure is supported by the work of Zhang et al. [130]
showing the relevance of (P, T) local conditions in mechanochemistry. They studied the Mg-Si-H
system by reactive ball milling starting from 2Mg, and Si powders as reactants under a hydrogen
pressure of 9 MPa. Depending on the milling energy (tuned by changing the rotation speed of the
vials), they obtained two different final equilibrium states, either Mg2Si or 2MgH2 + Si at high and low
rotation speeds, respectively. Such comportment was interpreted by the change of the local temperature
which increases with milling speed at the milling impact.

Beside the synthesis of stable hydride phases, whose formation can also be attained by the classical
route of thermally driven solid–gas reaction, mechanochemistry under hydrogen gas opens the way to
the formation of metastable phases thanks to severe plastic deformation effects induced by mechanical
energy. Recent studies on the formation of lightweight imide and amide Li-(Mg)-N-H starting from
Li3N (and Mg) as initial solid reactants are reviewed here [131,132]. These compounds deserve high
interest as hydrogen storage materials [133,134] as well as Li-ion conductors [135–137].
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Mechanochemistry of commercial Li3N under hydrogen gas (PH2 = 9 MPa) entails the consecutive
formation of lithium imide (Li2NH) and lithium amide (LiNH2) according to the reaction scheme given
by Reactions (20) and (21) [132]:

Li3N + H2→ Li2NH + LiH (20)

Li2NH + LiH + H2→ LiNH2 + 2LiH (21)

As shown in Figure 6, the hydrogen uptake curve monitored during mechanochemistry reveals
that the full hydrogenation is accomplished in less than 2.5 h of milling time tm and consists in two
steps. Hydrogen uptake is linear during the first step. This has been attributed to the constant rate of
mechanical collisions. X-ray dffraction analysis showed that the first step comprises the transformation
of the polymorph α-Li3N (S.G. P6/mmm) into the β-Li3N (S.G. P63/mmc) metastable phase and the
reaction of the latter with hydrogen to form lithium imide (Reaction 20). High local mechanical pressure
at impact between α-Li3N powder and milling tools lead to the formation of β-Li3N, which is the
stable polymorph of Li3N at P > 0.6 GPa [138]. The metastable conditions of β-Li3N are close to those
of the high-pressure orthorhombic γ-MgH2 polymorph (stable phase at P > 2 GPa [139]), which has
been widely observed during mechanical milling of magnesium hydride [140,141]. As for the second
reaction step (Reaction 21), leading to lithium amide formation, the hydrogen uptake curve has a
sigmoidal shape. This is characteristic of Avrami‘s nucleation and growth processes [142]. Moreover,
a detailed kinetic analysis based on solid-state models indicates that amide formation is controlled by
a one-dimensional Li-vacancy mechanism [132]. Structural data support this analysis and evidence
formation of mixed imide/amide Li2−xNH1+x compounds as intermediates. Lithium imide and amide
phases formed by mechanochemistry under hydrogen gas crystallize in the low nanocrystalline range
with crystal size of 10 ± 2 nm.

Phase and structural evolution during mechanochemistry of Li3N under hydrogen gas shows clear
differences as compared to the thermally driven solid–gas reaction. First, in the mechanochemical route,
formation of intermediate phase Li4NH at low hydrogen content is not observed. This “quasi-imide”
Li4NH phase has however been detected by in-situ neutron diffraction at the early stage of
hydrogenation during thermally driven reaction at 250 ◦C [143] Second, the hydrogenation path
by mechanochemistry at PH2 = 9 MPa follows a two-step reaction (Reactions (20) and (21)), whereas,
for the thermally-driven reaction (~200–250 ◦C), a single step is observed also using elevated
pressures (PH2 ≈ 1 MPa). The latter result has been evidenced in several in-situ neutron diffraction
studies [144,145].
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Figure 6. In situ hydrogen absorption during the mechanochemistry of Li3N powder under hydrogen
gas (PH2 = 9 MPa). The vertical dashed line shows the discontinuity in the uptake curve that reflects
the two reaction Reactions (20) and (21) associated with the formation of lithium imide (left) and amide
(right) compounds. Reproduced from Ref. [137] with permission from the PCCP Owner Societies.

The addition of Mg to the Li-N-H system deserves particular interest since a high hydrogen
amount (5.6 wt%) can potentially be reversibly stored at normal conditions of pressure and temperature
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in the Li-Mg-N-H system [134]. To gain access to this system by mechanochemistry, lithium nitride
and magnesium in molar ratio 2:1 were milled under hydrogen gas. The in situ hydrogen uptake
curve displayed in Figure 7 reflects, as in the previous case, two consecutive reactions leading to full
absorption in tm ≈ 2 h [146]. By structural analysis of deuterated compounds [131], they were assigned
to the reaction scheme:

2Li3N + Mg+ 2H2→ Li3MgN2H + 3LiH (22)

Li3MgN2H + 3LiH + 3H2→Mg(NH2)2 + 6LiH (23)
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Figure 7. In situ hydrogen absorption during the mechanochemistry of 2Li3N+Mg mixed powder
under hydrogen gas (PH2 = 9 MPa). The vertical dashed line shows the discontinuity in the uptake
curve that reflects the two reaction Reactions (22) and (23) associated with the formation of cation-mixed
nitride/imide Li3MgN2H (left) and magnesium amide Mg(NH2)2 (right) compounds. Reprinted by
permission from Springer, Ref. [146].

