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AbstrACt
Objectives This research studies the role of slums in the 
spread and control of infectious diseases in the National 
Capital Territory of India, Delhi, using detailed social 
contact networks of its residents.
Methods We use an agent-based model to study the 
spread of influenza in Delhi through person-to-person 
contact. Two different networks are used: one in which 
slum and non-slum regions are treated the same, and the 
other in which 298 slum zones are identified. In the second 
network, slum-specific demographics and activities are 
assigned to the individuals whose homes reside inside 
these zones. The main effects of integrating slums are that 
the network has more home-related contacts due to larger 
family sizes and more outside contacts due to more daily 
activities outside home. Various vaccination and social 
distancing interventions are applied to control the spread 
of influenza.
results Simulation-based results show that when slum 
attributes are ignored, the effectiveness of vaccination can 
be overestimated by 30%–55%, in terms of reducing the 
peak number of infections and the size of the epidemic, 
and in delaying the time to peak infection. The slum 
population sustains greater infection rates under all 
intervention scenarios in the network that treats slums 
differently. Vaccination strategy performs better than social 
distancing strategies in slums.
Conclusions Unique characteristics of slums play a 
significant role in the spread of infectious diseases. 
Modelling slums and estimating their impact on epidemics 
will help policy makers and regulators more accurately 
prioritise allocation of scarce medical resources and 
implement public health policies.

IntrOduCtIOn 
Infectious disease is one of the leading causes 
of human morbidity and mortality worldwide. 
Reports from the Centers for Disease Control 
(CDC) show that over 200 000 people in 
the USA are hospitalised with influenza-like 
illness (ILI) symptoms each year, and the 
mortality on average is over 36 000 annu-
ally.1 2 In Delhi, India, a joint study by CDC, 
All India Institute of Medical Sciences and 
the National Institute of Virology has shown 

that ILI cases are present throughout the 
year, although they peak in rainy and winter 
seasons.3 It carries a significant economic 
burden through reduced productivity and 
high costs of healthcare.4–7 A CDC study 
finds that for outpatient and non-medically 
attended individuals, acute respiratory infec-
tions cost 1%–5% of monthly per capita 
income in India. In contrast, cost of inpatient 
care can be as high as 6%–34% of monthly 
per capita income.8 For developed countries, 
the annual cost of influenza is estimated to 
be between $1 million and $6 million per 
100 000 people, according to the WHO.9 

In 2007, India established an Integrated 
Disease Surveillance Programme, which 
included a network of 12 regional laboratories, 
to minimise the threat of avian influenza and 
other highly infectious zoonotic diseases.10 
India faces some unique challenges in surveil-
lance, prevention and control because of the 
seasonality of influenza at subregional levels. 
This seasonal variation depends on latitude, 

strengths and limitations of this study

 ► We show that the unique attributes of slums must 
be accounted for in understanding the spread and 
control of infectious diseases.

 ► We demonstrate that the granularity afforded 
by the agent-based model enables extraction of 
subpopulations, and subsets of interactions, to help 
interpret results.

 ► This study does not consider age-specific 
susceptibility or immunity from past infections; 
all individual persons are assumed to be equally 
susceptible.

 ► The disease transmission risk does not change 
across activity types; for example, an hour with an 
infected person at home or at work carries the same 
risk.

 ► Colocation-based contact time is used as a 
proxy for physical proximity and short-distance, 
environmentally mediated transmission.
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monsoon season, humidity and climatic factors of the 
regions. Acute respiratory infections are estimated to be 
43 million per year, of which 4%–12% are due to influ-
enza.11 12 Chadha et al13 estimated hospitalisations due to 
respiratory illnesses to be 160 per 10 000 persons in year 
2011, and children under the age of 5 had the highest 
incidence of them.

Given that influenza is environmentally mediated and 
spreads through close proximity, population density is 
an important factor in its spread. In India, the average 
population density is about 1000 people per square mile; 
in the slums, it can be 10–100 times higher.14 Larger 
household size and crowding make it easier to transmit 
infections.15–18 For example, Baker et al16 find that menin-
gococcal disease risk among children doubles with the 
addition of two adolescents or adults (10 years or older) 
to a six-room house. Other than overcrowding, slums are 
characterised by their lack of medical services,19 20 which 
makes slum residents highly vulnerable to infectious 
diseases. Diseases like cholera, malaria, dengue and HIV 
are common in slums across the world.21–23

This research uses Delhi, the National Capital Territory 
of India, where 13% of its 13.8 million people live in slum 
areas, as an example city to study the spread and control 
of influenza. Delhi is an interesting case study. It ranks 
fourth in the world in urban population, and among the 
top 25 largest urban areas, it ranks tenth in population 
density. Although Delhi is our target population, the 
results are likely to be useful in studying other slum areas 
within and outside of India because of the wide range of 
intervention types and parameter values examined.

This paper is an extension of the work done in Chen  
et al,4 which shows that slum populations have a significant 
effect on influenza transmission in urban areas. Ignoring 
the influence of slum characteristics underestimates 
the speed of an outbreak and its extent. However, Chen  
et al4 do not consider any interventions on the epidemic 
spread. The focus of this research is to study the effect of different 
intervention strategies on several subpopulations (slum, age and 
gender) in two different Delhi networks, that is, original (referred 
to as network 1) and refined (network 2).

The original network used in Xia et al24 studied the 
spread and control of influenza in Delhi using network 
1, which did not take into account the special attributes 
of the slum population, such as larger family sizes and 
different types of daily activity schedules. Chen et al4 used 
network 2, the refined social network of Delhi, which 
accounted for slum demographics and slum activities, 
but did not study intervention strategies. In network 2, 
there are 298 slum regions in Delhi, containing about 
1.8 million people.

