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In recent years, substantial effort has gone into disentangling the genetic

contribution to individual differences in behaviour (such as personality and

temperament traits). Heritability estimates from twin and family studies,

and more recently using whole genome approaches, suggest a substantial

genetic component to these traits. However, efforts to identify the genes

that influence these traits have had relatively little success. Here, we review

current work investigating the heritability of individual differences in behav-

ioural traits and provide an overview of the results from genome-wide

association analyses of these traits to date. In addition, we discuss the impli-

cations of these findings for the potential applications of Mendelian

randomization.

This article is part of the theme issue ‘Diverse perspectives on diversity:

multi-disciplinary approaches to taxonomies of individual differences’.
1. Introduction
Despite the early promise of behavioural genetic research, efforts to disentangle

the genetic contribution to individual differences in behaviour (e.g. personality

and temperament traits) have been slow. Early studies relied on a candidate

gene approach to identify genes influencing these traits; however, many of

these failed to replicate, despite having a plausible biological mechanism.

More recent studies have used whole genome approaches to investigate the

genetic architecture of behavioural traits. However, unlike for many other com-

plex traits such as height [1,2] and schizophrenia [3], relatively few genetic

variants have been identified that are robustly associated with temperament

and individual differences in personality.

It has been argued that a small number of factors can be used to account for

individual differences in personality [4–8]. Although there is no universally

accepted framework of personality, the proposed factors (such as those

suggested in Eysenck’s five-factor model (FFM)) provide a good starting

point when investigating the genetic architecture of these individual differences

[7]. It is likely that individual molecular genetic effects associated with these

traits will be small and large sample sizes will therefore be required to detect

any association. By measuring specific traits, studies are able to harmonize phe-

notypes and pool analyses across cohorts. This will increase the power to detect

genetic effects relevant to individual differences.

With recent advances in computing and availability of increasingly rich data

sources, there has been a surge in the number of behavioural genetic studies inves-

tigating personality and temperament traits. Behavioural genetics has the

potential both to quantify genetic influences on these traits and to indirectly quan-

tify environmental influences [9]. Here, we provide a synthesis of these

behavioural genetic studies to date. We begin by reviewing current

work investigating the heritability of individual differences in personality and
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Box 1. Heritability.

Heritability is the proportion of variation in a phenotype (VP) that can be attributed to genetic differences for the particular

context and timepoint at which it is estimated. This can include the proportion of variance due to additive genetic effects

(VA), known as narrow-sense heritability (h2), or the proportion due to all genetic effects (VG), known as broad-sense herit-

ability (H2) [12]. In addition to additive genetic effects, H2 includes both between-loci interactions (epistasis) and within-loci

interactions (dominance) effects.

Broad-sense heritability: H2 ¼ VG=VP

and

Narrow-sense heritability: h2 ¼ VA=VP:

Heritability can be estimated using a number of methods. These include twin, family and adoption studies, in addition to

more recent methods that use data captured by genome-wide arrays. Estimates calculated according to these models can be

thought of as ‘true’ heritability. These estimates will incorporate heritability due to variants across the entire genome, includ-

ing rare variants and those not captured by SNPs included on genotyping platforms. However, twin models, by design, use

closely related individuals. These individuals are thus likely to share a great deal of their environment, which could lead to

false inflation of heritability estimates.

Additional methods estimate heritability using SNP-based approaches. This includes heritability due to variants robustly

associated with the phenotype of interest that are identified through genome-wide association study (GWASs) (h2
GWAS), and

heritability attributed to all SNPs captured on a GWAS array (h2
SNP). h2

SNP is typically larger than h2
GWAS, although h2

GWAS will

increase with sample size as more variants are identified through GWASs, and is expected to approach h2
SNP [13,14]. These

approaches generally estimate heritability using unrelated individuals, which should minimize any false inflation due to shared

environment, but do not give an estimate of true narrow-sense heritability because they do not include all additive genetic variance.

