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Abstract

Traveling waves of neuronal oscillations have been observed in many cortical regions, including the motor and sensory
cortex. Such waves are often modulated in a task-dependent fashion although their precise functional role remains a matter
of debate. Here we conjecture that the cortex can utilize the direction and wavelength of traveling waves to encode
information. We present a novel neural mechanism by which such information may be decoded by the spatial arrangement
of receptors within the dendritic receptor field. In particular, we show how the density distributions of excitatory and
inhibitory receptors can combine to act as a spatial filter of wave patterns. The proposed dendritic mechanism ensures that
the neuron selectively responds to specific wave patterns, thus constituting a neural basis of pattern decoding. We validate
this proposal in the descending motor system, where we model the large receptor fields of the pyramidal tract neurons —
the principle outputs of the motor cortex — decoding motor commands encoded in the direction of traveling wave
patterns in motor cortex. We use an existing model of field oscillations in motor cortex to investigate how the topology of
the pyramidal cell receptor field acts to tune the cells responses to specific oscillatory wave patterns, even when those
patterns are highly degraded. The model replicates key findings of the descending motor system during simple motor tasks,
including variable interspike intervals and weak corticospinal coherence. By additionally showing how the nature of the
wave patterns can be controlled by modulating the topology of local intra-cortical connections, we hence propose a novel
integrated neuronal model of encoding and decoding motor commands.
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Introduction

Traveling waves of oscillatory neuronal activity have been

observed at many spatial scales although their functional role

remains a matter of debate [1]. Waves have been implicated in

perception [2–7], working memory [8], pathological seizure-like

states [9], motor control [10–12] and neural computation [13,14].

Waves also arise readily in neurobiological models of oscillatory

activity [15,16]. We recently proposed that the morphological

properties of waves in motor cortex may serve as a neural basis for

encoding movement-related information [17]. In the present study

we explore how spatially-organized receptors within the dendritic

field allow neurons to act as spatial filters of those wave patterns to

effectively decode the information contained within their wave-

length, coherence and direction. We use numerical simulation to

explore this proposal in the context of the human descending

motor system where we model the response of the principle output

neurons of the motor cortex to simulated waves in cortex

(Figure 1). The dendritic receptor field is modeled as a spatial

Gabor filter which selectively initiates actions potentials in the

neuron whenever it detects a specific wave pattern. Gabor filters

have previously been used to characterize the receptor fields of

‘simple cells’ in visual cortex [18,19] and here we assume that

similar structures may likewise be plausible in motor cortex, giving

examples of how this could be accomplished. We show that

dendritic fields in cortex may serve as biological Gabor filters of

internally generated patterns of oscillatory activity. Furthermore,

we show how the output neurons of motor cortex may use Gabor

filtering to translate those oscillatory patterns into steady motor

output in the spine.

The prevailing notion of dendritic computation is credited to

McCullough and Pitts [20] who were first to model dendrites as a

simple linear summation of synaptic input followed by nonlinear

thresholding (see [21–24] for reviews). Contemporary accounts

have since recognized that dendritic morphology also contributes

to transforming synaptic currents prior to their arrival at the cell

soma [25–28]. Pyramidal neurons, for example, perform coinci-

dence detection between synaptic inputs arriving on the apical and

basal dendrites by exploiting transmission delays within the

dendrite itself [29]. Yet dendrites are more than just tapped delay

lines [30], they are active structures that are sensitive to the spatial

patterning of temporal sequences along the dendritic arms [31–

33]. The timing of spatially organized synaptic inputs is

particularly likely to have implications for neural computation in

oscillatory neural frameworks where the phase of a signal is

paramount.

A conductance-based model of the dendrite is presented that

demonstrates how spatially organized inhibitory and excitatory
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receptors can act in unison as a biological Gabor filter. We

then present a two-compartment neural model that combines a

model of the dendrite as a Gabor filter coupled with a

conductance-based model of the soma. The combined model

thus decodes spatial phase patterns (e.g., waves) into realistic

action potentials. We apply this model to the case of pyramidal

tract neurons (PTNs) which are the principle output neurons of

the motor cortex. These neurons have long axons that

monosynaptically innervate motor neurons and interneurons

in the spine (Figure 1A). The direct corticospinal pathway is

known to play a role in skilled reaching and grasping

movements in higher species [34] with cell discharge rates

that are primarily related to muscle force [35]. PTNs also make

extensive lateral connections throughout motor cortex [36,37]

(Figure 1B) and so are ideally placed to broadly sample cortical

wave activity (Figure 1C). Specifically, we consider waves in

beta band (12–30 Hz) oscillations. Beta oscillations have long

been implicated in the execution and planning of movement

[38–40] but only recently has that activity also been shown to

be spatially organized as waves [10–12]. Those waves have a

spatial scale of approximately 1 cm. The scale of the proposed

dendritic mechanism restricts it to wave patterns at smaller

spatial scales (e.g., sub-millimeter wavelengths) than those that

have thus far been reported.

The efficacy of the proposed mechanism is explored by

simulating the full motor pathway from cortex to muscle

(Figure 1D) using established models of motor cortex [17], motor

neuron (MN) [41] and the surface electromyogram (EMG) of

muscle [41]. The full model recapitulates key features of

neurophysiological recordings acquired during simple purposeful

motor activity, particularly the task-locked modulations in

rhythmic coherence between electrocortical and electromuscular

activity [42–45]. In doing so, we integrate two active fields of

research: Traveling oscillatory waves — which encode motor

commands — and dendritic computation — which leads to their

decoding through spatial filters.

Results

We simulated traveling waves of beta oscillations using a

neurobiologically informed model of cortex [17] where coupled

oscillators represent the phases of spatially distributed oscillations

within a local patch of motor cortex (Figure 2). Modeling neuronal

synchronization using a phase-only model is justified by the phase-

reduction approximation which has a rich history in theoretical

neuroscience [46–50]. Oscillators were spatially coupled using an

anisotropic form of inhibitory-surround coupling topology to

induce traveling waves of synchronization in the cortical sheet

[15,16,51–53]. The resulting wave patterns were sampled by a

population of randomly placed PTNs with identical receptor field

morphologies. A pool of motor neurons converted the PTN output

into a net muscle drive that was quantified by the simulated EMG.

It is then shown that the amplitude of the final muscle drive can be

controlled by varying the orientation of the cortical wave pattern

with respect to the orientation of the PTN receptor fields. The

results of each of these levels in our hierarchical model are now

presented in sequence.

Cortical dynamics
Cortex was modeled by a 1286128 array of spatially-coupled

Kuramoto [54] oscillators (Methods, equations 2–4) where the

phase of each oscillator represents the net phase of a localized

patch of motor cortex [17]. This model approximates large-scale

beta band oscillatory activity in cortex that is thought to be

mediated by the long-range lateral connections within the

superficial layers [7]. Anisotropic inhibitory-surround coupling

(Figures 2A,B) has been previously reported to evoke traveling

waves in this model [17] where the topology of the inhibitory

surround governs the wavelength and orientation of the emergent

traveling waves (Figure 2C). The resulting waves tend to propagate

in either direction along the major axis of the coupling kernel. It is

common for the waves to be segregated into localized patches

which march coherently within each patch but in opposing

directions between patches. In such cases the patches appear to be

bounded by chains of spiral centers.

