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A B S T R A C T   

Our goal was to understand the complex relationship between age, sex, midlife risk factors, and early white 
matter changes measured by diffusion tensor imaging (DTI) and their role in the evolution of longitudinal white 
matter hyperintensities (WMH). We identified 1564 participants (1396 cognitively unimpaired, 151 mild 
cognitive impairment and 17 dementia participants) with age ranges of 30–90 years from the population-based 
sample of Mayo Clinic Study of Aging. We used computational causal structure discovery and regression analyses 
to evaluate the predictors of WMH and DTI, and to ascertain the mediating effect of DTI on WMH. We further 
derived causal graphs to understand the complex interrelationships between midlife protective factors, vascular 
risk factors, diffusion changes, and WMH. Older age, female sex, and hypertension were associated with higher 
baseline and progression of WMH as well as DTI measures (P ≤ 0.003). The effects of hypertension and sex on 
WMH were partially mediated by microstructural changes measured on DTI. Higher midlife physical activity was 
predictive of lower WMH through a direct impact on better white matter tract integrity as well as an indirect 
effect through reducing the risk of hypertension by lowering BMI. This study identified key risks factors, early 
brain changes, and pathways that may lead to the evolution of WMH.   

1. Introduction 

Leukoaraiosis or white matter hyperintensities (WMH) are the 
hyperintense patches on T2-weighted or fluid attenuated inversion re-
covery (FLAIR) images. WMH are important because they are a common 
manifestation of cerebrovascular disease (CVD) and have a significant 
impact on motor and cognitive function (Whitman et al., 2001; Cees De 
Groot et al., 2000). They are also a predictor of increased risk of stroke 
and dementia (Debette and Markus, 2010). Older age and hypertension 
are the two well known risk factors associated with the development of 
WMH (Scharf et al., 2019; Habes et al., 2016; Gottesman et al., 2010; 
Godin et al., 2011). Recent studies show that females have higher WMH 
load suggesting that sex differences play a role in the evolution of WMH 
(Scharf et al., 2019; Fatemi et al., 2018). Even with vast literature on risk 
factors of WMH, a clear mechanistic understanding of the factors related 

to the evolution of WMH is still lacking. 
Emerging evidence shows significant microstructural changes on 

diffusion tensor imaging (DTI) even before the appearance of WMH 
(Maillard et al., 2013; Maniega et al., 2015). Given the heterogeneity in 
the formation of WMH, our first hypothesis was that measuring early 
diffusion changes will aid in predicting future formation of WMH 
beyond the classical risk factor - hypertension. Further, evaluating 
midlife risk factors in the context of early diffusion changes are likely to 
lead to a better understanding of the mechanisms. Therefore, our second 
hypothesis was that midlife risk factors have an impact on WMH through 
early diffusion changes and measuring these early diffusion changes will 
allow us to identify the pathways for prevention of WMH. 

Given these gaps in knowledge, our goal was to investigate the 
complex relationships between age, sex, midlife risk/protective factors, 
diffusion changes, and WMH. We evaluated this question using a large 
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dataset (n = 1564) of longitudinal multi-modal imaging data (WMH via 
FLAIR MRI and fractional anisotropy or FA from DTI MRI), clinical in-
formation (related to hypertension, dyslipidemia, and diabetes), and 
midlife risk factors (physical activity, cognitive activity, and smoking) 
from the population-based sample of Mayo Clinic Study of Aging 
(MCSA). In addition to traditional statistical regression models, we 
leveraged causal structure discovery (CSD) models to study the in-
teractions and pathways that lead to worsening WMH. The CSD methods 
have many strengths. As compared to traditional regression models for a 
specific outcome, they can model the complex (direct and indirect) re-
lationships among all variables at the same time. Given a set of as-
sumptions (Pearl, 2009), such as no unobserved confounders, the Causal 
Faithfulness condition, and the Causal Markov condition, the relation-
ships in the causal graph admit a ‘causal’ interpretation. As compared to 
traditional structural equation modeling and path analysis, the CSD 
methods are data driven and can incorporate existing knowledge 
regarding the domain of interest (Pearl, 2009). These discovered re-
lationships help investigate causal interpretations whereby manipu-
lating one variable can alter other variables. These models stand in 
contrast to models that investigate associative relationships and have 
demonstrated great success in many domains such as causal relation-
ships in anxiety disorder, image recognition, or climate prediction (Li 
et al., 2020; Anker et al., 2019; Ebert-Uphoff and Deng, 2012). 