The goals of this work focus on understanding 
the effects of pharmaceutical interventions (PI) and 
non-pharmaceutical interventions (NPI) on epidemic 
outcomes. PIs include vaccinations, and NPIs are social 
distancing measures such as school closure, quarantine 
and staying home. These effects are studied compara-
tively: (1) in network 1 versus network 2, overall and for 

subpopulations in each; and (2) in the slum and non-slum 
regions of network 2. Additionally, in a scenario where 
interventions can be applied to a limited number of indi-
viduals, we explore how resources should be split between 
slum and non-slum subpopulations in order to achieve 
the best outcomes with respect to total infection rate  
(ie, the cumulative fraction of a population infected).

MethOds
We use an agent-based modelling (ABM) approach to 
simulate the spread and containment of influenza in 
social contact networks of Delhi, India. We compare two 
networks: one considers slum-specific attributes, and the 
other does not. In this section, we describe the networks, 
the disease model for each agent, the interventions and 
the heterogeneities of the problem that make ABM 
uniquely suited to study epidemics. Throughout this 
paper, each agent in the ABM is an individual human.

social contact networks
This study uses two synthetic social networks of Delhi, 
created in Xia et al24 and in Chen et al.4 Details on their 
construction can be found in Xia et al,24 Chen et al,4 
Barrett et al,25 Bissett et al26 and references therein. The 
synthetic social network by Xia et al24 is called network 1, 
and the more refined network developed in Chen et al,4 
network 2.

It is important to note that while the social contact 
networks are inputs in epidemiological simulations, these 
networks are not specified directly. Rather, these networks 
are the outputs of population generation methods that 
are overviewed below and cited immediately above, and 
include activity surveys and demographic data, both 
inside and outside of slums. Thus, the topologies of the 
networks arise from the population generation process 
and its inputs.

Network 1 was developed in part from LandScan and 
Census data for Delhi, a daily set of activities of indi-
viduals, and the locations of those activities including 
geolocations of residential areas, shopping centres and 
schools, collected through surveys by  MapmyIndia. 
com. By assigning activity locations to individuals’ activ-
ities, people are located at particular times at particular 
geographical coordinates (including office buildings, 
schools and others) and within particular rooms of build-
ings. Next, contacts between individuals are estimated 
when each person is deemed to have made contact with 
a subset of other people simultaneously present at the 
same location. This gives rise to a synthetic social contact 
network where network edges represent these contacts.

Network 2 models the slum regions in Delhi and assigns 
slum-specific attributes to the individuals whose homes 
reside in the slum polygons. Slum residents’ attributes 
and their daily sets of activities are collected through a 
ground survey in Delhi slums, by a vendor, IndiaMART 
(www. Indiamart. com/ trips). The slum polygons are 
obtained from  MapMechanic. com. Individuals living in the 

www.Indiamart.com/trips
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slum regions are a part of the slum population. All other 
individuals are part of the non-slum population. Network 
2 is a geolocated and contextualised social contact 
network of Delhi with slums integrated in it.

Following are the main differences between the original 
network (network 1) and the refined network (network 
2). The original social contact network 1 treats the slum 
regions like any other region in Delhi in terms of assign-
ment of demographics and individual activities, that is, 
no special consideration is given to slum residents. The 
refined network 2 identifies 298 slum polygons (zones) in 
Delhi and assigns slum-specific demographics and activ-
ities to the individuals whose homes reside inside these 
polygons. Thus, the number of individuals is the same 
in both populations. The slum population constitutes 
about 13% (1.8 million) of the entire Delhi population of 
13.8 million people. The main effect of integrating slums 
is that network 2 has more home-related contacts due 
to larger family sizes and more outside contacts due to 
more daily activities outside home. Also, those individuals 
who reside outside of slum zones have the same activi-
ties in both networks (but their contacts may change if 
their interactions include slum residents). Overall, there 
are over 231 million daily interactions between pairs of 
individuals. Online supplementary table 1 compares 
those two networks as well as data sources for slum and 
non-slum Delhi, India. For example, the average degree 
increases from 30.4 to 33.4 from network 1 to network 2, 
and the maximum degree increases from 170 to 180. We 
refer to Chen et al4 for more detailed information about 
the two networks. Several plots of properties and struc-
tural characteristics of networks 1 and 2 are given in Chen 
et al.27

disease model
An SEIR (Susceptible (S), Exposed (E), Infectious (I) and 
Removed or Recovered (R)) model is considered within 
each individual. Each node in the network represents an 
individual, and each edge represents a contact on which 
the disease can spread. A contact represents possible 
transmission between two people who are colocated for 
some duration (based on their activity schedules). This 
is an approximation to model direct contact and short- 
distance, environmentally mediated transmission that 
might include direct physical contact, fomite-mediated 
and airborne transmission.28

We start each epidemic simulation with 20 index cases, 
randomly chosen. (We find that results are not sensitive 
to the number of initial infections.) The detailed descrip-
tion of the SEIR model as well as the choices of trans-
missibility value, R0, the explicit incubation and exposed 
periods can be found in the online supplementary infor-
mation. This disease model has been used in other works 
such as Liao et al6 and Marathe et al.29

The transmissibility value for disease transmission 
is that for the strong influenza model in Chen et al.4 
That work used mild, strong and catastrophic influenza 
models, so we chose the intermediate transmissibility. 

This corresponds to base attack rates (ie, cumulative 
infection fractions) of 0.42 and 0.48, respectively, in 
networks 1 and 2. These rates are generally higher than 
those in some other studies that either compute experi-
mental attack rates from cases or compute them in model-
ling studies such as this one. Attack rates used by past 
researchers for different strains of influenza include Asia 
(0.22–0.50),30 South-East Asia (0.11–0.31 in children31;  
0.05–0.6532) and India (0.111–0.23533; 0.074–0.42434; 
0.045–0.29435; 0.008–0.10036; 0.209 for various strains13). 
The results in Chen et al4 indicate that the results here, 
for this particular transmissibility, will be qualitatively the 
same for other transmissibilities, but will scale down or up 
as transmissibility changes in the same direction.