The Reaction (22) leads to the formation of a cation-mixed nitride/imide Li3MgN2H compound.
It crystallizes in anti-fluorite type structure (S.G. Fm-3m) with local coexistence of N3− and [NH]2−

ions on a face-centered cubic lattice as well as random occupancy of Li and Mg cations at tetrahedral
sites. In fact, as depicted in Figure 8, the structure of Li3MgN2H can be regarded as an intermixing of
the crystal structures of high-temperature disordered polymorphs of anti-fluorite type LiMgN nitride
and Li2NH imide. Such a high level of structural disorder suggests that Li3MgN2H is a metastable
compound whose existence is driven by mechanical deformations induced by milling. The Reaction (23)
leads to the formation of long-range disordered (i.e., amorphous form) magnesium amide Mg(NH2)2

compound. The metastable amorphous phase Mg(NH2)2 crystallizes by thermal annealing on heating
above 425 K (tetragonal S.G. I41/acd).

To summarize, mechanochemical synthesis of lightweight imide/amide Li-(Mg)-N-H compounds
using Li3N (and Mg) and hydrogen as initial reactants is accompanied by severe defect generation:
creation of vacancies, short-range and long-range atomic disorder and metastability of high-temperature
or high -pressure phases. This leads to the formation of novel phases such as high-pressure polymorphs
(β-Li3N), locally disordered compounds (Li3MgN2H) and long-range disorder compounds (amorphous
Mg(NH2)2).
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5. High-Pressure Torsion

High-pressure torsion (HPT) is currently one of the most popular severe plastic deformation (SPD)
techniques to produce bulk nanostructured materials with a large fraction of lattice defects and enhanced
functional properties [147,148]. In the HPT method, intense shear strain is induced in a bulk disc or
powder sample by compressing the material between two anvils under high pressure and concurrent
rotating the anvils with respect to each other [147,148]. Kosadume et al. in 2007 [149] conducted
the first experimental study on the effect of HPT processing on the hydrogen storage properties.
This study together with several other reports [150–161] confirmed the significance of HPT processing
on improvement of hydrogen storage kinetics. As shown in Figure 9, this improvement in kinetics
is sometimes accompanied by a reduction in hydrogen storage capacity in the first hydrogenation
cycle [160]. The impact of HPT processing on hydrogen storage properties is not limited to fast
kinetics, and the method can significantly enhance the activation and air resistivity, especially in
difficult-to-activate Ti-based materials [159,162–171]. Moreover, the shearing nature of the deformation
in HPT, together with enhanced defect-induced atomic diffusion, provide a unique opportunity for
making composites [156,158] and for intermixing of elements to synthesize new phases even in the
immiscible systems [166,172–175]. One advantage of the HPT processing, when applied on powder
samples, is that the method is conducted in a very clean way compared to high-energy ball milling
that usually involves some contamination from the atmosphere or tooling. Here, the significance
of microstructural and structural features induced by HPT processing is discussed on hydrogen
storage properties.
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5.1. Significance of Grain Boundaries

The best example of the effect of HPT on activation and air resistivity was reported for TiFe
intermetallic and for Ti-based hydrogen storage materials [159,162–167]. TiFe was first introduced as a
hydrogen storage material by Reilly and Wiswall in 1974 [176]. Although TiFe can thermodynamically
store hydrogen at room temperature, its hydrogenation occurs only after an activation process at high
temperature and/or high pressure [176]. Moreover, the thermally activated material is deactivated
quickly once it is exposed to air because of intense surface oxidation. However, the HPT-processed TiFe
can reversibly absorb and desorb hydrogen at room temperature without any activation treatment even
after 400-day storage in air [159]. As shown in Figure 10a, it was suggested that the main mechanism
for the HPT-induced activation is due to the formation of a large fraction of grain boundaries as
pathways for hydrogen [162]. This mechanism was confirmed by further experiments showing that the
activation pressure is reduced by the introduction of grain boundaries or by decreasing the grain size
in samples processed by thermal annealing [159], grove rolling [163], HPT [159] and ball milling [177],
as summarized in Figure 10b.
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Figure 10. (a) Schematic illustration of activation mechanism by grain boundaries; and (b) variations of
hydrogen activation pressure at room temperature against grain size for TiFe processed by annealing,
groove rolling, HPT and ball milling [171] (reproduced with permission).