A broad distribution of intrinsic oscillator frequencies

(M = 20 Hz, SD = 4 Hz; Figure 2D, labeled ‘Osc’) was used to

achieve partial synchronization between oscillators. Partial

synchronization degrades the wave pattern in a manner that

resembles the effects of noise even though the governing equations

are entirely deterministic [16]. This injects realistic variability into

the cortical model without the need for explicit stochastic terms.

That variability is most evident in the simulated LFP (Figure 2E)

which exhibits an ongoing waxing and waning that does not

appear to repeat periodically. Waxing and waning of oscillatory

signals is routinely observed in physiology. Figure 2F shows an

example of MEG oscillations in human primary motor cortex

recorded during a steady hold task.

Pyramidal Tract Neuron (PTN)
To study the effect of the spatial arrangement of dendritic

receptors on soma current, we simulated the synaptic currents

flowing into the dendrite using the conductance-based model,

C
dV

dt
~{Il{Ie{Ii, ð1Þ

where C is the membrane capacitance, V is the membrane

potential, Il is the membrane leak current, Ie and Ii are the net

synaptic currents of the excitatory and inhibitory receptor

populations respectively. The spatial densities of the receptor

Author Summary

Physiological studies in humans and monkeys have
revealed spatially organized waves of neuronal activity
that propagate across the cortex during sensory or
behavioral tasks. However the functional role of such
waves remains elusive. In the present study, we use
numerical simulation to investigate whether wave patterns
may serve as a basis for neural coding in cortex.
Specifically, we propose a theoretical dendritic mechanism
which permits neurons to respond selectively to the
morphological properties of waves. In this proposal, the
arrangement of excitatory and inhibitory receptors within
the dendritic receptor field constitutes a spatial filter of the
incoming wave patterns. The proposed mechanism allows
the neuron to discriminate waves based on wavelength
and orientation, thereby providing a basis for neural
decoding. We explore this concept in the context of the
descending motor system where the pyramidal tract
neurons of motor cortex monosynaptically innervate
motor neurons in the spinal cord. Pyramidal tract neurons
have broad dendritic fields which make them ideal
candidates for spatial filters of waves in motor cortex.
Our model demonstrates how wave patterns in motor
cortex can be transformed into a descending motor drive
which replicates some fundamental oscillatory properties
of human motor physiology.

A Dendritic Mechanism for Decoding Traveling Waves
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populations were chosen so they combined to form a Gabor filter

(Figure 3A). The Gabor filter was tuned to respond maximally to

waves of length 300 mm (Figure 3B). Many combinations of

excitatory and inhibitory densities can satisfy this requirement.

Here, we nominated the excitatory density as a Gaussian

distribution (sx~sy~120 mm; peak density 0.4 synapse/mm2)

and solved for the inhibitory distribution given a Gabor function

with sx~sy~120 mm and a peak density of 0.2 synapse/mm2 (see

Methods). The resulting distributions have a width of approxi-

mately 600 mm which corresponds to the width of PTN receptor

fields [36,37,55]. The total number of synapses circumscribed by

these distributions also fell within physiological estimates of 60,000

to 100,000 synapses per neuron [56–58]. Supplementary Figure

S1 gives an alternative example where the inhibitory distribution is

nominated as Gaussian and we solve the excitatory density. In both

cases, the density distributions were randomly sampled to simulate

the placement of excitatory and inhibitory receptors within the

dendritic field (panel C). In both cases, the estimated frequency

response of the combined receptor field (panel D) matched that of

the target Gabor filter (panel B), as expected.

The synaptic currents were then studied whilst simulating the

bombardment of the receptor field by propagating waves of

cortical activity. The waves were approximated by a sinusoidal

grating that propagated across the receptor field at 6 mm (20

wavelengths) per second (e.g., Figure 3E). The sinusoidal grating

permitted the amplitude of the wave to be computed at exact

receptor locations (e.g., Figure 3E). The amplitude of the wave

modulated the rate of synaptic bombardment between 0 and 40

spikes/sec with a long-term average of 20 spikes/sec. Synaptic

spikes were simulated by a Poisson process that induces an

exponential rise (t1~1 ms) and fall (t2~0:2 ms) in the post-

synaptic conductance of the corresponding receptor (Methods,

equation 10). These changes in conductance drive the synaptic

currents in the membrane model (equation 1). It was found that

the net synaptic current (IezIi) responded selectively to the

orientation of the grating pattern in the receptor field, as predicted

by the Gabor filter. The grating with the preferred orientation

(Figure 3E) elicits significant modulation of the net balance of

excitation and inhibition among the receptor conductances,

resulting in large-amplitude oscillations in current (approximately

+100 pA) as the grating propagates across the receptor field

(Figure 3F). Conversely, the orthogonal grating pattern (Figure 3G)

fails to modulate the conductances in any coordinated fashion

hence the synaptic current remained near zero (Figure 3H). In all

cases, the net inhibitory and excitatory conductances were

predominantly balanced at 10 nS each, consistent with physiolog-

ical observations of balanced excitation and inhibition in

spontaneous cortical activity in vivo [59] and patch-clamped cells

in vitro [60].

Two-compartment phase-only model. Having verified

that dendritic receptor fields can serve as Gabor filters, we next

simulated the receptor field of each PTN as a two-dimensional

Gabor filter using a phase-only approach (Figure 4). Here, the

output of the Gabor filter directly represents the dendritic current

produced by the net synaptic bombardment of the receptor field

by the local activity in the cortical oscillator model. This dendritic

Figure 1. Modeling the descending motor system. (A) Major fiber tracts of the descending motor system, redrawn from [105]. Axons of the
pyramidal tract neurons (red) descend from the motor cortex to monosynaptically innervate motor neurons in the spinal cord. (B) Schematic
representation of the dendritic arbors of a typical pyramidal tract neuron (PTN). The apical dendrites project widely throughout the superficial layers
of cortex and thus are ideally placed to detect surface wave patterns in the neural activity (top). (C) Simulated cortical wave pattern. (D) The
descending motor model. Cortical wave patterns are generated by a sheet of spatially-coupled phase oscillators (circles, 1–8). These wave patterns
are spatially filtered by the dendritic trees of the pyramidal tract neurons to produce an amplitude-modulated oscillatory current at the soma. Spikes
initiated by the PTN are transmitted to a randomly selected pool of motor neurons (MN) in the spine. Each MN integrates the incoming spikes to
produce a muscle drive spike train. Net muscle drive is quantified by simulated Electromyogram (EMG). The cortical wave model is adapted from [17].
The MN and EMG models are adapted from [41].
doi:10.1371/journal.pcbi.1003260.g001
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current flows directly into the somatic compartment where action

potentials are generated according to the conductance model of

Izhikevich and Edelman [61] (Methods, equations 14–15). The

parameters of the somatic model were tuned to match the

physiological response characteristics of pyramidal tract neurons in

mammals [62–64].