Interventions
This work considers three vaccination scenarios, that is, 
vaccinate when cumulative infection rate is 0% (VAX0, 
ie, vaccinate on day 1), 1% (VAX1) and 5% (VAX5). 
Three classes of social distancing strategies are consid-
ered: (1) stay-home (SHO) if infected, that is, eliminate 
all non-home-related contacts but continue to maintain 
contacts within the household; (2) close-schools when 
cumulative infection rate has reached 1% (CS1) and when 
it has reached 5% (CS5), that is, eliminate school-related 
contacts; and (3) isolation (ISO), in which all contacts, 
including home contacts, of a person are eliminated 
when a person becomes infectious. For vaccination, five 
different compliance rates (10%, 30%, 50%, 70% and 
90%) and two different vaccine efficacies (30% and 70%) 
are considered.

VAX0, SHO and ISO are all fairly aggressive inter-
ventions because they are implemented either before a 
person gets infected or immediately on becoming infec-
tious. These are actions taken at the individual or family 
level. For example, vaccination before the influenza 
season or isolating a sick child at home is a family deci-
sion. Even CS1 is an aggressive intervention in the sense 
that this action is taken by government officials based on 
aggregate school sickness levels—closing schools before 
any outbreaks is typically not done. From these starting 
points, vaccinations when 1% or 5% of the population is 
infected (VAX1, VAX5) and closing schools when 5% of 
the population is infected (CS5) are less aggressive treat-
ments. The five levels of compliance are also variations on 
aggressiveness in treatments.

These conditions and parameters are consistent with 
results from other studies and guidelines put out by inter-
national organisations. A meta-study of immunisation and 
slums37 identifies several vaccination-related studies of 
slums in India. Unfortunately, these studies are for other 
diseases such as hepatitis B, measles, mumps, malaria and 
typhoid fever. Nonetheless, slum vaccination rates for 
children over these ailments range from 25% to 69% for 
full immunity and from 15% to 55% for partial immunity. 
Vaccination effectiveness for ILI in India was determined 
to be about 33%–36%.38 In 2012–2013, of 1000 pregnant 
women in Srinagar, India, none were vaccinated against 
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influenza.39 With regard to school closures, the WHO 
states that school closures may be undertaken proactively 
(before an outbreak) or reactively (after influenza starts 
to spread).40 WHO recommends that school closure 
occurs before 1% of the population becomes infected. 
It also recommends that people (students and staff) stay 
home when they feel ill. In another meta-study,41 it was 
found that school closure, effected when 0.1% of the 
population was infected, was twice as effective in reducing 
the total attack rate as school closure occurring after 1% 
of the population was infected. Moreover, the percentage 
of people infected before school closure was triggered 
varied between 0.02% and 10% across several studies.

When a susceptible node is vaccinated, its probability 
of getting infected by an infectious node is scaled down 
by the efficacy. If it becomes infectious, its probability of 
infecting susceptible nodes is also scaled down by the effi-
cacy. In other words, both incoming and outgoing infec-
tion probabilities of vaccinated individuals are reduced 
by the vaccine efficacy. Interventions are applied to slum 
residents, non-slum residents and the entire region of 
Delhi.

For each experiment, 25 replicates are simulated 
for 400 days, and their mean results are reported. The 
averages are timepoint-wise averages; for example, the 
mean infection rate at day 100 is calculated by taking the 
average of the 25 infection rates that occur on day 100 of 
each replicate. Online supplementary table 2 summarises 
all the interventions considered, and online supplemen-
tary table 3 contains all variables in simulations, including 
intervention parameters.

heterogeneities captured
There are several heterogeneous aspects to this problem 
that motivate the use of an ABM approach: (1) the 298 
slum zones have populations that vary by more than four 
orders of magnitude in size; (2) the geographical extents 
of slum zones differ; (3) the slum zones are located at 
irregular spatial intervals throughout Delhi; (4) the 
activity patterns of people living in slums are different 
from those in the non-slum region; and (5) each indi-
vidual interacts with specific others based on colocation.

The implications of these heterogeneities include the 
following: First, the particular synthetic households that 
live within slums are predicated on the number of slum 
zones, their locations and their spatial geometries. These 
homes have larger family size and hence more home 
contacts. Second, slum individuals have different activity 
patterns which change the colocated contacts of each 
slum person: that is, with whom they interact and for how 
long. For example, see the supplementary information of 
Chen et al.27 The average total contact durations by activity 
type and by slum/non-slum residents are provided, which 
show that non-slum people have greater contact durations 
for work, school and college activities, but less for home 
and other types. Overall, a slum person has about 50% 
greater total contact duration per day compared with a 
non-slum person. The same supplementary information 

shows that in the age range 20–60 years (by year), women 
who live in slums have more contacts per day than their 
male counterparts. However, women whose homes are 
outside of slum regions have average number of daily 
contacts that are below their male counterparts.

results And AnAlysIs
Our results are grouped as follows: (1) comparison of 
network 1 and network 2 for base case and interven-
tion cases; (2) results for both networks based on demo-
graphic classes, such as slum/non-slum, gender and 
age groups, for a wider range of intervention strategies;  
(3) comparison of network 1 with the non-slum popula-
tion of network 2; (4) effects of PIs and NPIs for a wide 
range of parameter values; and (5) effects of different 
resource allocation strategies.