2. Materials and methods 

2.1. Selection of participants 

Participants were selected from MCSA, an epidemiological sample of 
residents living in Olmsted County, Minnesota. Olmsted county popu-
lation was enumerated in the Rochester Epidemiology Project (REP) 
medical records-linkage system (Rocca et al., 2012; St Sauver et al., 
2012). The details of the study design were published elsewhere (Rob-
erts et al., 2008; Petersen et al., 2010). The inclusion criteria were 
cognitively unimpaired elderly with an age range of 30–90 years with 
usable 3 T FLAIR MRI, DTI, and cardiovascular and metabolic risk factor 
information. 

Standard protocol approvals, registrations, and patient consents: 
The study was approved by the Mayo Clinic and Olmsted Medical Center 
institutional review boards and written informed consent was obtained 
from all participants. 

2.2. Imaging 

2.2.1. Assessment of WMH on FLAIR scans 
All MRI images were acquired from 3 T MRI systems (GE Health-

care). Both 3D MPRAGE and 2D FLAIR image were used to calculate 
WMH volume. The acquisition and analysis of the FLAIR images were 
described previously (Graff-Radford et al., 2019). In brief, the possible 
WMH voxels on FLAIR images were identified initially through clus-
tering via connected components . We then masked the FLAIR images 
using white matter (WM) masks derived from 3D MPRAGE segmenta-
tion to exclude the false-positive WMH voxels. These masks were edited 
by a trained analysts to remove non-WMH voxels. 

2.2.2. DTI 
The DTI acquisition protocol used a single-shot echo-planar imaging 

sequence with an isotropic resolution of 2.7 mm, 5 non diffusion- 
weighted images, and 41b = 1000 s/mm2 diffusion-encoding gradient 
directions spread over the whole sphere. The data were preprocessed by 
skull stripping (Reid and Schwarz, 2018), denoising (Veraart et al., 
2016), correcting for head motion and eddy current distortion (Ander-
sson et al., 2016), Gibbs ringing (Kellner et al., 2016), and then 
debiasing (Koay et al., 2009). Diffusion tensors were then fit using a 
nonlinear least squares fitting algorithm implemented in dipy, (Gar-
yfallidis et al., 2014) and then FA maps were generated. ANTs 

(Advanced normalization tools symmetric normalization) (Avants et al., 
2011) was used to nonlinearly register each participant’s FA image to 
the in-house- version of John’s Hopkins University “Eve” WM atlas 
(Oishi et al., 2009), and then regional FA measures were computed. FA 
measures were computed for 12 WM tracts including genu of the corpus 
callosum, splenium of the corpus callosum, body of the corpus callosum, 
parahippocampal cingulum, cingulum, inferior temporal WM, superior 
longitudinal fasciculus, corticospinal tract, anterior limb of the internal 
capsule, posterior limb of the internal capsule, inferior fronto-occipital 
fasciculus, and uncinate fasciculus. 

Quality assessment was performed by the visual inspection of each 
participant’s DTI image acquisition (both raw images and DTI based FA/ 
MD images) and registration of the JHU atlas to the images. In those who 
had potentially usable data, we found that a small percentage (0.28%) of 
corresponding DTI scans failed quality control based on visual inspec-
tion of the DTI image acquisition and processing, and those scans were 
not used. Separately from QC, the FA and MD values were characterized 
using the median of voxel values within each JHU region of interest. The 
median was used to reduce the partial volume contamination from the 
edge voxels of each region. We also excluded the voxels with MD > 2 ×
10–3 or < 7 × 10–5 mm2/s as they were mostly cerebrospinal fluid or air, 
respectively. Moreover, we excluded the smallest JHU regions (cuneus 
WM, fusiform WM, lingual WM, and precuneus WM, all typically < 7 
diffusion voxels) as they were too small for reliable registration onto the 
corresponding subject structure, and liable to be dominated by edge 
voxels. 