While the classic twin design can be used to estimate the proportion of phenotypic variation that can be attributed to

genetic differences within a population, SNP-based methods can provide an estimate of the amount of variation that

could potentially be explained using information from genome-wide SNP chips. These chips tend to encompass common

variation and work by genotyping a fraction of the genome, in the hope that these SNPs will ‘tag’ the majority of the remain-

ing SNPs. This h2
SNP is an estimate of how much of the phenotypic variation could potentially be explained using the variants

contained on these chips, rather than an estimate of ‘true’ h2. Any discrepancies between h2
SNP and the narrow-sense herit-

ability estimated from twin studies may be attributed to variation explained by rare variants, small effect sizes not

detectable using current sample sizes or common variation not tagged by SNPs included on the current chip.
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temperament traits; for the purposes of this review, we will

refer to individual differences in these traits as simply ‘individ-

ual differences’. We also look at the results from genome-wide

association analyses of these traits to date and discuss the

implications of these findings for the potential for applying

Mendelian randomization (MR) to individual differences in

behaviour [10,11].
2. Estimating heritability
To investigate the genetic contribution to a phenotype, it is

useful to first estimate its heritability (box 1). Heritability is

the proportion of variation in a phenotype that can be attribu-

ted to genetic differences; these estimates are specific to the

particular context and the timepoint at which they are esti-

mated [13,15–17]. For example, if a trait has a heritability of

30%, then 30% of the variation in this trait is assumed to be

due to genetic variation. However, although these estimates

provide an idea of the size of the genetic component for a par-

ticular trait, they do not give us any information about which

genes are likely to be responsible for it [18].

(a) Using twin studies to estimate heritability
Twin studies have been extensively used to disentangle the

role of genetics and environment on human traits [19]. These

models assume there are three distinct influences on phenotypic

variation (VP) and these comprise additive genetic effects (VA),
shared environmental effects (VC) and non-shared environ-

mental effects (VE) [20]. Heritability estimates resulting from

twin models are valid under certain assumptions. These

assumptions include: (i) the twins are representative of the gen-

eral population in terms of the trait, (ii) environmental effects

are shared to the same extent by identical (MZ) and non-

identical (DZ) twins, (iii) gene–environment interactions for

the trait are minimal, and (iv) there is no assortative mating in

the population [20]. Violations of these assumptions can

result in biased (i.e. either increased or decreased) heritability

estimates, and it seems reasonable that these assumptions

could impact differently depending on the trait of interest. It

should also be recognized that while one of the variance com-

ponents is referred to as ‘non-shared environment’, this does

not necessarily relate to environmental factors as they are

usually understood, as the effects of somatic mutations, stochas-

tic epigenetic changes and other random processes, as well as

measurement error, are subsumed under this heading [13].

A recent meta-analysis by Polderman et al. [19] focusing

on twin studies of human behavioural traits found that of all

the phenotypes studied (more than 500 distinct traits),

temperament and personality traits were among the top 10

most investigated. This study investigated the relative contri-

bution of genetics and environment to a comprehensive list

of traits studied over the previous 50 years, as well as assessing

the presence of non-additive genetic effects. The authors

suggest that of all the studies (N ¼ 568) investigating tempera-

ment and personality traits, the majority (84%) of published



Box 2. Population stratification.

Allele frequencies can differ across populations, which can cause difficulties in association studies (figure 1). These differ-

ences in ancestry, or underlying population substructure, need to be taken into account to prevent finding associations

that are due to this population substructure rather than to phenotype-associated variants. Methods of accounting for this

include restricting samples to populations of common ancestry, adjusting results for a genomic inflation factor (l) [27] or

performing principal component analysis to account for variation in the data due to population differences, and adjusting

the regression model for these components [28].

cases controls
population 1population 1

allele A (risk allele)

allele B

population 2

overall

cases

allele A 7 (44%)

9 (56%)

4 (25%)

12 (75%)

1 (17%) 2 (17%) 2 (50%)

2 (50%)

5 (50%)