5.2. Significance of Dislocations

When a conventionally fabricated as-cast sample is exposed to hydrogen, large fractions of
dislocations are usually formed during the first hydrogenation cycles [178,179]. It was suggested
that, in addition to the formation of powder particles (during pulverization), the formation of
dislocations in the first cycles is one of the reasons that the material can uptake hydrogen more
easily in the following cycles due to dislocation-assisted hydrogen transport and metal hydride phase
transformations [178,179]. It is then expected that the introduction of dislocations in the initial materials
can facilitate the hydrogen uptake. Images taken by transmission electron microscopy (TEM) presented
in Figure 11 show the formation of a large fraction of dislocations in a HPT-synthesized Ti-V alloy with
the bcc (body-centered cubic) structure [166].
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Figure 11. (a) TEM image of edge dislocations marked with T; (b) lattice image of a dislocation;
and (c) XRD profile before and after hydrogenation and dehydrogenation at 303 K under 0.001–10 MPa
hydrogen pressure for Ti-V alloy synthesized by HPT [166] (reproduced with permission).

Although the Ti-V alloys cannot usually absorb hydrogen without a sophisticated activation
treatment [180,181], the HPT-processed Ti-V alloy with a large fraction of dislocation fully transforms to
a TiVH4 hydride with the fcc (face-centered cubic) structure after two hydrogenation/dehydrogenation
cycles at room temperature, as shown in the X-ray diffraction (XRD) pattern of Figure 11c. Here,
it should be noted that the activation of Ti-V-based alloys by introduction of dislocations and grain
boundaries can undesirably deteriorate their hydrogen storage reversibility [167], as discussed below.

5.3. Significance of Stacking Faults

As shown in Figure 12a, stacking faults coupled with partial dislocations produce atomic pathways,
which may be effective to transport hydrogen [157]. To investigate the effect of stacking faults on
hydrogen storage performance, stacking faults were introduced in an Mg2Ni intermetallic by HPT
processing followed by thermal annealing at 673 K [157]. Figure 12b shows a representative stacking
fault compared with the ideal ABCABC stacking. As shown in Figure 12c while the coarse-grained
sample with large fractions of stacking faults absorb 2 wt% of hydrogen within a few minutes,
the sample without stacking faults exhibits very slow hydrogenation kinetics [157].
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Figure 12. (a) Illustration of stacking fault effects as pathways for hydrogen; (b) TEM lattice image of a
stacking fault in Mg2Ni after HPT processing followed by annealing; and (c) hydrogenation kinetic
curves at 423 K under initial hydrogen pressure of 0.7 MPa for coarse-grained Mg2Ni with and without
stacking faults [157] (reproduced with permission).

5.4. Significance of Localized Amorphization

Amorphous regions are considered as fully disordered regions and can act as pathways for
hydrogen permeation [182]. In an attempt to activate the TiFe0.85Mn0.15 intermetallics [165], nano-sized
amorphous regions were introduced by HPT processing in the materials, as shown in TEM lattice image
and corresponding selected-area electron diffraction (SAED) pattern with a hallo ring in Figure 13a.
As shown in Figure 13b, while the as-cast material does not absorb hydrogen at room temperature
in agreement with earlier publications [183,184], partial amorphization by HPT leads to activation of
material with fast hydrogenation kinetics. It should be noted that other studies showed that even
amorphous alloys become more active with application of HPT processing because of the formation of
glass/glass or glass/crystal boundaries [154,159]. For example, while the Mg65Ce10Ni20Cu5 amorphous
alloy hardly absorb hydrogen after melt spinning, it becomes active after HPT processing and absorbs
hydrogen at 393 K [159].



Materials 2019, 12, 2778 20 of 44
Materials 2019, 12, x FOR PEER REVIEW 20 of 43 

 

 
Figure 13. (a) TEM image and corresponding SEAD pattern with nano-sized amorphous regions 
indicated by arrows; and (b) hydrogenation kinetic curves for TiFe0.85Mn0.15 after ingot casting and 
HPT processing [165] (reproduced with permission). 

5.5. Significance of Phase Transformation 

Severe shear straining, high pressure, supersaturated fraction of lattice defects and defect-
induced atomic diffusion during HPT processing, make the method an effective tool to control phase 
transformations [147,148]. Emami et al. [174] showed that the HPT process combined with a 
subsequent thermal treatment is quite effective to synthesize a large variety of stable Mg-based 
intermetallics from elemental powder mixtures [174]. It was shown that the method is also effective 
to synthesize new metastable phases even from immiscible systems [170]. Table 2 summarizes 
formation of metastable phases from elemental powders in several systems by HPT processing. 
Among these metastable phases, a Mg4NiPd alloy with the CsCl-type crystal structure can reversibly 
absorb and desorb hydrogen at room temperature in good agreement with the predictions of first-
principle calculations [168]. 

Table 2. Formation of metastable phases in various Ti-based and Mg-based systems by HPT 
processing. 

