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Induced pluripotent stem (iPS) cells are generated by reprogramming human somatic cells through the forced expression of several
embryonic stem (ES) cell-specific transcription factors. The potential of iPS cells is having a significant impact on regenerative
medicine, with the promise of infinite self-renewal, differentiation into multiple cell types, and no problems concerning ethics
or immunological rejection. Human iPS cells are currently generated by transgene introduction principally through viral vectors,
which integrate into host genomes, although the associated risk of tumorigenesis is driving research into nonintegration methods.
Techniques for pluripotent stem cell differentiation and purification to yield cardiomyocytes are also advancing constantly.
Although there remain some unsolved problems, cardiomyocyte transplantation may be a reality in the future. After those
problems will be solved, applications of human iPS cells in human cardiovascular regenerative medicine will be envisaged for
the future. Furthermore, iPS cell technology has generated new human disease models using disease-specific cells. This paper
summarizes the progress of iPS cell technology in cardiovascular research.

1. Introduction

Cardiovascular disease remains a major cause of mortality
in developed countries, with severe heart failure being the
leading cause of cardiac death [1]. There is no fundamen-
tal therapy for refractory heart failure other than heart
transplantation, which is not regarded as a robust option
because of the associated problems such as too few donors
and immunological rejection [2]. A clear need, therefore,
exists for novel therapies for severe cardiovascular disease,
and recent advances in stem cell biology have indicated that
regenerative medicine might meet that need in the future.

Stem cells are defined by the characteristics of self-
renewal and differentiation capability to multiple tissues.
These cells thus hold great promise as a source for cell
transplantation therapy. Embryonic organs rapidly develop,
and embryonic cells have a strong proliferation potential.
In particular, embryonic stem (ES) cells that are established
from the inner cell mass of the morula stage of mammalian
embryos are regarded as a powerful cell source for clinical
application because of their promising growth potential and
pluripotency. However, there are major obstacles with the
use of human ES cells such as bioethical issues surrounding

the destruction of a fertilized egg and immune rejection due
to alloantigens following transplantation. Adult organs are
also seen as a potential source of somatic stem cells with the
ability to proliferate and differentiate into the specific cells
in each tissue and thus help to maintain tissue homeostasis
and organ healing after injury. Adult heart, for instance,
contains cardiac stem cells that can be differentiated into
mature cardiomyocytes and vascular cells, and is, therefore, a
candidate source for cardiac cell transplantation therapy [3,
4]. However, there are not sufficient numbers of somatic stem
cells in adult organs and the proliferation and differentiation
ability of somatic stem cells is limiting compared to that of
ES cells.

The recent generation of induced pluripotent stem (iPS)
cells has created new hope in the field of regenerative
medicine for overcoming the dilemma of ES cells. iPS cells
can be generated from somatic cells by introducing defined
reprogramming factors (Oct3/4, Sox2, Klf4, c-Myc, Nanog,
and Lin28) in various mammals including mouse, rat, pig,
monkey, and human [5–10]. These cells have the two crucial
stem cell characteristics of self-renewal and pluripotency.
In addition, the ethical issues associated with generating
iPS cells are trivial compared to those for ES cells because
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the sacrifice of an embryo is dispensable, and the use of the
recipient’s own cells eliminates the risk of immune rejection
generally associated with transplantation. Because of these
tremendous benefits, iPS cells hold great promise as a novel
cell source for regenerative medicine. Moreover, the unique
characteristics harbored in the genetic information of almost
every adult cell could allow the creation of patient-specific
pluripotent stem cells, which can be then dedicated to any
cell type in vitro. Consequently, iPS cell technology has
raised concerns in the fields of disease pathogenesis and drug
discovery [11–13].

2. iPS Induction Methods

ES cells have the ability to proliferate infinitely and can
differentiate into the cell types of all three germ layers
with germ line transmission [14]. The first human ES cells
were successfully generated in 1998 [15]. Human iPS cells
were established in 2007 by the transduction of various
gene cocktails [6, 7]. The characteristics of iPS cells are
quite similar to those of ES cells in terms of morphology,
proliferation ability, patterning of global gene expression,
and the epigenetic status of promoter regions for stem-cell-
specific transcription factors. As a matter of course, these iPS
cells also can differentiate into cells of the three germ layers
in vitro and in vivo.