It was found that individual PTNs responded selectively to

cortical wave orientation but the response rates were limited to

discrete frequency bands (10, 20, 30, 40 Hz) due to entrainment

by the intrinsic 20 Hz oscillations in cortex. Typical responses of

the same PTN to a pair of orthogonal wave patterns are shown in

Figure 4. The response (panel E) to the preferred wave pattern

(panel C) exhibits high amplitude 20 Hz oscillations in the

dendritic current (red) which biases spike initiation in the somatic

membrane potential (black) towards the peaks of that current. The

presence of double-spikes on many of the peaks in this example

resulted in a mean firing rate of 30 spikes per second. In

comparison, the response (panel F) to the non-preferred wave

pattern (panel D) exhibits low amplitude oscillations in the

dendritic current (also at 20 Hz) which are too weak to induce

any spikes in the soma.

The phase of the dendritic current is determined by the

propagation of the wave pattern across the dendritic receptor field.

Receptor fields placed at different cortical locations will thus

respond with different temporal phase shifts. This is illustrated by

the light gray spike traces in Figure 4E which show the responses

of four randomly selected PTNs on the same cortical sheet.

Sinusoidal forcing of the soma. The discrete response

frequencies (10, 20, 30, 40 Hz) of the PTN can be understood by

inspecting the response of the somatic model to a pure 20 Hz

sinusoidal injection current (Figure 5A). The sinusoidal input

forces an oscillation in the somatic membrane potential which is

phase locked to the input. The resulting spikes tend to coincide

with the rising peaks of the injection current although the number

of cycles required to trigger a spike varies with current amplitude.

Injection currents below 0.50 nA fail to elicit any spikes (not

shown) whereas currents of 0.50 nA and 0.51 nA elicits spikes

every third and second cycle respectively. At 1.00 nA the

oscillating current produces regular spikes on every cycle and at

higher currents (e.g. 1.50 nA) double-spikes appear.

The somatic responses to the full range of possible current

amplitudes (Figure 5B) resembles the ‘devil’s staircase’ of a

periodically forced resonator with major frequency plateaus at

20 Hz and 40 Hz interspersed with minor plateaus at 10 Hz and

30 Hz and a multitude of even smaller m:n phase locked solutions

between those. In comparison, the somatic response to a constant

injection current (Figure 5C) varies smoothly with current apart

from the sudden onset of <10 Hz firing at 0.5 nA. This

discontinuity is due to a Hopf bifurcation in the conductance-

based model and it replicates the sudden onset of 10 Hz firing

observed in mammalian pyramidal tract neurons [62–64].

Tuning curves. The tuning curve of the dendritic compart-

ment (Figure 6A) was computed by averaging the dendritic

responses of PTN receptor fields at all possible locations on the

cortex. The measurements were repeated over n = 20 indepen-

dently generated cortical wave patterns yielding a total of 327,680

samples for each wave orientation. The large variation in the

dendritic responses (gray region indicates the 95% confidence

interval) is due to local defects in the wave pattern.

The corresponding response frequencies of the somatic

compartment (Figure 6B) were predicted by mapping the

dendritic tuning curve (Figure 6A) onto the somatic response

to pure 20 Hz input (Figure 5B). The result is the likelihood of

the PTN firing at each of the four dominant entrainment

frequencies (10 Hz, 20 Hz, 30 Hz, 40 Hz) for any given wave

orientation in the cortex. Even though the dendritic tuning

curve responds smoothly to wave orientation, the same is not

true of the somatic compartment which responds in discrete

frequency bands because of entrainment by the oscillatory

input. Nonetheless a smooth tuning response is recovered by the

population response of all PTNs taken together (Figure 6C). It is

found that the distributions of frequency-specific responses are

balanced so that the combined spike output of all PTNs is itself a

smooth function of wave orientation. Notice that the population

tuning curve (Figure 6C) is somewhat sharper (full width at half

maximum, FWHM = 55:8o) than the dendritic tuning curve

(Figure 6A; FWHM = 65:8o). The population response is

effectively zero beyond +60 degrees thereby eliminating any

response to irrelevant wave patterns.

Figure 2. The cortical model. (A) Profiles of the spatial coupling
kernel along its major and minor axes of orientation. (B) Contours of the
spatial coupling kernel. (C) Exemplar oscillator pattern with this
coupling kernel. Shading indicates phase. Black lines indicate the
orientation of the kernel axes. (D) Frequency spectrum of the simulated
local field potential (LFP) superimposed on the distribution of the
autonomous oscillator frequencies (Osc). The latter is normally
distributed with M = 20 Hz and SD = 4 Hz. (E) Time course of the
simulated local field potential. (F) Time course of MEG signal recorded
over human motor cortex during a precision grip task.
doi:10.1371/journal.pcbi.1003260.g002
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Inter-spike irregularity. Neurons exhibit variable inter-

spike intervals in vivo that are difficult to replicate in purely

deterministic models [65–67]. Inter-spike interval irregularity in

the simulated PTN spike trains was quantified using both the

conventional coefficient of variation (CV) and the irregularity (IR)

metric (Methods, equation 20) recently proposed by Davies and

colleagues [68]. Inter-spike irregularity in primate PTNs is IR<0.6

during performance of a steady hold task [69] and similar levels of

interspike irregularity were observed in our model (Figure 7). Since

the PTN model contains no intrinsic source of variability, any

Figure 3. Gabor filtering by excitatory and inhibitory receptor densities. (A) Density profiles for excitatory (blue) and inhibitory (red)
receptor populations which combine to form a Gabor filter (black). In this case, the excitatory density was nominated as Gaussian. (B) Spatial
frequency response of the Gabor filter. Peaks correspond to waves of length 300 mm. (C) Excitatory (blue) and inhibitory (red) receptor samples taken
from the density distributions in panel A. The combined receptor field (blue+red) represents the dendritic field of the neuron. (D) Spatial frequency
response of the combined receptor field. Peaks correspond to vertically oriented waves of length 300 mm. (E) The combined receptor field
superimposed on its preferred wave pattern. The wave pattern propagates from left to right at 6 mm/sec to simulate 20 Hz oscillations in the cortical
field. (F) Time course of the net excitatory (blue shading) and inhibitory (red shading) conductances in response the preferred wave pattern. Faint
lines show individual post-synaptic conductances for n = 40 randomly selected receptors (not to scale). Each receptor fires 20 spikes/sec on average.
Heavy black line shows the dendritic current induced by the net changes in conductance. The amplitude of the dendritic current is modulated as the
wave propagates across the receptor field. (G) The combined receptor field superimposed on the orthogonal wave pattern which propagates from
top to bottom at 6 mm/sec. (H) Time course of the dendritic response to the orthogonal wave pattern. In this case the wave pattern does not
modulate the dendritic current even though the individual receptors still fire at 20 spikes/sec on average.
doi:10.1371/journal.pcbi.1003260.g003
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inter-spike irregularity is entirely due to irregularity in the

dendritic current (Figure 7A, red trace). That irregularity arises

from the transient waxing and waning of the cortical wave pattern

due to the heterogeneous oscillator frequencies in the cortical

model. Transient degradations of the cortical wave pattern are

reflected in weaker responses in the dendritic current. The same

mechanism gives rise to the waxing and waning in the cortical LFP

(Figure 2E) but in this case the oscillations are also filtered through

the dendritic kernel. Interestingly, spike regularity in the model is

not constant with firing rate. Inter-spike intervals become more

regular (less irregular) as the spike rate approaches 20 Hz.