System Metastable Phase(s) Ref. 
Ti-V bcc [166] 

Ti-Nb bcc [172] 
Mg-Al amorphous [174] 
Mg-Zn amorphous [174] 
Mg-Sn Hcp [174] 
Mg-Ti bcc, hcp, fcc [173] 
Mg-Zr bcc, hcp, fcc [175] 
Mg-V bcc [169] 

Mg-V-Ni bcc [170] 
Mg-V-Pd bcc, CsCl-type [170] 
Mg-V-Sn CsCl-type [170] 
Mg-V-Cr bcc [169] 
Mg-Ni-Sn amorphous [170] 
Mg-Ni-Pd CsCl-type [168] 

Figure 13. (a) TEM image and corresponding SEAD pattern with nano-sized amorphous regions
indicated by arrows; and (b) hydrogenation kinetic curves for TiFe0.85Mn0.15 after ingot casting and
HPT processing [165] (reproduced with permission).

5.5. Significance of Phase Transformation

Severe shear straining, high pressure, supersaturated fraction of lattice defects and defect-induced
atomic diffusion during HPT processing, make the method an effective tool to control phase
transformations [147,148]. Emami et al. [174] showed that the HPT process combined with a subsequent
thermal treatment is quite effective to synthesize a large variety of stable Mg-based intermetallics from
elemental powder mixtures [174]. It was shown that the method is also effective to synthesize new
metastable phases even from immiscible systems [170]. Table 2 summarizes formation of metastable
phases from elemental powders in several systems by HPT processing. Among these metastable phases,
a Mg4NiPd alloy with the CsCl-type crystal structure can reversibly absorb and desorb hydrogen at
room temperature in good agreement with the predictions of first-principle calculations [168].

Table 2. Formation of metastable phases in various Ti-based and Mg-based systems by HPT processing.

System Metastable Phase(s) Ref.

Ti-V bcc [166]
Ti-Nb bcc [172]
Mg-Al amorphous [174]
Mg-Zn amorphous [174]
Mg-Sn Hcp [174]
Mg-Ti bcc, hcp, fcc [173]
Mg-Zr bcc, hcp, fcc [175]
Mg-V bcc [169]

Mg-V-Ni bcc [170]
Mg-V-Pd bcc, CsCl-type [170]
Mg-V-Sn CsCl-type [170]
Mg-V-Cr bcc [169]
Mg-Ni-Sn amorphous [170]
Mg-Ni-Pd CsCl-type [168]
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6. Surface Modification by Mechanical Attrition Treatment

Compared to an appreciable number of publications on the effect of SPD processing on hydrogen
storage properties, there have been quite limited attempts to modify the hydrogen storage properties
by surface treatment methods [167]. In most of the SPD methods, nanostructures with large fractions
of lattice defects are generated all through the bulk [147]. However, in surface treatment methods,
lattice defects and nanostructure are generated only on the surface either mechanically [185] or by
beam-assisted processing [186]. Among various surface treatment techniques, the surface mechanical
attrition treatment (SMAT) [187], which is also known as ultrasonic shot peening [188] or severe shot
peening [189], has received significant attention to produce gradient structures (nanostructures on
the surface and coarse grains in bulk) [187,190]. In this method, the surface is treated by metallic
shots impacting the surface at velocities that can reach about 10 m/s [191,192]. It therefore bears some
similarities with the high energy ball milling technique. However, the sample in SMAT is in the
form of bulk plates which can be processed continuously without any limitation in the sample length.
This makes the method appropriate for potential commercial applications. Moreover, as discussed
below, the SMAT methods can be used as a scientific tool to have more insights into the role of surface
defects and gradient structure on hydrogen storage properties.

Significance of Surface Defects and Gradient-Structure

In an attempt to understand the significance of gradient structures on hydrogen storage, two types
of microstructure were produced in a Ti10V75Cr15 alloy with the bcc structure [167]. First, as illustrated
by the electron back scattering diffraction (EBSD) analysis given in Figure 14, a gradient structure
was produced by SMAT having a higher density of structural defects towards the surface (see large
fraction of low angle grain boundaries and high internal misorientation on the treated surface in
Figure 14b,c, respectively). Second, a uniform nanostructure all through the bulk was produced by HPT.
Here, it should be noted that the Ti-V-Cr alloy was intentionally selected for this study because it can
thermodynamically absorb and desorb ~2 wt% of hydrogen at room temperature [193], but it suffers
from two drawbacks: (i) it needs a thermal treatment at high temperatures for initial activation [194,195];
and (ii) its reversibility is degraded with the introduction of lattice defects [196–198].

Figure 15 shows the pressure-composition-temperature (PCT) isotherms for samples processed by:
(a) SMAT; and (b) HPT (PCT was conducted at 303 K for the first two cycles and at 353 K for the third
cycle). Although Ti-V-Cr alloy after both SMAT and HPT processing interestingly absorbs hydrogen
without any activation treatment, only the SMAT-processed alloy exhibits ~2 wt% hydrogen storage
reversibility. The poor reversibility after HPT processing confirms that the presence of lattice defects
such as dislocations and grain boundaries in the bulk can significantly degrade the reversibility of this
specific alloy, in good agreement with some earlier reports [196–198].