5 (50%)12 (83%)5 (83%)allele B

casescontrols casescontrols controls

population 1 population 2

population 2

Figure 1. Population stratification. When looking at the sample overall, there is a higher frequency of risk allele A in cases than controls. However, there are two
‘hidden populations’ within this sample and the risk allele has a higher frequency in one population than the other. Cases and controls are sampled disproportion-
ately, resulting in a false positive association for this variant. (Online version in colour.)
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twin correlations were consistent with a simple model contain-

ing just additive genetic effects [16,19]. However, many of

studies in the meta-analysis did not report non-additive var-

iance components, because these are generally (and arguably

erroneously) constrained to zero when there is no ‘significant’

effect. This outcome is linked to sample size; thus, it is possible

that this lack of non-additive effect is a result of the sample

sizes analysed [16,21].

A recent meta-analysis of personality and temperament

traits has combined evidence from twin, family and adoption

studies [22]. The author, Vukasović & Bratko, find evidence

for a heritable component to individual differences in person-

ality, with heritability estimated at approximately 40%. The

authors investigated the contribution of the different study

designs and found that heritability estimates were consistently

higher among twin studies than family and adoption studies.

The authors also looked at potential moderating effects of

gender and personality model on heritability. Although there

is some suggestion in the literature that heritability differs

according to gender [23–26], there was no strong evidence of

a moderating effect when combining across all studies. Twin

studies and Eysenck’s theory of personality were both over-

represented in the data; however, the authors only found

evidence for a moderating effect of study design.

Despite the variation across models of personality structure

considered in these studies, there is clear evidence that a pro-

portion of variation in these individual difference traits can

be attributed to genetic variation. Vukasović & Bratko [22]

found no difference in heritability regardless of the model of

personality used across studies. This is somewhat reassuring

given the different models considered across cohorts and the

ongoing development of personality theory.

An additional consideration when undertaking gen-

etic analysis is the population under investigation. In this
meta-analysis, there is an underrepresentation of Asian popu-

lations and no representation of South American or African

populations. Performing genetic analyses across different

samples can be difficult owing to the possibility of population

stratification (box 2 and figure 1). Risk alleles can occur with

different frequencies across populations, and this can induce

spurious associations. The population from which a sample

has been drawn, therefore, needs to be taken into consideration

to ensure that any observed association is not simply due

to differences in allele frequency (see ALDH2 Mendelian

randomization example in section 5).

(b) Single-nucleotide polymorphism-based approaches
to estimating heritability

Although the twin studies discussed previously provide

estimates of true narrow-sense heritability (h2), it can be

problematic to obtain large enough samples to precisely esti-

mate these effects. With recent advances in computing, and

the increasing willingness of many cohorts to combine efforts

through large-scale consortia, it has been possible to create

increasingly large genotyped samples with data on a wide

range of phenotypic measures. Unlike twin studies which

rely on assumed levels of genetic correlation between twin

pairs, we are now able to measure the degree of genetic simi-

larity between individuals in a dataset and look at the extent

to which genetic and phenotypic similarity correlates. This

means that it is now possible to calculate heritability estimates

using non-related individuals [14,29–33]. Methods have also

been developed that use summary statistics from genome-

wide association studies (GWASs) to calculate heritability

estimates even when individual-level data are not available.

These techniques use information on the correlation or linkage

disequilibrium (LD) structure across the genome to estimate



Table 1. Neuroticism heritability estimates from recent GWASs.

study sample h2
SNP N

Bae et al. [39] LLFS 0.252, p ¼ 1.7�10215 4595

de Moor et al. [40] NTR 0.147, p ¼ 0.02 3599

QIMR 0.157, p ¼ 0.18 3369

Smith et al. [41] UK Biobank 0.136, s.e. ¼ 0.015 91 370

Okbay et al. [42] UK Biobank 0.091, s.e. ¼ 0.007 170 910

Lo et al. [38] 23andMe 0.119, s.e. ¼ 0.016 59 206

Luciano et al. [43] UK Biobank 0.108, s.e. ¼ 0.005 329 821

Nagel et al. [44] UK Biobank 0.100, s.e. ¼ 0.003 449 484

Box 3. Genome-wide association studies.