Irregularity then returns as firing rate exceeds 20 Hz. The effect

can be seen with the CV metric (Figure 7B) but is most prominent

with the IR metric (Figure 7C). The minimum inter-spike

irregularity at 20 Hz corresponds with 1:1 entrainment of the

soma to the oscillations in the dendritic current.

Phase shifts. Empirical characterization of simple cells

receptor cells in visual cortex [18,19] has shown that many cells

have an asymmetric profile that can be approximated by a Gabor

filter with a non-zero spatial phase shift d (Methods, equation 12).

Signal processing theory predicts that spatial phase shifts in the

Gabor filter will be transformed into temporal phase shifts in the

filter output when the input is a moving sinusoidal grating, as is the

case here. This prediction is confirmed in the PTN model when

the spatial phase of the dendritic kernel has been shifted by 0, 90,

180 and 290 degrees respectively (Figure 8). In all cases, the spike

responses of the PTN are shifted in time by the respective phase

value. Neurons may thus exploit asymmetries in the spatial profile

of the dendritic receptor densities in order to advance or retard

spike timing relative to the incoming oscillations. This property of

the dendritic filter may have relevance to coding by phase-of-firing

where information is thought to be encoded in the timing of spikes

relative to the phase of local oscillations [70–71].

Descending motor drive
The full motor pathway from cortex to muscle (Figure 1C) was

simulated to test the efficacy of translating cortical wave patterns

Figure 4. The PTN model. (A) Spatial profiles of the dendritic filter.
(B) Spatial contours of the dendritic filter. (C) Preferred cortical
oscillation pattern for this dendritic filter. (D) Orthogonal oscillation
pattern. (E) Time course of the neural response to the preferred cortical
pattern. Bottom trace (red) is the dendritic current. Top trace (black) is
the somatic membrane potential. Light gray traces show the responses
of four other PTNs located at random positions on the same cortical
pattern. (F) Time course of neural response to the orthogonal pattern.
Panels E and F have the same scales.
doi:10.1371/journal.pcbi.1003260.g004

Figure 5. Response properties of the PTN somatic compart-
ment. (A) Spike trains produced by the model in response to 20 Hz
sinusoidal injection currents of amplitude 0.50 nA, 0.51 nA, 1.00 nA and
1.50 nA respectively. Bottom trace (red) shows the time course of the
injection current. (B) Steady-state firing response of the model to 20 Hz
sinusoidal injection current. The plateaus in the response curve are due
to entrainment of the membrane potential to the oscillatory input. The
main plateaus occur at 20 Hz and 40 Hz. Smaller plateaus also occur at
10 Hz, 13.25 Hz, 30 Hz and 33.25 Hz. (C) Steady-state firing response of
the same model to constant injection currents. The parameters of the
model were tuned so that this curve closely matched the physiological
properties of pyramidal neurons [62–64]. Specifically, a mean slope of
42 Hz/nA and sudden onset of 10 Hz firing as the injection current
approaches 0.5 nA.
doi:10.1371/journal.pcbi.1003260.g005
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into muscle activity. A pool of identical PTNs (n = 200) were

placed randomly in the motor cortex. Following the methods of

[41], the outputs of the PTNs were randomly connected to a pool

of MNs (m = 100) such that each MN received input from exactly

60 PTNs with the likelihood that any two MNs had 30% of their

inputs in common. MNs were modeled as leaky integrate-and-fire

neurons with stochastic membrane thresholds (Methods, equations

16–17). The output spikes were convolved with heterogeneous

motor unit action potentials (MUAP) to simulate the surface

electromyogram (EMG) of muscle (Methods, equations 18–19).

Muscle force was not modeled directly but was inferred from the

amplitude envelope of the simulated EMG.

Thirty seconds of cortical traveling wave activity was simulated

using a fixed cortical coupling kernel that was oriented at 60

degrees from the horizontal (as in Figure 2). This wave sequence

was then decoded by PTNs with dendritic filters that were rotated

away from the dominant wave orientation by 0o,15o,30o and 45o

respectively in each condition. The results are rotationally

equivalent to holding the orientation of the dendritic filters fixed

Figure 6. Tuning curves of the PTNs. (A) Tuning curve of the PTN
dendritic compartment. The amplitude of the dendritic response
current (vertical axis) is modulated by the orientation of the cortical
wave pattern (horizontal axis). Heavy black line indicates the mean
amplitude of the dendritic response for any given wave orientation.
Shaded region indicates the 90% confidence interval. The large
variation is due to local defects in the wave pattern. (B) The likelihood
of the soma responding at each of the dominant firing rates. (C) Net
firing rates of a population of neurons in response to wave orientation.
doi:10.1371/journal.pcbi.1003260.g006

Figure 7. Variability of inter-spike intervals in the PTN model.
(A) Exemplar dendritic current (red) and resulting somatic spike train
(black) exhibiting irregular inter-spike intervals. The coefficient of
variation (CV = 0.76) and irregularity (IR = 0.35) measures were both
computed over a 30 second window. (B) Coefficient of variation of the
inter-spike intervals versus firing rate. (C) Irregularity metric for the
same data. Box plot (yellow) reproduces the observed irregularity of
PTN inter-spike intervals in primary motor cortex [69] where the
whiskers indicate the extrema.
doi:10.1371/journal.pcbi.1003260.g007

Figure 8. Asymmetric dendritic kernels induce phase shifts in
the PTN spike trains. Profiles of the dendritic kernels are shown on
the left. Spike trains produced by the PTN model are shown on the
right. The thick gray line is the simulated LFP of the cortical pattern
which is the same in all cases. (A) Case of a Gabor filter with zero phase
shift. (B) Case of +90 degree phase shift. (C) Case of +180 degree phase
shift. (D) Case of 290 degree phase shift. Light gray spike traces in B–D
reproduce the case of zero phase shift for ease of comparison.
doi:10.1371/journal.pcbi.1003260.g008
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while manipulating the orientation of the cortical coupling except

in this case there are no confounds with between-trial differences

in the self-organized wave patterns. Figure 9 shows various aspects

of the descending motor drive for each orientation offset condition.

Each column pertains to one condition. The panels in row A show

the orientation of each of the dendritic filters in relation to the

cortical wave pattern. The panels in row B show the distribution of

firing rates exhibited by the 200 PTNs embedded in the cortex.

The mean firing rates of the PTN population (22.4 Hz, 18.0 Hz,

9.7 Hz, 2.4 Hz) are seen to diminish as orientation offset increases

from 0o to 45o which confirms that PTN responses are selective to

wave orientation. The maximum responses occur when the waves

are perfectly aligned with the dendritic filter (0o offset) whereas the

bulk of the PTNs barely fire at all in the case of 45o offset. A

persistent spread in the PTN response rates is observed for all

orientation offsets. This variation is due to local defects in the wave

pattern, as will be discussed later.