2.2.3. Assessment of cardiovascular and metabolic risk factors 
The medical history of the participants was obtained from a combi-

nation of in person clinical visit or the REP medical record linkage 
system. We obtained the body mass index (BMI, kg/m2), metabolic 
syndromes such as low-density lipoprotein (LDL), high density lipo-
protein (HDL), triglycerides, systolic and diastolic blood pressure (SBP 
≥ 140 mmHg and DBP ≥ 90 mmHg), and total cholesterol from REP. We 
also utilized nurse abstracted data from MCSA on the history of vascular 
risk factors including type 2 diabetes mellitus, hypertension, and dys-
lipidemia (Roberts et al., 2014). In addition, we utilized smoking status 
ascertained at the time of the clinical visit (never, current, and former). 
We estimated midlife physical and cognitive activity summary scores 
from questionnaires that were published previously (Vemuri et al., 
2012) which summarizes engagement in several physical and cognitive 
activities. 

2.3. Statistical analyses 

All statistical analyses were conducted using R (v.4.0.0) and we used 
R package rcausal (v.1.1.1) for causal discovery. Characteristics of the 
participants were summarized as mean (standard deviation) for the 
continuous variables, and count (%) for the categorical variables strat-
ified by age groups. The differences between age groups were compared 
using ANOVA and χ2 test for continuous and categorical variables, 
respectively. We computed total intracranial volume using an in-house 
modified SPM software implementation and used WMH as a percent-
age of total intracranial volume (dividing by the total intracranial vol-
ume). Dividing by total intracranial volume accounts for differences in 
head size and is common practice in the field (Wardlaw et al., 2017). 
WMH was log-transformed for normality. 

Risk factors associated with baseline WMH and its progression. To 
analyze the risk factors of WMH and WM health at baseline, we used 
stepwise linear regression to select predictors from cardiometabolic, 
clinical, and demographics risk factors. We excluded HbA1c because of 
missingness. Samples with missing data elements were removed from 
the study. Longitudinal WMH scans were measured cross sectionally and 
used as the measurement for WMH progression. We showed the scat-
terplot of WMH and age, as well as the boxplots of WMH for (i) patients 
with and without hypertension and (ii) male and female patients across 
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the five age groups. An unpaired t-test was used to test the WMH dif-
ferences between the presence and absence of hypertension (and male 
and female sex) within each age group. To quantify the effect of age, sex, 
and hypertension on baseline WMH, an ordinary least squares multiple 
regression model was constructed regressing the WMH on age, sex, and 
hypertension status. For the longitudinal analysis, we modeled the WMH 
progression using linear mixed effect models (R package lmerTest, lme4) 
while controlling the same set of variables as in the baseline analysis. 
Participants with only the baseline visit were removed from this part of 
the analysis. 

Risk factors associated with baseline WM health measured by DTI and its 
progression. We conducted the same set of analyses for WM health as we 
did for WMH. 

Mediation effect of WM health on WMH. We first showed the scatter-
plot of WM health and WMH. We then applied mediation analysis to 
study the mediation effect of WM health on WMH. The steps of the 
mediation analysis can be found here (VanderWeele, 2016). We fitted 
two regression models to log-transformed WMH while controlling for 
the direct causes of WMH and WM. One model included WM health, and 
one model did not. All variables were z -transformed, so that the stan-
dardized effect sizes can be compared across models. 