GWASs use a hypothesis-free method of identifying specific common variants associated with a phenotype. Analyses are per-

formed for each SNP in the dataset, which can be either genotyped or imputed. This assumes that any causal SNPs will be

either captured within the analysis or tagged by those that are included. GWAS performs a regression for each variant,

with the appropriate method determined by the format of the phenotype of interest. The regression model includes the geno-

type at that SNP plus any other relevant confounding variables, such as principal components, in order to adjust for population

stratification, or other covariates that could account for variation in the phenotype not acting through the SNP of interest.

To account for the extensive multiple testing performed by running these analyses across the genome, a Bonferroni cor-

rected p-value has been calculated which accounts for the likely number of functional variants being tested. This is the widely

used p , 0.05 level of ‘statistical significance’ divided by 1 million, an approximation of the number of independent tests

carried out across the genome. The accepted level of genome-wide significance is therefore p , 5 � 1028 [46]. This is then

typically followed by replication in an independent, comparable sample.
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the heritability of a trait from GWAS summary statistics [34].

Although these approaches incorporate the LD structure

among SNPs, estimates could be biased if the distribution of

causal variants is non-random with respect to LD. A potential

solution is to stratify SNPs jointly by minor allele frequency

and LD. This approach appears to provide unbiased estimates

of h2
SNP [14,33].

A recent study by Power & Pluess [35] used the FFM of

personality to assess heritability of individual differences in

behaviour in a sample of 5011 participants from the 1958

National Child Development Study (NCDS). They applied

genome-wide approaches to estimate the heritability of each

factor included in this model and found negligible estimates,

with the exception of neuroticism (h2 ¼ 0.15, s.e. ¼ 0.08) and

openness (h2 ¼ 0.21, s.e. ¼ 0.08). They also identified sub-

stantial genetic correlation (rG) between the neuroticism and

extraversion factors (rG ¼ 0.82, s.e. ¼ 0.39) and between

neuroticism and openness (rG ¼ 1.00, s.e. ¼ 0.50).

Although previous studies have estimated SNP heritabil-

ity estimates for various facets of personality [36,37], this was

the first study that attempted to estimate heritability for each

of the FFM domains simultaneously. The estimates from this

study are much smaller than the heritability estimated by

twin studies (approximately 40%), leading the authors to

suggest that common variants account for only around a

quarter of causal genetic variation [35].

A recent meta-analysis by Lo et al. [38] estimated heritabil-

ity based on GWAS summary statistics and found estimates

that were consistent for both neuroticism and openness, and

an increased heritability estimate for extraversion. Power to

detect smaller h2 estimates was increased in this study, which

involved a sample size of approximately 59 000 participants.
Table 1 shows the h2
SNP from neuroticism with increasing

sample size. Heritability remains approximately 10%, with

increasing precision as the sample size improves.
3. Identifying genetic associations
Despite emerging evidence that individual difference traits are

heritable, so far relatively few individual genetic variants

associated with these traits have been identified. This is likely

due to the polygenic nature of these traits. Under the evolu-

tionary neutral model, most variants with large effects will

be rare; the majority of phenotypic variation is likely to be

due to common variants of small effect [45]. Initial studies

investigating the genetic basis to individual difference traits

relied on investigating candidate genes. With advancements

in computing power, it has become possible to increase

the scope of analyses to take into account the entire

genome rather than focusing on a single candidate locus.

While candidate gene studies were purely hypothesis-driven

and required knowledge of the underlying biology, GWASs

are instead hypothesis-generating and test for associations

across the whole genome (box 3). Associations found here

can inform future studies and provide valuable information

on underlying mechanisms.

(a) Candidate gene studies
In a candidate gene study, the association between allele

frequency at a particular variant and phenotype of an individ-

ual is investigated [47]. These variants are selected a priori
based on some underlying knowledge of a plausible biologi-

cal mechanism associated with a particular locus. In recent
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years, the associations between the serotoninergic and

dopaminergic neurotransmitter systems have gained attention

[48–50]; however, the evidence for these associations has

been somewhat inconsistent.