Figure 9C shows the distribution of firing rates for the spinal

motor neurons (MN). They too exhibit diminished responses as the

orientation offset of the dendritic filter is increased. Here the mean

firing rates of the motor neuron pool diminishes from 9.2 Hz at

zero offset down to virtually no response at 45o offset. The absence

of all but a few random spikes in the motor output in the latter case

show that the background PTN spikes are insufficient to raise the

motor neuron membrane potential above its firing threshold. The

simulated EMG traces (Figure 9D) represent the net motor neuron

activity as it would be observed at the surface of the muscle. Once

again, the response is diminished with increased offset angle

between the cortical waves and the dendritic filter. The EMG

amplitude may be loosely interpreted as indicative of muscle

contractile force.

Lastly, the average coherence between LFP and EMG over 100

randomized trials (Figure 9E; heavy black line) reveals weak but

significant 20 Hz corticospinal coherence that also diminishes with

offset angle. This reduction of simulated coherence with offset

angle is consistent with reduced corticospinal coherence in human

MEG/EEG under reduced levels of muscle force (Figure 9E; red).

The weakness in the levels of simulated coherence are also

consistent with physiological reports of coherence in the range

0.01–0.1 [39,44,72]. In our model, this weakness is a direct result

of the heterogeneity among the cortical oscillator frequencies

(Figure 2D). Eliminating that heterogeneity leads to stronger

coherence values (approaching 0.5).

Discussion

We present a novel solution to the problem of encoding and

decoding motor commands in primary motor cortex using

spatiotemporal patterns of beta oscillations. In particular, we

propose that motor commands encoded in the morphology of

traveling waves can be discriminated (decoded) by the dendritic

arbors of PTNs to selectively engage spinal motor neurons,

thereby orchestrating muscle movement. Our model demonstrates

a unique mechanism by which spatiotemporal patterns in cortex

exert control over muscle activity while also replicating key aspects

of the descending motor system, including variable inter-spike

intervals and weak corticospinal coherence during steady motor

tasks.

The key aspect of the proposed model is the formulation of the

dendritic receptor field as a filter of spatial patterns in the phase of

incoming oscillatory signals. In this view, neural information is

encoded by the relative timing of the synaptic input. Dendritic

computation is thus portrayed as the integration of synaptic phases

rather than the integration of synaptic membrane potentials. That

is not to say the model confounds phase with membrane potential

but rather that it emphasizes the impact of the synaptic phase on

the timing of subsequent spikes produced by the neuron. This

phase-based approach is consistent with emerging evidence that

dendritic integration is sensitive to the relative timing and spatial

location of synaptic input on the dendritic arbors [21,22,27,28,31–

33]. Phase-only models are justified in studies of neuronal

synchronization where the timing of synaptic input is of prime

importance [46–50,73–76].

We approximated the spatial integration of synaptic input

across the dendritic receptor field using a two-dimensional Gabor

filter. The spatial bandpass characteristics of Gabor filters are well

understood and have previously been used to characterize receptor

fields in visual cortex [18,19]. In those cases, the Gabor filtering

refers to the spatial properties the stimulus rather than the spatial

properties of the activity patterns in the visual cortex. Nonetheless,

the retinotopic map of the visual field is locally preserved in visual

cortex (e.g., [77]) so it is reasonable to consider that Gabor filtering

may apply at the level of cortical activity patterns. We assume that

similar structures may plausibly occur in motor cortex although we

are not aware of any direct experimental reports of such.

Furthermore, our simulations show that the spatial arrangement

of excitatory and inhibitory receptors within the dendritic field is

sufficient for the neuron to act as a Gabor filter of spatial patterns

of synaptic bombardment. Whilst we suggest that such excitatory

and inhibitory inputs arise from local interneurons, it is also

possible that such effects reflect restricted corticothalamic circuits,

which are known to contribute to the response properties of visual

cortical neurons [78–80]. We do not propose a specific explana-

tion of how such spatially organized receptor fields may develop,

except to recall that a homeostatic balance between excitation and

inhibition does appear to be actively maintained by a regulatory

push-pull mechanism at the level of the dendrite [60]. We also

note that traveling waves have themselves been implicated in

guiding the development of neuronal circuits in cerebellar cortex

[81]. In such cases, spontaneously generated internal activity is

thought to serve as a means of bootstrapping the development of

cortical circuitry prior to the onset of sensory experience [82].

Some studies of dendritic morphology in visual cortex have

previously dismissed any relationship between the morphology of

the dendritic footprint and the functional selectivity of those cells

to the orientation [83] or direction [84] of visual stimuli. However,

those studies [83,84] only considered the physical shape of the

dendritic field and not the spatial densities of the receptors within

it. We emphasize that it is the spatial distribution of excitatory and

inhibitory synapses that is key to our findings, not the physical

shape of the dendritic footprint. Our findings also show that

asymmetrical placement of the dendritic receptors can shift the

temporal phase response of cells by up to +180o even though the

underlying footprint of the receptor field is unchanged. We suggest

this mechanism may be exploited by the brain to fine tune the

timing of spikes relative the phase of local oscillations for such

purposes as long-range neural coordination [85] or coding by

phase-of-firing [70,71]. We anticipate that the same underlying

mechanism would apply to any spatial filter which has periodic

modulation on finite support, not just Gabor filters. Ultimately, the

veracity of any computational study rests upon the validity of its

core assumptions as well as the degree to which such assumptions

can be verified or refuted by independent measurement. Here the

core assumption is that the spatial distribution of excitatory and

inhibitory synapses across a dendritic tree serve as a spatial filter,

transforming spatiotemporal patterns of local oscillatory activity in

motor cortex into oscillatory changes in the soma potential and

thence into periodically-modulated spike sequences in Betz cells.

A Dendritic Mechanism for Decoding Traveling Waves

PLOS Computational Biology | www.ploscompbiol.org 8 October 2013 | Volume 9 | Issue 10 | e1003260



Figure 9. The effect of wave orientation on the output of the descending motor system. Each column presents the responses of the
descending motor system for pyramidal neurons with a given dendritic orientation (0o,15o,30o and 45o) relative to the cortical pattern. (A)
Orientation of the dendritic kernels. The cortical pattern is the same in all cases. (B) Firing rate distribution of the pyramidal tract neurons. (C) Firing
rate distribution of the motor neurons. (D) Time course of the simulated EMG. (E) Magnitude squared coherence between LFP and EMG. Light gray
lines represent individual trials (n = 100). Black line shows the trial average. In red, average MEG-EMG coherence in 16 subjects while they perform a
precision grip task at different force levels (2.0 N, 1.65 N, 0.95 N, 0.0 N). Dashed horizontal line indicates the 95% confidence level for the coherence
distribution in each frequency bin. Peaks above that line are statistically significant at p = 0.05.
doi:10.1371/journal.pcbi.1003260.g009
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This lends itself to several lines of independent inquiry,

including in vivo measurements that couple multi-channel

measurements of local field potential to spike activity, as well

as morphological characterization. Computational studies such

as the present one may hence guide empirical research by

providing quantitative predictions that allow differentiating

between alternative competing computational frameworks. In

the absence of such an approach, the level of detailed

description regarding dendritic computation will remain con-

fined to the microscopic scale, leaving macroscopic accounts

reliant upon qualitative heuristics.