Effect of midlife cardiovascular risk factors on WMH and WM health 
(pathway to potentially preventing progression of WMH). To study the ef-
fect of intervention on WMH, we added three midlife modifiers (midlife 
physical activity, midlife cognitive activity, and up-to-midlife smoking 
status) to the models. Statistically significant (P < 0.05) midlife modi-
fiers were kept in the model. To further explore the causal relationships 
between WMH and its potential midlife modifiers, we applied a CSD 
algorithm (Spirtes et al., 2000; Glymour et al., 2019), Fast Greedy 
Equivalence Search (Ramsey et al., 2017) (FGES) with Fisher-z score and 
alpha 0.01, to generate the causal graph underlying the relationships. 
We ran 100 bootstrap iterations on the cohort and extracted relation-
ships that appeared in more than half of the iterations. 

3. Results 

We included 1564 participants, 1396 cognitively normal, 151 with 
mild cognitive impairment and 17 with dementia from the population- 
based sample of Mayo Clinic Study of Aging (MCSA). The de-
mographics, clinical, late-life vascular risk factors, midlife risk factors, 
and imaging biomarkers of the participants by decade (30–49, 50–59, 
60–69, 70–79, and 80–89) are shown in Table 1. 54%, 51%, 50%, 52%, 
and 58% of participants were male in the age range of 30–49, 50–59, 
60–69, 70–79, 80–89, respectively. There were 10%, 31%, 53%, 67%, 
and 82% hypertensive participants across the age groups as expected. 
All the late-life chronic condition measurements and midlife risk factors 
were significantly different between the age groups (P < 0.007 andP <
0.001 respectively). The percentage of participants diagnosed with 
diabetes, hypertension, and dyslipidemia increased as the baseline age 
increased; in the age group 80–89, there were 19%, 82%, and 86% of 
participants with these diagnoses, respectively. Six hundred and thirty- 
one (40.3%) participants had more than one scan and the rest of them 
only had baseline imaging data available. To make use of all the avail-
able data, we conducted analyses on both the cross-sectional and lon-
gitudinal data. 

3.1. Risk factors associated with baseline WMH and its progression 

The overall distribution of log-transformed WMH by age is shown in 
the left panel, Fig. 1A. Starting from age 50, the WMH increases linearly 
as age increases. The right panel (Fig. 1B and 1C) shows the difference in 
WMH between males and females, and between participants with and 
without hypertension (normotensive). Student t-tests were conducted to 
test the within-group differences as shown at the top of each boxplot. 
WMH significantly differed by sex in late-life (P ≤ 0.005 in 60–70, 
70–80, and 80–90 years of age). There were significant differences in 

Table 1 
Participants baseline characteristics. Mean (SD) and Count (%) for continuous 
and categorical variables, respectively.   

30–49, 
n = 59 

50–59, 
n = 262 

60–69, 
n = 540 

70–79, 
n = 407 

80–89, 
n = 296 

P value 

Demographics & APOE 
Age 40.02 

(5.24) 
54.64 
(2.46) 

64.59 
(2.84) 

74.51 
(2.91) 

83.52 
(2.94)  

Male 32 
(54%) 

133 
(51%) 

272 
(50%) 

212 
(52%) 

171 
(58%)  

0.32 

APOE e4 14 
(24%) 

79 
(30%) 

154 
(29%) 

124 
(30%) 

78 
(26%)  

0.661 

BMI 28.31 
(5.87) 

29.21 
(5.4) 

29.49 
(5.43) 

28.21 
(4.47) 

26.98 
(4.2)  

<0.001 

Laboratory results 
LDL 102.42 

(31.32) 
109.13 
(30.92) 

103.76 
(29.77) 

97.3 
(29.03) 

90.89 
(27.32)  

<0.001 

HDL 55.08 
(18.03) 

55.64 
(17.85) 

55.49 
(17.05) 

55.76 
(17.36) 

55.09 
(16.51)  

0.991 

Triglycerides 119.56 
(70.17) 

128.87 
(65.16) 

130.76 
(62.01) 

125.95 
(59.16) 

123.17 
(53.95)  

0.425 

Total 
cholesterol 

181.42 
(40.46) 

190.57 
(33.87) 

185.42 
(35.61) 

178.26 
(36.32) 