For iPS cell technology to realize its significant promise
for advanced regenerative medicine, several difficult prob-
lems must be addressed. The original method of generating
iPS cells involves the transduction of core transcription
factors into somatic cells by retroviral vectors with the
accompanying insertion of transgenes into the host genome.
These transgenes could theoretically disrupt the native genes
and/or alter normal gene expression. Although the expres-
sion of such viral-mediated exogenous genes are virtually
silenced once the cells are fully reprogrammed into iPS cells,
small but sustained leakage of transgene expression or the
reactivation of those transgenes occasionally disturbs the
differentiation and maintenance of an undifferentiated state
[16]. In particular, oncogenic transgene reactivation such as
that of c-Myc could increase the risk of tumor formation after
transplantation of the iPS-derived cells [17]. In addition, the
detail mechanism of reprogramming is not yet elucidated
sufficiently, and the reprogramming efficiency of somatic
cells is still low. These problems need to be at least minimized
before the application of iPS technology in the clinical setting
can proceed.

To establish safer iPS cells, several novel methods are
being investigated that do not involve transgene insertions
into the host genome. Various gene-delivery systems have
been developed for the reprogramming of human somatic
cells into iPS cells [18–24]. In addition, some chemical
compounds can raise the reprogramming efficiency and
reduce the required number of the transducing factors to
generate iPS cells [25–28]. There are many reports of somatic
cells being reprogrammed to iPS cells, although most cases
involve dermal fibroblasts obtained from a dermal punch
biopsy, which leaves a small scar on the donor’s skin. Such

skin biopsies should be avoided to generate human iPS
cells. Recently, we and several other groups reported novel
methods for generating iPS cells less invasively from human
circulating peripheral blood cells [29–32]. Our method uses
Sendai viral systems to deliver the reprogramming factors
[33]. Sendai virus is categorized as a negative-strand RNA
virus that cannot integrate into the host genome, but can
highly infect activated T cells [34]. It is very important for
human clinical usage to obtain the nonintegration human
iPS cell easily, stably, and efficiently and attenuate the
physical invasion for donors to obtain somatic cells. These
improved methods can be helpful to extend the indication of
generating iPS cells and to be easily accessible to realize the
future clinical application of the iPS technology.

3. Differentiation into Cardiomyocytes from
Pluripotent Stem Cells

ES cells and iPS cells can give rise to all cell types of all three
germ layers, using quite similar methodologies to control
the differentiation. In the conventional method, ES cell
differentiation is performed through embryoid bodies (EBs),
which are aggregates of ES cells maintained in suspension
cultures. In this section, we focus on the differentiation
systems for generating cardiomyocytes from ES cells and iPS
cells.

A recent report indicated no significant difference in the
fundamental characteristics of cardiomyocytes differentiated
from either ES or iPS cells [35–38]. However, the efficiency
of cardiogenesis from ES and iPS cells is still too low and not
sufficiently stable to realize the goals of cardiac regenerative
medicine. Generally considered, the mechanisms of in vitro
differentiation from pluripotent stem cells are similar to
the regulatory mechanisms of normal early development.
To improve the efficiency of in vitro cardiogenesis, various
screens for essential signalling molecules in normal heart
development have been performed. Among several signal
proteins associated with cardiac development, canonical
Wnt/beta-catenin [39–42], activin/nodal [43, 44], and BMP
signaling [45–51] have the crucial roles in normal heart
development, and supplementation of those molecules into
ES/iPS cell differentiation systems could significantly boost
the efficiency of cardiogenesis. Moreover, it also seems that
bidirectional stimulation in these pathways is necessary at
different developmental stages [52, 53].

We previously reported that transit inhibition of BMP
signaling very early during differentiation is crucial for
cardiogenesis in murine ES cells [54]. Whole-mount in
situ hybridization for various BMP antagonists on mouse
embryos at different developmental stages revealed that
noggin, a BMP antagonist, was expressed only briefly in the
heart-forming area. This phenomenon was also observed in
early embryos of chick and Xenopus, suggesting a conserved
mechanism in heart development [55, 56]. We proposed
that administration of noggin before the EB formation stage
would mimic its transient and strong expression during
early gastrulation. Indeed, noggin administration around EB
formation day led to a marked increase in cardiogenesis
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from murine ES cells. Other BMP antagonists also act to
increase cardiomyocyte differentiation efficiency, indicating
that transient relief from the intrinsic BMP signal is critical
for cardiomyocyte induction.

We also identified growth factors crucial for embry-
onic premature cardiomyocytes through the screening of
global gene expressions in noggin-treated mouse ES cell-
derived cardiomyocytes by microarray analysis [57]. We
found that the expression level of csf3r, which encodes the
granulocyte colony-stimulating factor receptor (G-CSFR),
was significantly higher in cardiomyocyte-differentiating ES
cells [58], and confirmed that both G-CSFR and G-CSF were
specifically but transiently expressed in embryonic mouse
heart at the midgestational stage. When extrinsic G-CSF
was administered to ES/iPS cell-derived cardiomyocytes, it
markedly augmented their proliferation. These findings indi-
cated that G-CSF is critical for cardiomyocyte proliferation
and could be used to boost the yield of cardiomyocytes from
ES/iPS cells for their potential application in regenerative
medicine.