Although candidate gene studies were once the norm for

behavioural genetic studies, many findings failed to repli-

cate leaving the literature awash with false positive results.

A recent study investigated findings from the largest schizo-

phrenia GWAS to date and found no evidence that variants in

the most-studied candidate genes were more associated with

the disorder than non-candidate genes [51]. Candidate gene

studies suffered from issues such as small sample sizes and

lack of power, confounding due to population stratifica-

tion which was frequently unaccounted for, and selective

reporting of ‘positive’ results [52]. As a result, there has

been a move away from these analyses in favour of the

more agnostic GWAS approach.

(b) Genome-wide association studies
(i) Analyses using the five-factor model of personality
GWASs have been successful in identifying loci associated

with many complex traits, for example a recent GWAS of

schizophrenia identified 108 loci robustly associated with

the disorder [3], while over 200 susceptibility loci have been

identified for inflammatory bowel disease [53]. Progress

with regard to personality and temperament traits, however,

has been slower.

A number of early GWASs focused on the FFM [39,54–57];

however, these were generally small and the majority of

reported associations failed to replicate. Recently, a number

of larger studies have used data from the UK Biobank to

increase sample sizes [38,41–44]. The largest study to date,

which focuses on five broad personality domains, is a recent

meta-analysis of several GWASs which included data from

23andMe, Genetics of Personality Consortium, deCODE and

UK Biobank (N ¼ 123 132 to 260 861) [38]. This study identified

six genetic loci, five of which were novel.

The majority of genome-wide analyses of individual

differences have been performed in samples of European

ancestry. However, studies have also investigated the genetic

architecture of these factors within a Korean sample [54,55].

These studies also focused on an FFM of individual differ-

ences, but used a version of the NEO-PI revised for use in

the Korean population. With the exception of rs2146180, an

intergenic variant on chromosome 9, which associated with

the openness domain among a sample of young Korean

females, there were no robustly associated genetic variants

identified among these samples.

(ii) Analyses of specific traits
In addition to studies looking at each of these five domains,

other studies have focused on a particular trait. Several

studies have focused on neuroticism, with the largest study

to date including data from UK Biobank, 23andMe and the

Genetics of Personality Consortium (N ¼ 449 484). This

study reports finding 136 independent genetic variants

associated with neuroticism levels [44]. This suggests that

for complex traits, for which there are likely to be many gen-

etic effects of small size, increases in sample size are likely

key to identifying genetic effects.

Other studies have focused on extraversion, although the

samples for these have been smaller and to date have yielded
few robust findings [58,59]. However, as shown in the herit-

ability literature, there appears to be substantial genetic

correlation between the traits of neuroticism and extraversion

[35]. Extraversion also appears to be one of the more heritable

traits, so it is possible that these analyses are currently under-

powered. As of yet, there are no phenotypic measures

available in the larger cohorts (such as UK Biobank) that

would allow a GWAS of similar magnitude to be carried out.

Excitement-seeking and temperament were also investi-

gated using genome-wide association analyses; however,

these also comprised relatively small samples and did not

find robust evidence of variants associated with these traits

[60–62].

With the availability of large samples such as UK Biobank,

there have been recent GWAS successes for other individual

difference traits such as depressive symptoms. Progress in

identifying genetic variants associated with depression had

previously been slow, but in recent years, three large GWASs

of major depressive disorder have been published [42,63,64].