However, as schematically shown in Figure 16 for the gradient structure produced by SMAT,
the lattice defects and cracks formed on the surface activate the materials by acting as pathways
for hydrogen transport while the bulk of material—which still has coarse grains with lower density
of lattice defects—can store hydrogen reversibly. The current results provide new insight into the
importance of surface defects on activation.
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reason is that magnesium has a high hydrogen storage capacity (7.6 wt%). The other reason is that 
magnesium is ductile and could be processed easily by CR. However, as magnesium has a limited 

Figure 16. Mechanism of activation of Ti-V-Cr alloy with gradient structure after processing by
SMAT [167] (reproduced with permission).

7. Effect of Cold Rolling on Metal Hydrides

In the usual configuration, cold rolling is performed by introducing a metal plate between rollers
where it is compressed and squeezed, as shown in Figure 17. The term cold rolling (CR) is used when
the temperature of the metal is below its recrystallization temperature. For temperature higher than
the recrystallization temperature, the term Hot Rolling should be used. As the vast majority of the
investigations involving metal hydrides have been using CR, we restrict our discussion to this method.
Cold rolling could be performed on the metal or on its hydride form. The problem with cold rolling a
hydride is the brittle nature of most hydrides. Processing a powder in a horizontal milling machine is
not convenient. A solution of this problem is to perform the milling vertically, as shown in Figure 17.
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7.1. Cold rolling on Mg-Pd system

The effects of CR on magnesium and its alloys have been extensively studied [157,200–227].
One reason is that magnesium has a high hydrogen storage capacity (7.6 wt%). The other reason is that
magnesium is ductile and could be processed easily by CR. However, as magnesium has a limited
number of slip planes in its hexagonal crystal structure, it suffers an important work hardening upon
repetitive CR [228,229]. Fortunately, for metal hydrides, this is usually not a problem because when



Materials 2019, 12, 2778 24 of 44

hydrogenated the hydride will naturally turn into powder due to the large lattice expansion of the
hydride phase.

The system Mg-Pd was the subject of some of the early studies on the effect of CR on magnesium
alloys [201,202,206,207]. Because of the high price of palladium, this is not attractive for practical
applications but, because palladium is a good catalyst and there are few intermetallics in the Mg-Pd
phase diagrams, this system is a good candidate for fundamental investigation.

Dufour and Huot have investigated the addition of a small amount of Pd by cold rolling. They used
Mg plates of 1 mm thickness that were stacked with Pd foil of thickness 0.025 mm to get a proportion of
2.5 at% Pd [201]. Cold rolling was performed in air, at room temperature on a laboratory-scale rolling
apparatus. After each roll, the sample was folded in two and rolled again thus having a 50% reduction
of thickness at each rolling pass. Figure 18 shows the distribution of palladium in magnesium for
samples rolled 20 times compared to the same composition milled 2 h on a SPEX8000 milling machine.
The distribution of palladium is much coarser in the cold rolled sample compared to the ball milled one
considering that the micrograph of the cold rolled sample is magnified 40 times while the magnification
of the ball milled sample is 500×.
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The first hydrogenation (activation) at 623 K and under a hydrogen pressure of 1.3 MPa is 
presented in Figure 20. 

Figure 18. Backscattered electron micrographs of Mg–Pd 2.5 at%: (a) after 20 rolling passes; and (b) after
2 h of ball milling. The white marks are palladium particles. Adapted from Ref. [201].

The X-ray diffraction pattern of the sample after cold rolling (20 passes) is shown in Figure 19.
The sample is highly textured along (002) direction, which is expected for a hexagonal structure. The
peaks are still relatively sharp, which indicates that the sample is not nanocrystalline. The palladium
peaks are barely visible due to the low concentration of this element.
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The first hydrogenation (activation) at 623 K and under a hydrogen pressure of 1.3 MPa is
presented in Figure 20.
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Figure 20. First hydrogenation at 623 K under 1.3 MPa of hydrogen of Mg–Pd 2.5 at% after 20 rolling
passes and after 2 h of milling.

We see that the cold rolled sample has a much faster first hydrogenation compared to the ball
milled one. The hydrogenation starts readily, without any incubation time as in the case of the ball
milled sample. Figure 21 shows the backscatter micrographs of the cold rolled and ball milled samples
after hydrogenation. In the case of cold rolled sample, the interdiffusion of magnesium and palladium
results more important than for the ball milled sample. The cold rolled sample also seems to me
more porous.
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Figure 21. Backscattered electron micrographs of Mg–Pd 2.5 at% after first hydrogenation: (a) after
20 rolling passes; and (b) after 2 h of ball milling. The white areas are palladium-rich regions.