To some extent, we can manage to differentiate pluripo-
tent stem cells into cardiomyocytes effectively and control the
proliferation of premature cardiomyocytes. However, human
heart is a large organ, and huge numbers of cardiomyocytes
would be needed for human cardiac regenerative therapy,
requiring even more sophisticated methods for cardiomy-
ocyte generation. To this end, prominent differences have
been demonstrated in the ability to differentiate into specific
lineage cells among iPS cell [59]. Moreover, their response to
various growth factor and cytokine stimulations also varied
markedly among cell lines. Recent studies have also demon-
strated that the characteristics of iPS cells are influenced
by the derived somatic cells according to their epigenetic
memory [60–62]. It would, therefore, be preferable to
ascertain which cell lines are the best sources of iPS cells for
each lineage cell differentiation and what is the best way to
select such iPS cell lines before starting the differentiation.

4. Stem Cell-Based Cardiac Regeneration

ES and iPS cells both have the potential to be a definite cell
source for regenerative therapy because they can proliferate
infinitely. In the cardiovascular field, regenerative cell ther-
apy using pluripotent cells is expected to complement rather
than replace heart transplantation in the future [12, 63, 64].
Molecular biological and physiological studies have demon-
strated that ES and iPS cell-derived cardiomyocytes have
the required cardiovascular function [65–67]. iPS cells can
differentiate into several types of cardiomyocytes including
atrial, nodal, and ventricular cells, with similar properties
to native cardiomyocytes. Cardiomyocytes derived from iPS
cells properly express typical ion channels with the expected
functional responses to several ion channel blockers [68].
There are also many reports that the transplantation of either
cardiomyocytes or cardiac progenitor cells derived from
human ES cells into infarcted rodent heart could improve
cardiac function [50, 69, 70]. Transplanted ES/iPS cell-
derived cardiomyocytes were integrated into the infarcted

host heart and supplied working muscles functioning coop-
eratively, while the molecules secreted in a paracrine or
autocrine fashion from transplanted cells are also important.
It was also reported that the transplantation of iPS cells
into the postinfarcted heart of immunocompetent mouse
significantly recovered the cardiac function of failing heart
and transplanted cells were successfully differentiated into
cardiomyocytes, smooth muscles, and endothelial cells in
the heart [71]. The precise mechanisms underpinning these
successful cell transplantations remain unclear. However,
accumulating evidence indicates that the transplantation
of iPS cell-derived cardiomyocytes will be a viable future
alternative for treating diseased heart.

One of the most critical issues in these efforts is how to
eliminate undifferentiated ES/iPS cells from the transplant-
ing cells. Undifferentiated pluripotent stem cells implanted
into the recipient body increase concerns about tumors
like teratoma emerging from the transplanted cells [72].
Although it is not yet determined whether terminally differ-
entiated cells or progenitor cells are better for cell transplants,
undifferentiated pluripotent stem cells need to be eliminated
from the equation before transplantation in any case to
relieve the risk of tumorigenesis. A variety of purification
methods for ES/iPS cell-derived differentiated cells have been
developed, with most involving gene manipulation to label
the selection marker such as GFP regulated under a specific
promoter [73, 74]. However, gene modification in itself could
also induce tumorigenesis. The ideal method to purify the
cells would, therefore, not use genetic manipulation. We
recently obtained highly pure (>99% purity) human ES/iPS
cell-derived cardiomyocytes by fluorescence-activated cell
sorting with the fluorescent dye that labels mitochondria
[75]. This method involves no gene modification and could
be used in the clinical setting. In addition, cell surface
proteins in nascent cardiomyocytes and cardiomyogenic
progenitors have been defined as non genetic selection
markers for cardiomyocytes in the mouse ES/iPS cells [43,
76–80]. Such methodology to purify the objective cells
is constantly advancing the goals for cardiac regenerative
therapy. Long-term followup is necessary to analyze recipient
safety and prognosis, and all cell transplantation should be
tested in a large animal model before clinical usage.

5. Genetic and Epigenetic Profile of iPS Cell and
iPS Cell-Derived Cardiomyocyte

There are several concerns about using iPS cell for regen-
erative medicine, because accumulating genetic and epi-
genetic profiles proved there remain important problems.
Initial study about epigenetic memory showed that iPS
cells derived from adult murine tissues harbour residual
DNA methylation signatures characteristic of their somatic
tissue of origin, which favours their differentiation along
lineages related to the donor cell, which suggest an epigenetic
memory of the tissue of origin that may have influence on
directed differentiation for applications in disease modelling
or treatment [61]. In terms of pluripotent stem cell-
derived cardiomyocyte, iPS cell-derived cardiomyocytes are
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transcriptionally highly similar to ES cell-derived cardiomy-
ocytes, but iPS cell-derived cardiomyocyte also still possesses
the same somatic signature [81]. Exome analysis revealed
that hiPS cells acquire genetic modifications in addition
to epigenetic modifications which suggest extensive genetic
screening should become a standard procedure to ensure
hiPS cell safety before clinical usage [82]. Surprisingly latest
research showed that abnormal gene expression in some
cells differentiated from iPSCs can induce T-cell-dependent
immune response in syngeneic recipients in contrast to
derivatives of ESCs [83]. The expression of these abnormal
minor antigens also may be due to epigenetic difference
between iPS cells and ES cells. These data suggests that
extensive genetic and epigenetic screening should become a
standard procedure to ensure hiPS cell safety before clinical
use.