All differences are tested with the two-sample t-test and 
they are all statistically significant with P values smaller 
than 2.2e-16. The 95% CIs are given for each comparison. 
Here is a brief summary of selected results with examples 
of mechanisms, to provide a high-level overview. Details 
of results follow this summary, and these details matter 
because there are many factors (inputs) in a simulation 
whose interactions change results.
1. Ignoring the unique attributes of slums in a popula-

tion overestimates the benefits of the interventions. 
For example, in the case of vaccination interven-
tion (efficacy 30% and compliance 30%), the values 
for the epidemic size (ie, cumulative percentage of 
infected), peak infection rate (ie, maximum per-
centage of a population infected on any day) and 
time to peak are 33.1%, 3.0% and 184 days, respec-
tively, in network 2, whereas they are 23.3%, 1.34% 
and 286 days in network 1. In relative terms, the 
epidemic size and peak infection rate are underesti-
mated by 42.2% and 123.2%, respectively, while the 
time to peak is overestimated by 35.7% in network 1  
(see figures 1 and 2 and online supplementary table 
4). The larger family sizes for slum families in network 
2 and the increased number of edges result in larger 
outbreaks and faster time to peak infections.

2. Interventions are more effective in network 1 than in 
network 2 for all types of interventions: vaccination, 
closing schools, staying home and isolation. These 
trends also hold over wide ranges of efficacy and com-
pliance (see figures 3, online supplemental figures 1 
and 2). Hence, not accounting for slums gives overly 
optimistic results for the effectiveness of the inter-
ventions. The reduced average family size in network 
1 means fewer within-home edges, which slows in-
fection and reduces spreading. Closing schools and 
staying home interventions do not affect home edg-
es. However, the magnitude of this effect varies with 
intervention conditions (eg, compliance rate, time at 
which intervention is applied).

3. Cumulative infection rates by subpopulation in net-
work 2 show that slums sustain greater infection rates 
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than non-slums under all intervention scenarios, 
sometimes by as much as 44.0% (see figure 4 and on-
line supplementary table 5 for more details). This is 
due to the greater household sizes in slums.

4. For network 2, under a wide range of intervention 
compliance rates (10%–90%), the ISO strategy is up 
to 32% more effective in containing an outbreak than 
vaccination (for 30% efficacy). Staying home is up to 
18% more effective than vaccination at 50% compli-
ance (see figure 3 and online supplementary table 6 
for more details). Isolation, although hard to imple-
ment from practical considerations, is most effective 
because edges to susceptible individuals are removed 
(isolation also provides a good comparative case). Dif-

ferences between staying home and vaccination de-
pend on compliance rates.

5. For network 2, delay in triggering interventions has 
7.3%–44.0% more adverse effect in slums than in 
non-slum regions across compliance rates from 10% 
to 90% (see figure 4 and online supplementary table 
7 for more details). Early interventions mean actions 
are taken when outbreaks are smaller and are there-
fore more readily contained.

6. Comparison of network 1 (figure 3A) with the non-
slum population (figure 4B) of network 2 shows that 
just the presence of slum-specific activities and inter-
actions with non-slum population makes social dis-

Figure 1 Epidemic curves for base case and vaccination case in (A) network 1 and (B) network 2. Each timepoint in the curve 
is an average over 25 replicates. The vaccines are given randomly to 30% of the entire population and the vaccine efficacy is 
30%. For network 2, epidemic curves are shown for total population and slum and non-slum subpopulations. ‘Intervene Total’ 
refers to the epidemic curve of the entire Delhi population when the vaccine intervention is applied. ‘Intervene Slum’ refers 
to the epidemic curve for just the slum population, and ‘Intervene Non-slum’ refers to the epidemic curve for just the non-
slum population for the intervention case. Epidemic curves for a variety of compliances and efficacies are reported in online 
supplementary figures 1 and 2. (A) Total Delhi network 1 and (B) Total Delhi network 2.

Figure 2 Mean cumulative infection rates for different subgroups in the two networks. Two vaccination rates (v=30%, 50%) 
and two vaccine efficacy rates (α=30%, 70%) are considered. Individuals are chosen at random in the entire network for 
vaccination on day 0. Mean infection rates are calculated within each group. The last several lines in the plot for network 1 
are overlapping at the bottom because the mean infection rates are almost 0 under those scenarios. ‘Total’ refers to the entire 
population of Delhi. ‘Slum’ and ‘Non-slum’ refer to slum and non-slum regions, respectively. ‘Male’ and ‘Female’ denote the 
total number of men and women in Delhi, respectively. Age groups are denoted by ‘Preschool’, ‘School’, ‘Adult’ and ‘Senior’. (A) 
Total Delhi network 1 and (B) Total Delhi network 2.
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tancing-based interventions less effective in the non-
slum regions of network 2.

7. A full-factorial design that splits resources between 
slum and non-slum regions indicates that the most 
effective intervention is to give vaccines to slums and 
apply social distancing to non-slums. Applying vac-
cine and social distancing to slum regions is the next 
most effective intervention (see figure 5). By applying 
social distancing to non-slums, these individuals are 

kept isolated from slum individuals who are infected. 
The greatest benefits accrue to the slum populations.

Comparison between networks 1 and 2: base case versus 
interventions
We start with a comparative analysis of the influenza 
epidemic, with and without interventions, on network 
1 and network 2, to measure the impact of integrating 
slums in the population on epidemic measures. Figure 1 

Figure 3 Mean cumulative infection rates under different interventions for (A) network 1 and (B) network 2. The larger font 
numbers are fractions of populations that are infected and the smaller font numbers are counts of infected individuals. Colours 
of the boxes correspond to the values of the large numbers (ie, fractions of infected), and the same scheme is used for both 
plots for comparisons—and for all plots in this paper. Five different compliance rates are examined (10%, 30%, 50%, 70% and 
90%), and four types of intervention strategies (vaccination (VAX), close-schools (CS), stay-home (SHO) and isolation (ISO)) are 
considered. For vaccines, three different trigger points are considered: when the cumulative infection rate reaches 0% (VAX0), 
1% (VAX1) and 5% (VAX5) of the total population. The vaccine efficacy is set at 30%. For CS, two trigger points are used: when 
cumulative infection rate reaches 1% (CS1) and 5% (CS5). Compliant individuals are selected at random from the entire Delhi 
population, and the cumulative infection rates are calculated for each network. Base is the baseline case with no interventions. 
(A) Total Delhi network 1 and (B) Total Delhi network 2.