From these results, we conclude that even if the distribution of palladium is much finer in the
ball-milled sample, the kinetic is not better than for the much coarser distribution of palladium.
Therefore, particle size is not the only factor influencing the action of a catalyst. Cold rolling probably
produces a much stronger connection between the magnesium matrix and the palladium particle.
This facilitates the inter-diffusion of magnesium and palladium and produces a much faster kinetic.

7.2. Cold rolling on AB5 system

Many metal hydrides are ordered stoichiometric compounds formed by a hydride forming
element (A) and a non-hydride forming element (B). The resulting ternary hydride could be written
as AmBnHx where m and n are integers and x is a real number [230]. Amongst the many different
m and n combinations, the system AB5 is one of the most studied. The classical example is LaNi5,
which was reported in 1970 by van Vucht et al. [231]. The AB5 type metal hydrides are mainly
used as hydride electrodes in Ni-MH batteries but they are also considered for hydrogen storage
and purification [232–235]. One of the problems facing the AB5 type metal hydrides is the slow
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first hydrogenation. This is usually explained by a thin surface oxide, which prevents hydrogen
diffusion to the bare metal. Recently, it has been shown that cold rolling could greatly enhance the first
hydrogenation of LaNi5 [236] and CaNi5 [237]. From the literature, the maximum capacity of CaNi5
and LaNi5 are, respectively, 1.8 wt% [238] and 1.5 wt% [231].

The LaNi5 powder and the raw CaNi5 alloy (99.5% pure) were both used in their as-received state.
A Durston DRM 130 cold rolling apparatus was used but it was modified in order to be able to perform
cold rolling vertically instead of horizontally. Details of the cold rolling and ball milling are given in
Ref. [236].

Figure 22 shows the first hydrogenation of CaNi5 and LaNi5 in their as-received, cold rolled and
ball milled states. Several features can be seen in this figure. First, the as-received powders have a long
incubation time with a relatively slow kinetics afterwards. In the case of LaNi5, the total capacity is
much less than the theoretical one even after waiting for almost 20,000 s (5.5 h). Second, the effect of
cold rolling is to reduce the incubation time and increase the kinetic for both alloys but, for the CaNi5
alloy, the capacity is also greatly increased. Thirdly, ball milling produced a much faster kinetic and
also the initial capacity was higher, both samples readily absorbing a small amount of hydrogen after
only a few seconds. However, the CaNi5 alloy presented a reduction of capacity. In the assessment
of both methods, one has to consider that cold rolling was done in air while ball milling was done
under argon. This makes cold rolling much easier and faster to perform than ball milling. In addition,
cold rolling could be processed in continuous mode while ball milling is a batch process. Therefore,
for commercial applications, cold rolling is probably a better candidate for powder processing than
ball milling.
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Figure 22. First hydrogenation at 323 K under 1.5 MPa of hydrogen of CaNi5 and LaNi5 in their
as-received, cold rolled and ball milled states. (Adapted from refs. [236,237]).

Even though the utilization of cold rolling for metal hydrides is relatively new, in addition to
these two examples, many other systems have been investigated [214,217,225,227,239–243]. However,
there is still a lack of understanding the exact reason for the effectiveness of cold rolling on the
hydrogenation behavior of metal hydride. As cold rolling is a well-known industrial technique, it is
worthwhile to continue fundamental research and studying scaling-up problems when this technique
is applied to metal hydrides.
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8. In Situ Characterization of the Mechanochemical Reaction

In Section 4, we saw that pressure and temperature can be monitored in real time during milling
(such as in GTM jars manufactured by Fritsch). These measurements can be seen as an in situ
characterization of the process, as it allows to detect exothermic events or the steps of gas uptake or
release. Such reaction profiles give the researchers an idea about the reaction profile and, in particular,
when the milling process should be stopped in order to do an ex-situ characterization of the reaction
products. This study of the reaction path is better guided than the blind search along the axis of
the reaction time. However, the ex-situ characterization has a number of shortcomings. The first
is a problem detecting short living intermediates. Therefore, the intermediate reaction steps in
mechanochemical synthesis remain poorly understood by traditional ex-situ characterization of the
reaction mixture.

8.1. First In Situ Diffraction Studies

A significant step forward in the in situ characterization of the reaction mixture has been made using
a combination of mechano-chemical synthesis with synchrotron X-ray powder diffraction [244,245].
The high-energy X-ray beam was sent through thick walled (3.1 mm each wall) plastic jars where a
mechanochemical reaction was performed using a shaker mill. One or several stainless-steel balls can
be used with little time (or even no time given some optimization) to get their trajectories onto the path
of the X-ray beam. The use of high-intensity synchrotron beam allowed reaching time resolution of
a few seconds. For example, this setup allowed detecting an intermediate in the mechanochemical
synthesis of the metal-organic framework ZIF-8 having a new topology [246]. Already a year later,
the first studies using this setup were done on the hydride systems [247]. This method allowed
detecting even light hydrides containing weakly scattering elements and has shown a good time
resolution. However, the following limits were identified:

- High energies (short wavelengths) are needed to penetrate the thick-walled plastic jars. This limits
the use of the setup only to high-energy synchrotron beamlines with λ or the order of ~0.15 Å.