Although the ability of dendrites to discriminate specific

temporal sequences of synaptic inputs has previously been

investigated [28,31,33] there is relatively little research exploring

the potential of dendrites to discriminate spatial patterns of

oscillatory inputs. Oscillatory neural signals are key to many

cognitive and behavioral processes [86–89] and beta oscillations in

motor cortex have long been implicated in movement [44,45,72].

The spatial organization of those oscillations as traveling waves is

only a recent discovery [10–12] and the present model demon-

strates a plausible neural architecture for transforming small-scale

(sub-millimeter) spatiotemporal activity patterns into steady muscle

activity. However the present model does not account for

decoding the large-scale wavelengths (1 cm) observed in motor

cortex since such wavelengths far exceed the spatial resolution of

individual PTN receptor fields.

In our model, oscillatory activity in cortex is translated into

steady motor output. The long-term motor output remains

constant for any given wave pattern, exhibiting only random

fluctuations about the mean due to stochastic influences within the

motor pool. Despite this overall constancy, echoes of the cortical

oscillations are still transmitted through the descending motor

pathways where they are observed in the model as weak levels of

20 Hz coherence between the LFP and the EMG. These

simulated findings are consistent with the weak but significant

levels of corticospinal coherence observed in humans and primates

during steady motor tasks [42–44]. Motor neurons transmit

oscillatory activity to the muscle almost linearly hence the

weakness of the neurobiological levels of coherence must be due

to degradation of the oscillatory signals in the corticospinal

drive[41,90]. In many computational models, that degradation is

replicated using injected noise. In the present model it arises

deterministically from the heterogeneity of the cortical oscillators

without resort to explicit stochastic terms.

Oscillator heterogeneity plays an important role in the present

model. Firstly it demonstrates that pattern formation and

discrimination remains feasible even when the intrinsic oscillation

frequencies are broadly distributed, as in the beta bandwidth (12–

20 Hz). Secondly, it injects significant ongoing variability into the

cortical patterns which becomes evident in the irregular PTN

inter-spike intervals and the waxing and waning of the simulated

LFP. The gradual reduction in simulated inter-spike variability as

PTN firing rates increase from 0 Hz to 20 Hz is broadly consistent

with observations in motor neurons where variability typically

decreases from CV<0.4 near 7 Hz firing to CV<0.2 near 20 Hz

firing [91,92]. In the model, that variability arises deterministically

from transient synchronizations among the cortical oscillators. In

dynamical systems theory, this phenomenon is referred to as

metastability because the transient states are not strictly stable but

the dwell-time in the vicinity of these states is sufficiently long that

they appear stable in the short-term. The richness of brain

dynamics is often attributed to metastability [93–95] although

demonstrations of metastability in neural models with an explicit

functional role, such as the present, are rare.

Oscillations in our cortical model also has the effect of

entraining the output spikes of individual PTNs into discrete

frequency bands. This leads to step-wise increments in PTN firing

frequency that would appear to counteract the ability of the PTNs

to respond smoothly to changes in the cortical patterns.

Nevertheless, a smooth tuning curve is recovered at the population

level where the collective responses of all PTNs yields a smooth

tuning curve that actually has a sharper cut-off than the

constituent dendritic filters. This type of population-level response

is consistent with the population code hypothesis proposed by

Georgopolous and colleagues whereby specific movements are not

encoded by individual neurons in motor cortex but in the

collective responses of multiple neurons each with overlapping

tuning curves [96].

The simulated waves in the present model only serve as a gross

approximation of the traveling waves observed in motor cortex

[10–12]. While spontaneous and stimulus-evoked waves are both

observed during the planning and execution stages of movement,

only the phase and amplitude of the stimulus-evoked waves have

been successfully correlated with movement. It is possible that

movement may also correlate with other wave features that are not

are not time-locked to behavioral cues and so are not detected by

these experimental techniques [10]. Nonetheless, the present

interpretation of wave orientation as encoding specific motor

commands is deliberately simplified. Waves in motor cortex can

propagate in any direction but predominantly propagate along the

rostral-caudal axis in monkeys [10,11] and the medial-lateral axis

in humans [12]. Moreover these traveling waves tend to be solitary

waves — perhaps better called wave fronts — rather than the tiled

wave patterns presented here. In humans, the medial-lateral

propagation direction corresponds with the somatopic progression

of the motor map. Consequently, it has been suggested that wave

fronts may coordinate the proximal-to-distal sequencing of muscle

recruitment that is common to many types of limb movement [97].

Reconciling our model with these recent empirical observations

and their heuristic interpretation [97] would suggest that the very

long wave front along motor cortex [10–12] heralds a sweep

through a sequence of movements, whereas each specific

movement command nested within this sequence is encoded

according to local patches of continuously propagating wavefronts.

Such a hierarchy of movement sequences is consistent with other

accounts of complex behavior control [98] and indeed general

principles of cortical dynamics [99].

Traveling waves are not restricted to motor cortex and the

proposed dendritic mechanism may also generalize to traveling

waves in other modalities, such as olfactory cortex [3] or visual

cortex [7]. At a deeper level, traveling waves are just one specific

example of spatially embedded ensemble activity. Greater

information capacity could be achieved using more complex

spatiotemporal patterns of activity, hence speaking to a broader

computational principle, consistent with recent work showing that

the spiking behavior can be predicted from its surrounding local

field potential [100,101].

In conclusion, we propose an integrated and novel account for

both encoding and decoding motor commands in motor cortex,

incorporating basic histological and neurophysiological data into

our model. Whilst somewhat speculative — by necessity — our

model makes specific predictions regarding the organization of

neuronal activity during movement and the fine-grained histology

of PTNs, which lend themselves to empirical testing. There exist

few other computational accounts of dendritic filtering that

explicitly accommodate the oscillatory nature of spatiotemporal

neuronal activity. We concede that the exact encoding of motor

commands likely diverges somewhat from our present abstraction.
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Nonetheless, we anticipate that dendritic trees are capable of

filtering a broader class of oscillatory spatiotemporal patterns than

those we have investigated here. By proposing a formal account

that links the information available in spatially organized

oscillatory activity to the architecture of dendritic arborization,

we suggest a deeper computational principle that may apply more

generally in the cortex.

Methods

Cortical model
Motor cortex was modeled as a two-dimensional array of

spatially coupled Kuramoto [54] oscillators

Lhx

Lt
~vx{

ð
R2

G(Dx{x’D) sin(hx{hx’)dx’ ð2Þ

with periodic boundary conditions. The phase hx of each oscillator

represents the oscillatory neural activity of a small patch of motor

cortex at spatial position x[R2. The frequency vx of each

oscillator was drawn randomly from a normal distribution

(M = 20 Hz, SD = 4 Hz) that approximates the beta bandwidth

of oscillation frequencies. Center-surround spatial coupling was

approximated by an anisotropic kernel,

G(z)~e{bz2
z4he{bz2

(
1

3
b2z4{bz2), ð3Þ

based on the fourth derivative of a Gaussian surface where

z~Dx{x’D represents spatial distance. The kernel parameter

h[½0,1� dictates the strength of the inhibitory surround as shown

in Figures 2A and 2B. The inhibitory strength varies radially

according to

h(a)~
1

2
(h0{h1) cos(2(a{b))z

1

2
(h0zh1), ð4Þ

where a is the angular position of each oscillator relative to the

kernel midpoint and b is the orientation of the major axis of the

kernel itself. Parameters h0 and h1 thus define the inhibitory

strengths along the major and minor axes of the kernel

respectively. The kernel is isometric when h0~h1. We have

previously reported waves and uniform synchrony for this type of

spatial coupling with parameter values in the range h~0:4 to

h~0:7 [17].