Figure 4 Heat map of cumulative infection rates in (A) slum and (B) non-slum regions of network 2 under different intervention 
conditions. The colours of boxes correspond to the larger numbers in the boxes—the cumulative infection rates—and the two 
plots use the same scheme for comparisons. Darker colours correspond to higher infection rates. The smaller font numbers are 
counts of infected individuals. The vaccination efficacy is fixed at 30%. Five different compliance rates (10%, 30%, 50%, 70% 
and 90%) and four types of intervention strategies (vaccination (VAX), close-schools (CS), stay-home (SHO) and isolation (ISO)) 
are considered. For vaccines, three different trigger points are considered: when cumulative infection rate reaches 0% (VAX0), 
1% (VAX1) and 5% (VAX5). For CS, two trigger points are used: when the cumulative infection rate reaches 1% (CS1) and 5% 
(CS5). Compliant individuals are selected randomly from the entire Delhi population, and the mean infection rates are calculated 
separately for the slum and non-slum subpopulations. Although not reported here, qualitatively similar results are found for 
other transmission rates, as well as for higher vaccine efficacy (70%). Base is the baseline case with no interventions. (A) Slum 
region of network 2 and (B) Non-slum region of network 2.
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shows the average simulation time histories for the base 
case, and when vaccination is applied randomly to 30% 
of the population in each network with vaccine efficacy 
set at 30%. Simulations for other vaccine efficacies and 
compliance rates give qualitatively similar results. Two 
sets of those results are shown in online supplementary 
figures 1 and 2. Note that network 1 does not distinguish 
between slum and non-slum individuals, so the epidemic 
curve is not split by subpopulation.

Results in network 2 differ significantly from results in 
network 1 for both the base case and intervention case. In 
network 2, the epidemic starts earlier, peaks earlier, has 
a larger epidemic size and has higher peaks compared 
with the corresponding epidemic quantities in network 
1. Thus, if policy planners ignore slums and use network 
1 to plan, there will be a false sense of security and lack 
of urgency to implement interventions. For both the base 
case and the intervention case, ignoring unique charac-
teristics of the slums will result in an underestimation of 
the infections and the speed of spread.

For the intervention cases, the time to peak infection 
decreases by 35.7%, that is, from 286 days for network 
1 to 184 days for network 2, meaning an influenza 
epidemic would peak roughly 100 days earlier than one 
would expect based on the results from network 1. For 
the base case, time to peak infection drops by 20.8%, that 

is, 34 days’ reduction for network 2 as compared with  
network 1.

Percentage changes and differences must be viewed 
cautiously, and to illustrate this point we present data 
for the key parameters in online supplementary tables 4 
and 8. The difference in the peak infection rate (ie, the 
maximum fraction of daily infected individuals during 
the simulation) between networks 1 and 2 for the base 
case is 2.2%, or 47.6% in percentage change (see online 
supplementary table 8). For the intervention case shown 
in online supplementary table 4, the difference between 
the two networks is less (1.7%), but the percentage 
change is more (123.2%) because the magnitudes of the 
peak infection rates are reduced when effective interven-
tions are used. We make note of this here and mainly use 
the percentage change values in discussing results. For 
more detailed comparison between vaccination interven-
tion and the base case in network 1 and network 2, we 
refer to supplementary tables 7 and 9 and supplementary 
figures 4 and 5.

Comparison between networks 1 and 2 based on individual 
demographic information
We divide the Delhi population into strata by age, 
gender and geographical home location (ie, slum and 
non-slum), and analyse the mean cumulative infection 
rates by subpopulation for the two networks. In simu-
lations, individuals are chosen at random in the entire 
network for vaccination. Various vaccination scenarios 
are investigated.

Figure 2 displays the cumulative infection rate results. 
On the x-axis, ‘Total’ refers to the entire population of 
Delhi. There are three breakdowns of the entire popula-
tion. ‘Slum’ and ‘Non-slum’ refer to slum and non-slum  
regions, respectively. ‘Male’ and ‘Female’ denote the total 
number of men and women in Delhi, respectively. Four 
age groups are considered: ‘Preschool’ (0–4), ‘School’ 
(5–18), ‘Adult’ (19-64) and ‘Senior’ (65+). The black 
lines correspond to the mean cumulative infection rates 
for the base case. Other curves indicate vaccination strat-
egies under different levels of vaccination rate (v) and 
vaccine efficacy (α). Two vaccination rates (30% and 
50%) and two vaccine efficacy rates (30% and 70%) are 
shown in the figure.

For network 1, vaccination rate of 50% or higher stops 
the epidemic for all categories of individuals, regardless 
of vaccine efficacy. An efficacy of 70% also contains the 
epidemic, given a vaccination rate of at least 30%. In 
comparison, for network 2, either a vaccination rate of 
70% is required (not shown in plot for clarity), or a vacci-
nation rate of 50% combined with a vaccine efficacy of 
70% is required to stop the epidemic for all categories of 
individuals.