- The use of high-energy X-rays has another drawback: the powder diffraction data are squeezed
in a short 2θ-range, with strongly overlapping Bragg peaks, making it difficult to collect
high-resolution data.

- The thick-walled plastic jars produce high amorphous background, which needs to be subtracted
for presentation purposes when plotting data for weakly scattering samples, such as hydrides.

- The plastic jars have to be machined in a workshop at relatively high price and they do not stand
many milling cycles, being especially prone to degradation when using small amounts of solvents
in liquid assisted grinding.

- The large sample volume gives rise to broad or even split diffraction peaks coming from the
sample sticking on the opposite sides of the milling jar. In part, this problem can be solved by
hitting the milling volume by X-ray beam close to the inner wall edge. Thus, the X-ray beam
should not go through the middle of the milling jar but close to its edge. This also reduces the
probability of hitting the metal balls with the X-ray beam.

Indeed, the diffraction on the milling balls add an extra complexity. This can be avoided by
finding appropriate shaking frequencies allowing for stable trajectories of the milling balls. In this
case, it is possible to probe the space where the milling balls. The sketch of the resulting set up and the
illustration of the resolution function are shown in Figure 23.

This technique is becoming increasingly popular in different fields of mechanochemistry [248–252]
and was applied to situ Raman spectroscopy [253] as well as in combined Raman/diffraction/

thermography studies [254].
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the X-ray beam is hitting the sample on the inner wall (on the bottom). The resolution function: The 
width of the diffraction peaks dependd on the 2θ angle (b). D is the sample thickness; and d1 and d2 
are the projections of the sample on the detector at diffraction angles of 2θ1 and 2θ2, respectively. The 
Figures are taken from [255]. 
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which had an optimized shape and lower cost, all thanks to the 3D printing technologies becoming 
widely available in recent years. The 3D-printed polylactic acid (PLA) jars show good mechanical 
strength; they are also more resistant to solvents compared to polymethyl methacrylate (PMMA). 
There materials are robust enough to withstand the impacts from the grinding balls; they are 
amorphous and thus produce no diffraction peaks; and they are quite resistant to solvents allowing 
for liquid-assisted grinding (LAG). 

Compared to the first-generation jars described above, a major idea of the improvement here 
was to reduce the wall thickness of the jar in order to decrease its contribution to the background. In 
addition, the sample thickness is reduced in order to keep good resolution at high angles. One way 
to do this is using a design of a jar with two separate chambers: one in which the actual ball-milling 
reaction occurs, and another in which the powder is characterized by X-ray diffraction. This and other 
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Figure 23. The scheme of in situ ball-milling experiment monitored by powder X-ray diffraction using
a shaker mill (a). The X-ray beam goes through the bottom of the oscillating plastic jar containing the
sample and metal balls. Diffracted X-rays are registered by a 2D detector. The jar is positioned so
that the X-ray beam is hitting the sample on the inner wall (on the bottom). The resolution function:
The width of the diffraction peaks dependd on the 2θ angle (b). D is the sample thickness; and d1 and
d2 are the projections of the sample on the detector at diffraction angles of 2θ1 and 2θ2, respectively.
The Figures are taken from [255].

8.2. Improving the Design of the Milling Jars by 3D Printing

The drawbacks listed above were considered in building the next generation of the milling
jars, which had an optimized shape and lower cost, all thanks to the 3D printing technologies
becoming widely available in recent years. The 3D-printed polylactic acid (PLA) jars show good
mechanical strength; they are also more resistant to solvents compared to polymethyl methacrylate
(PMMA). There materials are robust enough to withstand the impacts from the grinding balls; they are
amorphous and thus produce no diffraction peaks; and they are quite resistant to solvents allowing for
liquid-assisted grinding (LAG).

Compared to the first-generation jars described above, a major idea of the improvement here
was to reduce the wall thickness of the jar in order to decrease its contribution to the background.
In addition, the sample thickness is reduced in order to keep good resolution at high angles. One way
to do this is using a design of a jar with two separate chambers: one in which the actual ball-milling
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reaction occurs, and another in which the powder is characterized by X-ray diffraction. This and other
designs are shown in Figure 24.Materials 2019, 12, x FOR PEER REVIEW 29 of 43 
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energy beamlines. Although all the tested jars showed good efficiency, the main drawback of the 
Type 3 and 4 jars is that they are not suitable for liquid-assisted grinding experiment. In practice, wet 
powders easily stick inside the narrow parts of the jars, thus the material exposed to X-rays is not 
taking part in the reaction. On the other hand, the Type 3 thin-walled jars with a groove is seen as the 
most promising for measurements at low energy beamlines aiming for relatively high angular 
resolution: the thin-walled groove contains the sample within a small volume, providing both for a 
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the source files for printing the jars are available as a supporting information in [255]. 
  