In the present study, the strength of the inhibitory surround

was fixed at h0~0:7 and h1~0:4 to produce traveling waves

that were spatially aligned with the kernel axes (e.g.

Figure 2C). The size of the coupling kernel was fixed at

41|41 nodes with a Gaussian full-width-half-height of 11

nodes (i.e. b~{4 log(0:5)=112). See [17] for details of the

numerical integration method.

Local Field Potential (LFP)
The LFP of motor cortex was approximated by treating the

cosine of the oscillator phases as analogous to membrane voltage

potential and then summing those voltages across space,

LFP~

ð
R2

cos(hx)dx: ð5Þ

Spectral density estimates of the LFP were computed using

Welch’s periodogram method with a Hamming window of

0.5 seconds and 50% window overlap. Sampling frequency was

1000 Hz.

Pyramidal Tract Neuron (PTN)
Pyramidal tract neurons were modeled as two passively coupled

neural compartments. The first compartment represents the

dendritic tree which defines the spatial distribution of incoming

connections from the motor cortex. The second compartment

represents the soma which defines the spiking output of the neuron

in response to the dendritic current. The dendritic current was

simulated in two ways. The first method demonstrates the

principle of Gabor filtering by dendritic receptors. This is achieved

by a conductance-based model of the post-synaptic currents

produced by spatially distributed populations of excitatory and

inhibitory synapses. The second method applies those findings to

the simulation of multiple PTNs in a computationally efficient

manner. This is achieved by a phase-only model of the dendritic

compartment in which a Gabor filter directly transforms incoming

wave patterns into an oscillatory dendritic current.

Dendritic conductance model. The net current flowing

into the dendritic compartment was modeled by the membrane

equation,

C
dV

dt
~{Il{Ie{Ii, ð6Þ

where C is the membrane capacitance, V is the membrane

potential, Il is the membrane leak current, Ie and Ii are the net

currents of the excitatory and inhibitory synapse populations

respectively. The leak current,

Il~gl(V{El), ð7Þ

was modeled with a fixed conductance gl with a reversal potential

of El~{70 mV. The excitatory and inhibitory synaptic currents,

Ie~
X
x,y,ts

He(x,y,ts)Ge(t{ts)(V{Ee), ð8Þ

Ii~
X
x,y,ts

Hi(x,y,ts)Gi(t{ts)(V{Ei), ð9Þ

were modeled with time-dependent post-synaptic conductances,

Ge(t) and Gi(t), with synaptic reversal potentials of Ee~0 mV and

Ei~{120 mV respectively. The Heaviside function, H(x,y,ts),
represents synaptic spike events at spatial position x,y which are

onset at time ts. Synaptic bombardment of the dendrite was

simulated by a Poisson process that was rate-modulated between 0

and 40 Hz according to the amplitude of a sinusoidal grating of

wavelength 300 mm that propagated at 6 mm/sec. The sinusoidal

grating represented background traveling wave activity which

oscillated at 20 Hz on average. Each synaptic spike (Poisson event)

produced an exponential rise-and-fall in the post-synaptic

conductance governed by

G(t)~gB(exp({t=t1){exp({t=t2)), ð10Þ

where g~ge and g~gi are the peak conductances of the

excitatory and inhibitory receptors and t1,t2 are exponential rise

and fall times. The time courses of the excitatory and inhibitory

synapses were identical. In both cases the peak synaptic

conductance occurs at at t~trise ln(t1=t2) where
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B~
1

(t2=t1)(trise=t1){(t2=t1)(trise=t2)
ð11Þ

and trise~t1t2=(t1{t2) are scaling constants [102]. See Table 1

for the full list of parameter values for the conductance model.

The spatial distributions of the excitatory and inhibitory

synapses (Figure 3A) were chosen to combine as the two-

dimensional Gabor filter,

J(x,y)~k exp({y2=(2s2
y))exp({x2=(2s2

x))cos(2pfx{d), ð12Þ

where sx~sy~120 mm dictates the width of the Gaussian

envelope and f ~1=300 cycles/mm is the frequency of the spatial

periodicity. The phase shift of the spatial periodicity was fixed at

d~0. These parameter values satisfy reasonable biological limits

and also match the the shape of Gabor filters observed in the

simple cells of visual cortex [19]. The peak density of the Gabor

function was scaled to k~0:2 synapses per m2. Doing so fixed the

ratios of the peak densities of the constituent inhibitory and

excitatory receptor distributions to within biologically plausible

ranges.

A wide range of excitatory and inhibitory density distributions

can be combined to satisfy the target Gabor filter (equation 12).

Specific solutions were obtained by nominating a Gaussian

distribution for one of the receptor populations and then solving

the density distribution of the other receptor population. That was

achieved in the Fourier domain by subtracting the frequency

response of the known receptor distribution from the frequency

response of the target Gabor filter. The inverse Fourier transform

converts that solution back to the spatial domain. In Figure 3A, the

distribution of the excitatory receptors was constrained to a

symmetric Gaussian distribution (sx~sy~120) with a peak

density of 0.4 synapses/mm2. In supplementary Figure S1, it was

the inhibitory distribution that was constrained to a Gaussian

(sx~sy~120) with a peak density of 0.3 synapses/mm2.

Each of the density distributions for the excitatory and

inhibitory receptor populations were then randomly sampled to

generate a set of receptor locations (x,y) within the dendritic field

(e.g., Figure 3C). The number of samples drawn from each

distribution was, by definition, equal to the volume circumscribed

by the density distribution. In all cases, the total number of

synapses in the receptor field fell within physiological estimates of

60,000 to 100,000 synapses per neuron [56–58]. The frequency

response of the combined receptor field (x,y) was computed by

convolving the excitatory receptor responses (+1) and the

inhibitory receptor responses (21) with the spatial grating over a

range of grating frequencies fx,fy[½{0:01,0:01� cycles/mm (e.g.,

Figure 3D).

Dendritic compartment phase-only model. In the phase-

only approximation of the dendritic compartment, the net synaptic

current flowing into the dendrite was conceptualized a weighted

sum of the cosine of the oscillator phases,

I(x,y)~

ð
R2

J(x{x’,y{y’)cos(hx’,y’)dx’dy’, ð13Þ

where cos(hx,y) approximates the oscillatory pre-synaptic input at

receptor location (x,y) and J(x,y) is the Gabor formulation

(equation 12) of the receptor field. All PTNs were assumed to have

identical receptor fields (Figures 4A and 4B) apart from rotation in

the x,y plane. The spatial frequency f ~0:065 (cycles/node) of the

Gabor filter was chosen to match the dominant spatial frequency

of the traveling waves produced by the cortical model. The width

of the Gaussian envelope was fixed at s2
x~s2

y~10:5 nodes. The

Gabor scaling parameter k~21 was chosen so that the receptor

field responds to its preferred cortical pattern with a maximal

dendritic current of I&1 nA. The phase shift d was only used to

construct the asymmetric Gabor filters shown in Figure 8. In all

other cases it was fixed at d~0.