In network 1, slum and non-slums are treated the same 
so the infection rates are identical in figure 2. However, 
all scenarios in network 2 show a higher burden of disease 
on the slum population. This is due to the fact that slum 
households have larger family size and more contacts on 

Figure 5 Mean cumulative infection rates for each category 
listed on the x-axis, for network 2 and network 1, under 
four different intervention scenarios. The colour scheme of 
the boxes is based on the large values in the boxes—the 
cumulative infection rates. Darker colours correspond to 
higher infection rates. Smaller font values are the number 
of infected individuals. The vaccine efficacy is set at 30%. 
VsSs refers to the case when vaccines and social distancing 
are both applied to slum residents; VnSn refers to the case 
when vaccines and social distancing are applied to non-slum 
residents. Similarly, VsSn means vaccines are given to slums 
and stay-home is applied to non-slums; and VnSs means 
vaccines are given to non-slums and stay-home is applied 
to slums. Base refers to the case where no intervention is 
applied.
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average than households in non-slum areas (see Chen  
et al27). As shown later, we find similar patterns of infec-
tion in slum and non-slum subpopulations for other 
interventions such as ‘close-schools’ and ‘stay-home’.

The results in both figures 1 and 2 indicate that 
ignoring the effect of slums results in overestimation of 
the benefits of interventions in terms of reduction in 
the mean cumulative infection rate and peak infection 
rate, as well as the time to peak. This optimism holds for 
slum, non-slum and total population under various levels 
of vaccination rates and efficacy rates in network 2 (see 
online supplementary table 10 for more detailed compar-
ison of results between slum and non-slum in network 2).

Comparison between networks 1 and 2 across a wide range of 
intervention strategies
Next, we consider a variety of intervention strategies for 
comparative analysis. We consider vaccination (VAX), 
school closure (CS), stay home (SHO) and isolation 
(ISO) strategies. For vaccines, three different trigger 
points are considered: when cumulative infection rate 
reaches 0% (VAX0), 1% (VAX1) and 5% (VAX5). For 
CS, two trigger points are used: when the cumulative 
infection rate reaches 1% (CS1) and 5% (CS5). Under 
the SHO strategy, all non-home activities and interactions 
are eliminated, but all contacts within the household 
are maintained. Under ISO an individual has no contact 
with other individuals (even home interactions are elimi-
nated). The SHO and ISO interventions are implemented 
for compliant infectious individuals, after they become 
infectious, for the entire infectious duration.

Figure 3 displays average cumulative infection rates in 
network 1 and network 2 for a wide range of interven-
tion strategies. For each strategy, five different compli-
ance rates are considered, that is, 10%, 30%, 50%, 70% 
and 90%. The cumulative infection rates (ie, fractions) 
are displayed as larger numbers in boxes, while smaller 
font numbers are the actual number of infected individ-
uals. Darker colours correspond to higher infection rates. 
Note that compliance rate is simply the vaccination rate 
for strategies VAX0, VAX1 and VAX5. Compliant individ-
uals are selected at random from the entire population. 
The ‘Base’ values do not vary with compliance because 
the base case has no intervention. Note that all heat maps 
in this paper use the same colour scheme so that colours 
can be compared across figures.

Since network 1 does not distinguish between slum and 
non-slum populations, we only compare the two networks 
for the whole of Delhi. The general pattern is similar for 
both networks. However, all interventions have a larger 
effect on network 1 under the same compliance rate  
(ie, corresponding numbers are uniformly lower for 
network 1 than for network 2). The infection rates drop 
to 0 at a smaller compliance rate for VAX0, SHO and 
ISO strategies in network 1 as compared with those for 
network 2.

At a high level, among all intervention strategies, 
early vaccination (VAX0 and VAX1), ISO and SHO are 

more effective than the other strategies, and this is more 
readily observed at higher compliance rates. For these 
more effective strategies, the interventions per person are 
implemented right after (or very shortly after) the person 
is infected. For example, SHO is implemented immedi-
ately after a person becomes infectious. Thus, a person 
who becomes infectious can infect their family members, 
but if these other members become infectious, then they, 
too, will be confined to home. Thus, home-bound people 
can infect their family members, but no one beyond 
their family (for 100% compliance). As compliance rate 
increases, this effect approaches, roughly, a ‘family-based’ 
isolation intervention (similar to ISO), consistent with 
the results in figure 3 and in subsequent results.

effect of vaccination versus social distancing on slum and 
non-slum subpopulations
We now compare the impact of vaccination and social 
distancing on slum and non-slum subpopulations from 
network 2. Social distancing interventions are CS, SHO 
and ISO.

The mean cumulative infection rates (and actual 
numbers of infections underneath) for each compliance 
level are shown in the heat maps in figure 4 for slum and 
non-slum populations in network 2. The axis labels are 
identical to those in figure 3, as is the colour scheme of 
the cells. The base case values are constant since there 
is no intervention and hence no compliance. Darker 
colours correspond to higher infection rates.

Compared with the base case, all interventions reduce 
infection rates to some extent. As the compliance rate 
increases, infection rates drop for all interventions. Infec-
tion rates drop to 0 in slum and non-slum regions at a 
compliance level of 70% or higher, under SHO, ISO 
and VAX0 strategies. Early interventions or lower trigger 
levels reduce the infection rates significantly, and this 
effect increases with compliance rate.

The following observations can be made from figure 4. 
Social distancing, that is, SHO, at low and intermediate 
compliance and CS at all compliance levels, is less effec-
tive in slum regions as compared with non-slum regions. 
This is because CS only eliminates school interactions 
for those attending school, and there are fewer school 
edges in slums compared with non-slum areas, as shown 
in online supplementary figure 6. The effectiveness of CS 
in slums is mitigated by the greater average number and 
duration of interactions at home in slums as compared 
with non-slums (see online supplementary figure 6 and 
Chen et al27). Thus, if a person is sick, there is a greater 
chance of transmitting contagion to family members, who 
then may have activities outside of school, thus circum-
venting the CS intervention. At high compliance, SHO is 
effective because all interactions outside home (including 
school) are eliminated.27

These observations are also supported by supplementary 
figure 7, which contains numbers of edges used to transmit 
contagion for a base case run of figure 1. There are several 
effects that bear on the above observations. First, in the 
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cases of activities ‘work’, ‘other’ and ‘school’, the number 
of edges transmitting contagion from slums to non-slums is 
greater than the reverse: from non-slum to slum. Second, in 
two of these three activity categories, there are more slum 
to non-slum transmissions than slum to slum transmissions. 
Edges of transmission for slum dwellers are dominated by 
home interactions. The infected homes in slums serve as 
launching points to drive disease to non-slums through 
slum to non-slum interactions. (There are no ‘mixed’ edges 
at homes, and shopping and college activities have low 
levels of slum activity because of socioeconomic factors.) 
We will see the effects of these mechanisms in figure 5, but 
we now return to figure 4.