Figure 24. Designs of the 3D printed milling jars: (a) Type 0 jar, basic design from Ref. [1]; (b) Type 1
jar, with a joint point near the end of the jar; (c) Type 2 thin-walled jar; (d) Type 3 thin-walled jar with a
groove; and (e) Type 4 two-chamber jar.

The modified wall thickness, the use of a thin-walled sampling groove and of a two-chamber
design, where the milling and diffraction take place in two communicating volumes, allow for a
reduced background/absorption and higher angular resolution, with a perspective for use at lower
energy beamlines. Although all the tested jars showed good efficiency, the main drawback of the
Type 3 and 4 jars is that they are not suitable for liquid-assisted grinding experiment. In practice,
wet powders easily stick inside the narrow parts of the jars, thus the material exposed to X-rays is
not taking part in the reaction. On the other hand, the Type 3 thin-walled jars with a groove is seen
as the most promising for measurements at low energy beamlines aiming for relatively high angular
resolution: the thin-walled groove contains the sample within a small volume, providing both for a
low background/absorption and for higher resolution in the reciprocal space. Besides the improved
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resolution and the background, the big advantage of this approach is the ease of use and low cost: the
source files for printing the jars are available as a supporting information in [255].

8.3. Going for Ultimate Angular Resolution and an Efficient Sampling

Further improvement was achieved using a relatively complicated reaction cell, shown in Figure 25.
The innovative part is the grinding container, which follows the vertical grinding motion going up to
50 Hz provided by Pulverisette 23 from Fritsch. The vessel can also rotate continuously on its axis at a
rate of 0.1–0.5 Hz. Frequency of the milling and rotation speed of the jar are remotely controlled to
synchronize the experiment outside the hutch. A lower energy X-ray beam of λ ~0.7 Å is typically
used. In situ ball milling experiments were performed at the X04SA Materials Science (MS) beamline at
the Swiss Light Source (SLS), Paul Scherrer Institute. During a typical in situ ball milling experiment,
the X-ray beam passes through the probing windows while the jar is vigorously shaking and slowly
spinning. Scattered X-rays were detected with a 1D multistrip detector Mythen II or a 2D hybrid pixel
array detector Pilatus 6M. This setup is available there to MS beamline users since September 2016.
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Figure 25. (a) Ball mill setup with the stroking device marked in 1, the frame holder in 2 and the jar
container in 3; and (b) schematic of the jar container and motion principles [256].

The particular geometry of the grinding vessel results in PXRD data displaying significantly
lower background and much sharper Bragg peaks, which in turn allow more sophisticated analysis of
mechanochemical processes. Indeed, the FWHM of the standard LaB6 in this setup is about the same
as in a 0.8 mm capillary. This main improvement in the peak width would not have been possible if
X-rays were passing through the entire jar. The extra spinning motion of the milling jar is also a big
improvement in the way of measuring the sample. With the previous setups [244,245,255], powder
could be trapped inside the probing area, biasing the true reaction advancement as the same part was
probed over time. This cannot occur with the present prototype for neat grinding, although this may
be still problematic in the case of liquid-assisted grinding. Moreover, with this recent design, it will
likely be easier and more efficient to couple the in-situ diffraction with other analytical techniques.

With regard to the synthesis of hydrides, the clear advantage of the improved resolution is
illustrated in Figure 26, showing the data collected at high energy beamline using the original setup as
described in Refs. [244,245] and the most recent design described in Ref. [256].
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9. Conclusions

Mechanosynthesis is a powerful way to synthesize and modify hydrogen storage materials. In this
paper, we show that through mechanosynthesis a wide range of complex hydrides can be synthesized.
In fact, mechanosynthesis is sometimes the only way, or at least the most efficient way, to make
these compounds. In addition, milling at low temperature (cryomilling) or under hydrogen pressure
enables the synthesis of new materials in a relatively easy way. In recent years, new synthesis methods,
collectively known as Severe Plastic Deformation (SPD) techniques, have been used to prepare metal
hydrides. In this paper, we demonstrate the high efficiency of High-Pressure Torsion (HPT), Surface
Mechanical Attrition Treatment (SMAT), and cold rolling to enhance the hydrogen storage properties
of metal hydrides. Using these techniques, the effect of grain boundaries, dislocations, stacking faults,
and amorphous phases can be studied. Fundamental understanding of the mechanochemistry process
can now be better studied thanks to the new technique of in situ X-ray diffraction. These development
of new synthesis and characterization techniques are proof that the field of mechanochemistry has a
bright future and will continue to bring new and exciting discoveries.
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246. Katsenis, A.D.; Puškarić, A.; Strukil, V.; Mottillo, C.; Julien, P.A.; Uzarevic, K.; Pham, M.-H.; Do, T.-O.;
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