6. Investigation of Patient-Specific iPS Cells

Another expectation for iPS cells is the generation of human
disease-specific pluripotent stem cells, since established iPS
cells have identical genetic mutations to the source tissue.
Patient-specific iPS cells can differentiate into any type of cell,
allowing us to directly and repetitively analyse the diseased
cells in vitro. We now need to establish a revolutionary
assay system to elucidate the disease pathogenesis and to use
these patient-specific cells as a novel tool for drug screening
in combination with personalized medicine. Generally, it is
difficult or impossible to take large samples from specific
patient tissues like neurons and cardiomyocytes and, even if
possible, such terminally differentiated cells cannot prolifer-
ate sufficiently in vitro. For that reason, researchers in this
field eagerly await this kind of promising stem cell.

To date, many kinds of patient-specific iPS cells have
been generated to diseases such as adenosine deaminase
deficiency, the Schwachman-Bodian-Diamond syndrome,
Gaucher’s disease, the Duchenne and Becker muscular
dystrophy, Parkinson’s disease, Huntington’s disease, type
1 diabetes mellitus, Down’s syndrome, the Lesch-Nyhan
syndrome, amyotrophic lateral sclerosis, spinal muscular
atrophy, and Fanconi’s anemia [84–88]. According to these
previous reports, iPS cells generated from a patient suffering
from early-onset disease are more likely to closely reproduce
the disease phenotypes. Recently, cardiac disease-specific iPS
cells were also reported. One line is specific for the LEOPARD
syndrome, which is an autosomal dominant developmental
disorder belonging to a relatively prevalent class of inherited
RAS-mitogen-activated protein kinase signalling diseases
with pleomorphic effects on several tissues and organ
systems [89]. The patient has a mutation in the PTPN11
gene, which encodes the SHP2 phosphatase. A major dis-
ease phenotype in patients with the LEOPARD syndrome
is hypertrophic cardiomyopathy. This study showed that
cardiomyocytes derived from LEOPARD syndrome iPS cells
are spontaneously hypertrophied in vitro and have a higher
degree of sarcomeric organization compared with cardiomy-
ocytes derived from human ES cells or wild-type iPS cells.
They concluded that these features correlate with a potential

hypertrophic state in patients. The other reported disease-
specific iPS cell line mimics congenital long QT syndromes
(LQTs) [90], which are heritable diseases associated with
prolongation of the QT interval on an electrocardiogram
and a high risk of sudden cardiac death due to ventricular
tachyarrhythmia. The authors generated iPS cells from two
patients with LQTs type 1 (LQTs 1), who have mutations
in the KCNQ1 gene encoding the repolarizing potassium
channel mediating the delayed rectifier I (Ks) current.
Individual cardiomyocytes derived from LQTs 1 patients
showed prolonged action potentials compared with cells
from control subjects. Moreover, cardiomyocytes derived
from patients with LQTs 1 had an increased susceptibility to
catecholamine-induced tachyarrhythmia, and the phenotype
was attenuated by beta-blockade, which is one of the
most important clinical features of these syndromes. The
study showed that LQTs 1 patient-specific iPS cell-derived
cardiomyocytes totally reproduced the diseased phenotypes
in a clinical setting.

These studies into patient-specific iPS cells indicate a
tremendous potential for our increased understanding of
pathogenesis. Such technologies will be the basis for novel
industries in drug development and diagnostics.

7. Conclusions

Although iPS cells are artificial pluripotent stem cells, they
can produce chimeric animals in mouse and rat, and a
tetraploid complementation experiment demonstrated that
mouse iPS cells have the ability to autonomously generate
full-term mice. These results clarified the existence of
pure pluripotent stem cells in iPS cells. Methods for the
generation of iPS cells have now undergone tremendous
and steady improvements. Although some problems remain
such as genetic mutation during reprogramming, incomplete
epigenetic reprogramming, and undesired gene expression,
iPS cells could be applicable for regenerative medicine in
the future after solving those problems. Studies of disease
pathogenesis and drug discovery using this technology have
already been undertaken and will shed light on the discovery
of novel treatments for fatal cardiovascular diseases.
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