Isolation works well at 30% or higher compliance 
rates, but it is a much harder strategy to implement, 
especially in slums. However, it is considered here for 
comparative analysis. Vaccination also produces marked 
decreases in cumulative outbreak sizes as compliance 
increases. However, CS is generally less effective because 
this intervention removes only a fraction of interactions 
for a fraction of the population, that is, school-aged chil-
dren. Simulations were also run for 70% vaccine efficacy. 
Since results are qualitatively similar for those parame-
ters, these plots are provided in online supplementary  
figure 3.

Comparison between network 1 and non-slum areas of 
network 2
Note that network 1 treats all parts of the region as 
non-slum, that is, all individuals follow non-slum activi-
ties and demographics. In order to capture the additional 
disease risk to the non-slum population that arises from 
the interactions with the slum population, we compare 
network 1 in figure 3A with the non-slum population of 
network 2 in figure 4B. In base case, the additional disease 
risk to the non-slum population goes up from 42% to 
45%. However, the beneficial effects of social distancing 
strategies drop by a large amount; for example, CS strat-
egies are 5 to 20 percentage points less effective in the 
non-slum areas of network 2. This effect changes non-lin-
early with the compliance rate. As compliance rate goes 
up, the difference between performance of network 
1 and non-slum parts of network 2 goes up in CS1 and 
CS5. This implies that in network 2, non-slum population 
requires much higher levels of compliance to achieve the 
same results as in network 1. This difference is less stark 
for vaccination-based interventions, that is, VAX0, VAX1 
and VAX5. This is expected since the effect of vaccination 
is less dependent on interactions; it is only through herd 
immunity that interactions come into play.

Constrained resource allocation among slum and non-slum 
areas
We consider a specific scenario under network 2. If 
only a limited number of vaccines are available, and 
only a certain fraction of individuals can be kept home 
during an epidemic, how should these interventions 
be applied to the slum and non-slum regions so that 

the epidemic can be controlled effectively? Given that  
slum residents’ attributes differ from those of non-slum 
residents, is there a strategy that works better in slums 
than in non-slum areas? The total population in Delhi is 
about 13.8 million, which includes about 1.8 million slum 
residents. We assume that only 10% of the total popula-
tion can be covered by interventions, half through vacci-
nation and the other half through stay home. Enough 
vaccines are available to cover 5% of the total population 
(ie, 692 183 vaccinated, corresponding to about 38.25% 
of slum or 5.75% of non-slum population), and 5% of 
the individuals can stay home (692 183 individuals; this 
is applied to only the infected individuals). Note that an 
individual may receive a vaccine and also stay at home if 
this individual, in spite of being vaccinated, gets infected.

We consider four different ways of applying interven-
tions to 10% of the total population: (1) apply both inter-
ventions to slums, that is, give all vaccines to slums and 
apply SHO only in the slums (VsSs); (2) apply all interven-
tions to non-slum areas (VnSn); (3) give vaccines to slums 
and SHO to non-slums (VsSn); and (4) give vaccines to 
non-slums and apply SHO to slums (VnSs).

For both types of intervention, the same number of indi-
viduals is chosen randomly from slum or non-slum areas. 
Ten per cent of the total Delhi population amounts to 
76.5% of slum population, 11.5% of the non-slum popu-
lation, or a combination of 38.25% of the slum and 5.75% 
of the non-slum population (ie, half from slums and half 
from non-slums). Figure 5 shows the mean cumulative 
infection rates, as well as the number of infected from the 
entire population of Delhi, and the slum and non-slum 
areas under each of the four scenarios. The first three 
columns refer to network 2, and the last column shows 
results for network 1. Since network 1 does not distin-
guish between slum and non-slum areas, the infection 
rates in each subpopulation remain the same as for the 
total population.

Comparison of the last two columns in figure 5 indi-
cates that the non-slum population in network 2 faces 
3%–5% additional disease risk compared with network 1 
in all cases. This is primarily driven by the increased inter-
actions within slum populations and between slum and 
non-slum populations in network 2.

In figure 5, all four intervention strategies produce 
essentially the same total attack rates (around 43%–44%), 
a drop of 4%–5% over the base case. The dominant 
effect on network 2 is the benefits that primarily accrue 
to the slum population for the VsSs and VsSn strategies 
because they drive down the fraction of infected slum 
residents from 0.74 to 0.55 or 0.58. Also, as described in 
the context of figure 4 and online supplementary figure 6 
above, social distancing of the non-slum residents helps 
to isolate them from the infected slum residents. Results 
such as these may be helpful to policy makers in breaking 
the poverty trap in economically poor regions.42

Also, the strategy of vaccinating non-slums and social 
distancing slums (VnSs) is not as effective as the interven-
tions in rows 1 and 2 of figure 5. This is a counterintuitive 
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result, since the density of population is much higher 
in the slums, which may lead to the belief that social 
distancing in slums will break up the dense clusters. 
However, a careful examination shows that keeping 
slum residents home is not an effective social distancing 
strategy because their family size is, on average, almost 
three times the family size of non-slum households.27 
The high level of mixing at home makes social distancing 
ineffective in slums unless the infected individual is 
completely isolated. However, complete isolation is not 
viable in slum areas where the entire household may live 
in a single room.