The latest of these reports 44 independent risk loci for

depression [64]. Reported heritability estimates for depression

are similar to those reported for the FFM. It seems feasible that

with similar increases in sample size, analyses of behavioural

traits will be powered to detect genetic variants of small

effect, and we may yet see comparable success in detecting

variants that influence individual differences in personality

and temperament.
4. Interpreting genome-wide association
study findings

With recent advances in computing and the large number of

cohorts willing to pool resources, there has been a rapid

growth in the number of published GWASs and publicly

available summary statistics. These studies have led to the

identification of a vast number of genetic variants associated

with disease outcomes in addition to health and lifestyle beha-

viours. Genome-wide association analyses have made a vast

contribution to our understanding of the biological mechan-

isms unpinning many complex traits [1–3,65–67]. However,

although GWAS findings often represent direct genetic effects,

the possibility that they reflect the effects of modifiable risk fac-

tors should not be overlooked [68]. An illustrative example is

the nicotinic receptor gene cluster CHRNA5-A3-B4 on chromo-

some 15, which is robustly associated with heaviness of

smoking. This association was first reported in candidate

gene studies [69] and later identified through a GWAS of

smoking quantity [70] and studies of nicotine metabolite

levels [71–73]. Subsequent functional work suggests that this

gene cluster plays a pivotal role in nicotine dependence by

reducing the aversive effects of nicotine [74]. While this variant

explains some of the biological underpinnings of this trait, the

CHRNA5-A3-B4 locus has also been identified in GWASs of

lung cancer [75] and chronic obstructive pulmonary disease

[76]. In the case of these traits, it is likely that the observed

association with the CHRNA5-A3-B4 locus is moderated

through smoking status and mediated through the resulting

tobacco exposure among smokers [68,71].

For individual personality and temperament traits, it may

also be possible to identify the effects of modifiable risk factors

by dissecting the results of newly published genome-wide

analyses. It is likely that any effects, acting either through
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Figure 2. Directed acyclic graph illustrating Mendelian randomization.
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biological mechanisms or via modifiable exposures, are small,

and large sample sizes will be required to detect these effects.

With the recent release of the full UK Biobank sample, in

addition to the increasingly collaborative direction in which gen-

etic research appears to be heading, it seems likely that future

analyses of these individual difference traits will be undertaken

on greater samples, thus increasing power. Despite the fact that

samples may not currently be powered to detect variants

associated with modifiable risk factors at a genome-wide

level, it is possible to interrogate the summary statistics relating

to these analyses and investigate for enrichment of variants and

networks that are known to relate to exposures of interest.

GWASs of other individual difference traits such as repro-

ductive outcomes (measured by age at first birth and number

of children ever born) [77] and educational attainment [78]

have been successful in providing insights into the genetic

architecture of these other behavioural phenotypes. Meta-

analyses of GWASs of both age at first birth and number

ever born have been conducted, and several independent

loci have been identified that are robustly associated with

either one or both of these traits [77]. The related genes

have been identified as those that play a role in human repro-

duction and infertility. In addition, a large GWAS of

educational attainment has identified 74 variants associated

with years of schooling. These variants are disproportion-

ately found in regions that regulate gene expression in the

fetal brain [78]. These studies illustrate that well-powered

studies can identify potentially relevant biological pathways,

even for proximal phenotypes or behavioural phenotypes

that at first appear to be largely environmentally driven.
(a) Genetic overlap: what does this tell us?
Once we have estimated the heritability of a trait, we know that

there is a genetic component to this phenotype, although further

work needs to be carried out to determine which genes influ-

ence this. If heritability has been calculated for multiple traits,

then we know that there is a genetic component to each of

these; however, we do not know if these are influenced by the

same genes. Genetic correlation is a method to quantify how

much genetic overlap there is between traits. It provides an esti-

mate of the additive genetic effect shared between pairs of traits.

It is possible to estimate genetic correlation using either publicly

available summary statistics or individual-level data. The vast

number of published GWASs means that effect sizes are avail-

able for a wide range of traits on specific variants, and we can

use the correlation between these to assess the genetic overlap

between traits. Although these do not provide information on

the causality of any potential relationship, they shed light on

the amount of shared genetic architecture across traits. Any

overlap here could be due to pleiotropy (genetic effects on mul-

tiple traits), shared biological mechanisms between traits or a

causal relationship from one trait to another, but the direction

of this cannot be ascertained from these approaches.