Somatic compartment. The somatic compartment of the

PTN model was implemented using the conductance model of

Izhikevich and Edelman [61],

C
dV

dt
~k(V{Vrest)(V{Vthresh){UzI ð14Þ

dU

dt
~a(b(V{Vrest){U), ð15Þ

where V is membrane potential (mV), U is the recovery current

(pA) and I~I(x,y) is the dendritic current (pA). The soma is

considered to have spiked whenever V exceeds Vpeak. The reset

conditions V/c and U/Uzd are then applied. The parameters

of the Izhikevich and Edelman model [61] are described in

Table 2. The values of these parameters were tuned so that the

firing response to constant injection current (Figure 5C) closely

Table 1. Parameters of the dendritic conductance model.

Parameter Description

C = 80 Membrane capacitance (pF)

gl = 0.01 Net leak conductance (nS)

ge = 0.01 Conductance of each excitatory receptor (nS)

gi = 0.01 Conductance of each inhibitory receptor (nS)

El = 270 Reversal potential of the leak (mV)

Ee = 0 Reversal potential of the excitatory receptors (mV)

Ei = 2120 Reversal potential of the inhibitory receptors (mV)

t1 = 1.0 Rise time of the synaptic conductance (ms)

t2 = 0.2 Fall time of the synaptic conductance (ms)

dt = 0.1 Integration time step (msec)

doi:10.1371/journal.pcbi.1003260.t001

Table 2. Parameters of the PTN soma model.

Parameter Description

C = 80 Membrane capacitance (pF)

k = 4 Dimensionless parameter

Vrest = 270 Membrane resting potential (mV)

Vthresh = 250 Membrane threshold potential (mV)

Vpeak = 50 Membrane spike peak (mV)

a = 0.04 Dimensionless parameter

b = 10 Dimensionless parameter

c = 260 Membrane reset potential (mV)

d = 800 Recovery reset parameter (pA)

dt = 0.1 Integration time step (msec)

doi:10.1371/journal.pcbi.1003260.t002
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matched that of pyramidal cells observed in vivo [62] and in vitro

[63,64].

Motor neuron (MN)
To allow comparisons between our model of the descending

motor system and known physiological properties of spinal motor

neurons, we simulated a motor neuron pool that received

incoming spikes from n = 200 PTNs that were randomly

distributed on the model cortex. The motor neuron pool was

modeled as n = 100 leaky integrate-and-fire neurons with stochas-

tic membrane resets using the same method as [41]. The

membrane potential Vi of each MN was thus modeled as,

t
dVj

dt
~{gj(Vj{Ej)z

X
i

wijKi ð16Þ

where wij~f0,1g is an all-or-none connection from Betz cell i to

motor neuron j and Ki is the post-synaptic current generated by

the incoming spikes. The latter has exponential rise and fall,

Ki~V0

X
k

½exp(
tk{t

tfall

){exp(
tk{t

trise

)�, ð17Þ

where tk denotes the time of the kth spike and the t terms are time

constants. All other parameters are described in Table 3.

The connection weights wij were arranged so that each MN

received input from exactly 60 PTNs. These were randomly

assigned with the proviso that any two MNs would, on average,

share 30% of their inputs with a common set of PTNs [41,90].

Electromyograph (EMG)
The simulated EMG produced by the motor unit pool was

obtained by convolving the motor neuron output spikes with a

biologically realistic motor unit action potential (MUAP) and

summing the result across all motor neurons. The MUAP was

defined as

MUAP~
H(t), for 0vtƒd=2

{H({t), for d=2vtƒd

�
ð18Þ

where

H(t)~5 sin(
pt

d=2
) exp(

1

t
(

t

d=2
{1)), ð19Þ

is a conventional bi-phasic pulse with a time constant of

t~0:18 ms and duration of d~25 ms [90]. The amplitude of

the MUAP for each motor neuron was randomly scaled between 0

and 1 to reflect natural variation in size and location of muscle

fibers. Likewise, the polarity of the MUAP was inverted for

randomly selected motor neurons. See [41] for the benefits of

modeling heterogeneous motor action potentials.

Corticospinal coherence
Corticospinal coherence measures the degree by which oscilla-

tions in the EMG can be predicted by those in the LFP. It has

become an important tool in exploring corticospinal interactions

in motor control (see [72]). Weak but significant levels of

coherence between 0.01 and 0.1 are typically observed in the

beta bandwidth during steady hold tasks (e.g. [44]). We

approximated corticospinal coherence by the magnitude squared

coherence of the simulated LFP and EMG signals over a 30 sec

data window. The coherence spectra were computed using

Welch’s periodogram method with a Hamming window of

0.5 sec and 50% window overlap. The 95% confidence level for

the resulting coherence spectrum is (1{0:051=(N{1)) 11
9

~0:03

where N = 120 is the total number of data windows [103,104].

Both the EMG and coherence spectra were averaged over 100

repeat simulations to control for variation in the model parameters

and stochasticity in the motor neuron model.

Irregularity metric (IR)
The variability of inter-spike intervals was quantified using both

the conventional coefficient of variation (CV) metric and the

irregularity (IR) metric,

IR~
1

N{1

XN{1

i~1

Dlog(Iiz1=Ii)D, ð20Þ

proposed by Davies and colleagues [68]. The latter emphasizes

relative changes in consecutive inter-spike intervals (Ii,Iiz1) and is

more resistant to changes in firing rate than the coefficient of

variation. We sought similar levels of inter-spike irregularity

(IR<0.6) to those reported in the PTNs of monkey primary motor

cortex during a precision hold task [69].

Supporting Information

Figure S1 An alternative example of Gabor filtering by
dendritic receptor densities. All panels are the same as in

Figure 3 except in this case the inhibitory, rather than the

excitatory, receptor density distribution was nominated as

Gaussian (panel A). Consequently the receptor fields (panel C)

differ from that of Figure 3 but the frequency responses (panels B

and D) do not. Once again, the dendritic current is modulated by

the preferred wave pattern (panels E–F) but not the orthogonal

wave pattern (panels G–H). This alternative combination of

receptor densities provides another example of Gabor filtering.

(TIFF)
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Table 3. Parameters of the MN model.

Parameter Description

Vj Membrane potential (mV)

Ej = 27061 Equilibrium potential (mV)

gj = 160.167 Leakage conductance (pS)

wij Connection weight (0 or 1)

Ki Post-synaptic potential

V0 = 20 Post-synaptic scaling constant

t = 1063.33 Membrane time constant (ms)

trise = 1 Post-synaptic rise time (ms)

tfall = 3 Post-synaptic fall time (ms)

Parameter values marked with 6 are drawn from a normal distribution where
the error term indicates standard deviation.
doi:10.1371/journal.pcbi.1003260.t003
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