dIsCussIOn
With slum populations expected to grow to two billion 
by 2030,43 it is becoming increasingly urgent to under-
stand how to control the spread of infectious diseases 
in slum areas and measure its effect on urban popula-
tions. To our knowledge, a detailed study of interven-
tions to control influenza epidemics in slums, using an 
agent-based simulation model, has never been done 
before. Slum conditions are important for a city beyond 
the direct effects of disease transmission. For example, 
civil wars may be precipitated or exacerbated by disease 
outbreaks because they decrease social health and 
welfare.44

Even though slum regions contain only 13% of the total 
population of Delhi, Chen et al4 show that omitting their 
attributes leads to underestimation of the overall infec-
tion rate and the peak infection rate of the epidemic. This 
paper extends that work by evaluating the differential 
impact of interventions on slum and non-slum regions. 
Various vaccination and social distancing strategies are 
analysed under different scenarios that show that the 
slum population is more prone to infections under the 
same control measures. Furthermore, taking account of 
slum populations significantly alters the disease dynamics 
in the entire population. Differences in key measures are 
demonstrated between the cases of accounting for slum 
populations and not: for example, a 100% increase in the 
peak attack rate in some cases when slum regions’ char-
acteristics are taken into account, compared with the case 
when they are ignored.

Figure 4, which compares infections in slum with 
non-slum areas, shows that at very high compliance rates, 
some interventions can be equally effective in both slums 
and non-slums. However, such high compliance rates 
are typically not feasible due to practical realities on the 
ground, and also because they require timely diagnosis of 
infected cases. For SHO to be effective, the coverage rate 
needs to be 70% or more in both slums and non-slums, 
and the diagnosis of the infected individuals needs to 
be correct and immediate. In other words, effective 
control of a contagious epidemic in a high-density place 
like Delhi would require either early and drastic action  
(eg, ISO) or a highly compliant set of individuals, or a 
combination of these features.

This work overall demonstrates the power of agent-
based and population modelling to evaluate complicated 
interaction-based epidemiological phenomena. Clearly, 
there are limitations to this work (several are itemised 
below). But these agent and population approaches 
provide a platform for adding additional complexity. All of 
the figures demonstrate that quantitative results depend 
on complicated interplay among inputs. These results 
are important because they inform policy decisions. An 
equally important benefit of this type of work, but not 
often stated, is developing intuition about epidemic 
dynamics (in this case, with the effects of slums) to enable 
decision makers to reason about nuanced interactions 
among effects to a degree that is hard to obtain with 
other approaches that lack this level of detail. However, 
we believe that other modelling approaches may also be 
valuable in understanding epidemic dynamics in slum 
populations.

Despite the detailed modelling effort, there are 
limitations to this work and areas for improvement in 
the future. For example, this model assumes that both 
slum and non-slum individuals have the same level of 
immunity. This may not be true for seasonal infections. 
Previous researchers have argued that individuals who 
live in smaller family sizes, who have access to household 
amenities and maintain a high level of personal cleanli-
ness face declining microbial exposure, which can modify 
their immune response and reduce their level of toler-
ance to respiratory infections.45 Slum households charac-
terised by larger family size and overcrowding are likely 
to encounter much higher microbial exposure and there-
fore may be protected by their greater immunity.16 17

Areas for future work include (1) examination of 
different population level base attack rates derived 
from different transmission probabilities; (2) different 
susceptibilities and infectivity for individual agents, 
for example, based on age; (3) effects of asymp-
tomatic infections (although we have addressed 
this to some extent with compliance and efficacy of 
interventions); (4) seasonal effects46 47; (5) effects 
of immunity for an individual from previous infec-
tions (in previous seasons); (6) evaluation of inter-
action of different strains from season to season; (7) 
comparison of tropical versus subtropical factors;  
(8) evaluation of a specific outbreak scenario; (9) impact 
of sickness on absenteeism from work and its economic 
ramifications; (10) effects on rural versus urban popu-
lations; (11) using combinations of interventions rather 
than one at a time (this was only done here in figure 5)—
however, to disambiguate results, it is prudent to first 
examine individual interventions; (12) effect of changing 
disease transmission rate for different activity types;  
(13) effect of changing contact times at different loca-
tions; and (14) to capture close proximity transmission, 
one could use actual physical proximity (here, we use 
colocation). Finally, just as changes in modelling details 
can change model results, so too changes in the condi-
tions in actual outbreaks can change results; some of 
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these factors are listed above. It is essentially impos-
sible to capture all of these effects—many of which are 
unknown—down to the level of individual humans.

Public health implications
This research demonstrates that modelling slum popula-
tions is important for understanding disease dynamics and 
for designing effective control measures. Ignoring the influ-
ence of slum characteristics on their urban environment 
will significantly underestimate the speed of an outbreak 
and its extent, and hence will lead to misguided interven-
tions by public health officials and policy planners. Lessons 
from this research can be applied in the field, and observa-
tions collected from the field can provide valuable data to 
improve the models and validate the results. For example, 
our results show that a slum resident has about 50% greater 
total contact duration per day compared with a non-slum 
resident. This makes social distancing-based interventions 
more taxing in the slum population. Public health policy 
makers may want to subsidise pharmaceutical resources 
for the slum population to make them more affordable. 
Similarly, we find women in slums have a higher number 
of contacts per day than their male counterparts, whereas 
in non-slum regions women have a fewer number of daily 
contacts than their male counterparts. This kind of infor-
mation can be used to prioritise the distribution of limited 
resources; for example, women could be given preference 
over men for vaccination in slum areas. This research 
provides simulation-based evidence that in general social 
distancing strategies are ineffective in slums because of 
a large number of contacts at home. Unless one applies 
complete isolation, which is not feasible in slums, just 
staying at home still keeps a large number of contacts and 
pathways of spread intact.
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