There is a well-documented association between person-

ality domains and a range of health behaviours and physical

and mental health outcomes [67,79–85]. Recent studies have

investigated the extent to which there is shared genetic architec-

ture between personality and temperament traits and both

mental and physical health [43,44,83,85]. Nagel et al. investi-

gated genetic overlap between neuroticism and several

mental health outcomes, anthropometric and health-related

traits using previously published summary statistics. Strong
evidence of genetic correlation was found for several of these

outcomes, with the greatest correlations observed with anxiety,

depression and subjective well-being. There was also evidence

of moderate–low genetic correlation between neuroticism and

a number of other outcomes including schizophrenia, attention

deficit hyperactivity disorder (ADHD), anorexia nervosa,

educational attainment and height [44].
5. Mendelian randomization
Once genetic correlation between traits has been established, it

may be possible to disentangle the nature of the relationship

using techniques such as Mendelian randomization (MR).

MR is a method of investigating causality using observational

data. Genetic variants are used as proxies, or instrumental

variables, for a modifiable risk factor of interest. The principles

and assumptions underlying MR have been described in detail

elsewhere [10,11,86,87]. Assuming these assumptions hold,

there should be no association with potential confounders

and analyses should not be subject to reverse causation

(figure 2). MR can therefore be used to investigate the causality

and direction of observational associations where there is a

strong genetic instrument for the modifiable risk factor.

For cases where there are strong genetic instruments for

both the exposure and outcome, bidirectional MR methods

can be used to provide stronger evidence of the direction of

effect. Assuming that the instruments are equally as strong

for the exposure and outcome, if we were to observe strong evi-

dence of an association in one direction, but not in the other,

this would strengthen our confidence that this is the true direc-

tion of effect. However, MR alone is not enough to provide

definitive evidence of causality, and evidence from different

approaches should be triangulated. MR estimates should be

compared with those from other methods to investigate

whether results are consistent across different approaches

and to build a more complete picture of the true effect.

To date, there have been relatively few MR studies carried

out using individual differences in personality, in part due to

the lack of strong instruments for these traits. However, with

the publication of increasingly large GWASs for these traits,

we expect instrument strength to increase and MR analyses to

become more feasible. MR has provided insights into the

causal effects of other individual difference traits, such as edu-

cational attainment, depression and anxiety [88,89]. A recent

MR suggests that additional education is protective against

the risk of coronary heart disease, with similar causal associ-

ations with reduced smoking, body mass index and improved

blood lipid profiles [88]. MR analyses investigating the effect

of smoking behaviours on depression and anxiety have found

no strong evidence of an effect in this direction [89].

As mentioned previously, allele frequencies can differ

across populations, and this information can be useful when
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designing MR analyses. A recent study investigating the role

of alcohol use in adolescent internalizing and externaliz-

ing problems was performed within a sample of Chinese

adolescents [90]. The ALDH2*2 genotype is found almost

exclusively in Asian populations and can be used as a strong

instrument for alcohol use in these samples. This study found

evidence of a causal role for alcohol in adolescent aggression

and attention problems.

In addition, MR can provide insights into evolutionary

developmental hypotheses as it allows us to look at varying

levels of genetic vulnerability to a trait, rather than focusing

on an individual’s phenotype. It seems likely that particular

traits would be susceptible to selection; for example, individ-

uals with a diagnosis of schizophrenia tend to have lower

reproductive success [91,92]. However, the disorder remains

at a constant prevalence in the population. This is likely

due to favourable characteristics that are linked to some gen-

etic vulnerability for the disorder that, although elevated, is

not high enough for the phenotype to manifest.
0170162
6. Further research directions
An alternative to increasing sample size is to refine the pheno-

type being investigated. Reducing the noise in a phenotype

measure may lead to a clearer genetic signal, and thus, lower

sample numbers would be required to detect this. Attempts

to refine the phenotype are useful in terms of improving stat-

istical power, but could limit the utility of any findings if

results are not generalizable to the whole population. There-

fore, there is a trade-off between statistical power and clinical

utility. Ideally, studies combining the large sample sizes of

resources, such as UK Biobank, with the detailed phenotyping

of smaller cohort studies would provide the greatest power to

detect genetic effects, if such effects exist. Longitudinal cohorts

have the potential to contribute to this; measurement error will

be reduced for longitudinally defined phenotypes, resulting in

increased power.

Although there is ongoing discussion about the best

model of individual differences in personality, the factor

structure suggested by Eysenck and others is a useful starting

point when investigating the genetic architecture of these

traits [4–7]. Work has been done to investigate the impact

of using different personality models when attempting to

unpick the genetic structure of these traits, and little evidence

of a difference across models has been found [22]. There is
some suggestion that a general factor of personality should

be constructed [93,94]. Although there is little work that has

been done to specifically investigate the genetic architecture

of such a factor [95], the genetic correlation between various

factors in the FFM provides some evidence for this theory

[35]. Further work should be done to investigate the influence

of using different models of these individual differences.

To date, the majority of studies investigating underlying

genetics of behavioural traits have focused on samples of Euro-

pean ancestry. Individual molecular genetic effects are likely to

be of small size, and large samples will be required to identify

them. There is a finite number of samples available with rel-

evant phenotypes and genetic data available; therefore, in

order to maximize power and sample size, combining samples

across populations is likely to play an important role in future

genetic studies. Analytical approaches that can account for

underlying population stratification will be required.
7. Conclusion
Despite ongoing debate about the structure of individual

differences in personality, there is clear evidence of a genetic

component to these traits. Consistent heritability estimates

have been calculated for a number of domains using both

twin studies and whole genome approaches. Increasingly

large GWASs have been published which identify a number

of genetic variants for individual differences in behavioural

traits. To date, the largest study of a personality trait focuses

on neuroticism, which has identified 136 variants of small

effect. As the number of samples with both genetic and phe-

notypic data increases, it is likely that more such evidence

will emerge. This has the potential both to provide insights

into potential biological mechanisms and to generate instru-

ments for use in future MR analyses investigating causal

consequences of these individual differences in personality.

Data accessibility. This article has no additional data.

Author contributions. H.S. drafted the manuscript. G.D.S. and M.R.M. cri-
tically revised the manuscript. All authors gave final approval for
publication.

Competing interests. We have no competing interests.

Funding. H.S., G.D.S. and M.R.M. work in the Medical Research Coun-
cil Integrative Epidemiology Unit at the University of Bristol, which
is supported by the Medical Research Council and the University
of Bristol (MC_UU_12013/1 and MC_UU_12013/6).
References
1. Marouli E et al. 2017 Rare and low-frequency
coding variants alter human adult height. Nature
542, 186 – 190. (doi:10.1038/nature21039)

2. Wood AR et al. 2014 Defining the role of common
variation in the genomic and biological architecture
of adult human height. Nat. Genet. 46,
1173 – 1186. (doi:10.1038/ng.3097)

3. Schizophrenia Working Group of the Psychiatric
Genomics Consortium. 2014 Biological insights from
108 schizophrenia-associated genetic loci. Nature
511, 421 – 427. (doi:10.1038/nature13595)

4. McCrae RR, Costa PT. 1985 Comparison of EPI and
psychoticism scales with measures of the five-factor
model of personality. Pers. Individ. Differ. 6,
587 – 597. (doi:10.1016/0191-8869(85)90008-X)

5. Tupes EC, Christal RE. 1992 Recurrent personality
factors based on trait ratings. J. Pers. 60, 225 – 251.
(doi:10.1111/j.1467-6494.1992.tb00973.x)

6. Zuckerman M. 1992 What is a basic factor and
which factors are basic? Turtles all the way down.
Pers. Individ. Differ. 13, 675 – 681. (doi:10.1016/
0191-8869(92)90238-K)

7. Eysenck HJ. 1991 Dimensions of personality: 16, 5
or 3? Criteria for a taxonomic paradigm. Pers.
Individ. Differ. 12, 773 – 790. (doi:10.1016/0191-
8869(91)90144-Z)
8. Cloninger CR. 1994 Temperament and personality.
Curr. Opin. Neurobiol. 4, 266 – 273. (doi:10.1016/
0959-4388(94)90083-3)
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