170.6 
(33.89)  

<0.001 

HbA1c 5.87 
(1.32) 

6.04 
(1.12) 

5.93(1) 5.95 
(0.79) 

5.97 
(0.76)  

0.912 

SBP 126.19 
(15.02) 

131.48 
(16) 

139.13 
(18.45) 

141.15 
(18.5) 

142.49 
(20.13)  

<0.001 

DBP 78.42 
(10.96) 

79.16 
(9.34) 

78.2 
(9.98) 

74.14 
(10.05) 

71.12 
(10.86)  

<0.001 

Current Clinical Diagnosis 
Cognitively 

Impaired 
2(3%) 7(3%) 29(5%) 62 

(15%) 
68 
(23%)  

<0.001 

Diabetes 3(5%) 31 
(12%) 

73 
(14%) 

74 
(18%) 

56 
(19%)  

0.007 

Hypertension 6(10%) 82 
(31%) 

285 
(53%) 

273 
(67%) 

244 
(82%)  

<0.001 

Dyslipidemia 20 
(34%) 

169 
(65%) 

424 
(79%) 

332 
(82%) 

254 
(86%)  

<0.001 

Midlife risk factors 
Midlife 

physical 
activity 

8.27 
(3.55) 

7.39 
(3.66) 

9.1 
(4.43) 

9.11 
(4.27) 

9.15 
(4.66)  

<0.001 

Midlife 
cognitive 
activity 

17.07 
(6.59) 

20.29 
(8.27) 

18.62 
(9.22) 

20.94 
(8.61) 

20.87 
(9.49)  

<0.001 

Smoking 
status 

21 
(36%) 

92 
(35%) 

246 
(46%) 

205 
(50%) 

119 
(40%)  

<0.001 

MRI & DTI 
Abnormal 

WMH 
0(0%) 0(0%) 24(4%) 65 

(16%) 
110 
(37%)  

<0.001 

Baseline 
WMH 

0.18 
(0.09) 

0.31 
(0.22) 

0.56 
(0.61) 

1.02 
(0.79) 

1.74 
(1.35)  

<0.001 

Genu of the 
corpus 
callosum FA 

0.64 
(0.04) 

0.63 
(0.04) 

0.61 
(0.04) 

0.59 
(0.05) 

0.56 
(0.05)  

<0.001 

Splenium of 
the corpus 
callosum FA 

0.69 
(0.03) 

0.69 
(0.03) 

0.69 
(0.04) 

0.68 
(0.04) 

0.66 
(0.05)  

<0.001 

Body of 
corpus 
callosum FA 

0.62 
(0.03) 

0.61 
(0.04) 

0.6 
(0.04) 

0.59 
(0.04) 

0.56 
(0.05)  

<0.001 

Anterior limb 
of the 
internal 
capsule FA 

0.59 
(0.03) 

0.59 
(0.03) 

0.59 
(0.03) 

0.57 
(0.04) 

0.56 
(0.04)  

<0.001 

Scan statistics 
Scan Interval, 

years  
1.25 
(0.44) 

1.31 
(0.45) 

1.73 
(0.77) 

1.78 
(0.87)  

Participants 
with 2 
Scans 

0(0%) 70 
(27%) 

200 
(37%) 

129 
(32%) 

80 
(27%)  

Participants 
with 3 
Scans 

0(0%) 11(4%) 43(8%) 62 
(15%) 

36 
(12%)  

The final samples shown in the table are the total samples utilized. Abbrevia-
tions: APOE e4: Apolipoprotein E epsilon 4; BMI: body mass index; HDL: high 
density lipoprotein; LDL: low density lipoprotein; SBP: systolic blood pressure; 
DBP: diastolic blood pressure; HbA1c: glycated hemoglobin. 
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WMH between hypertensive and normotensive participants for ages 
60–70 and 70–80 (P < 0.01). 

In WMH models with all vascular risk factors including laboratory 
results shown in Table 1 as predictors, only presence of hypertension, 
increasing age, and female sex were significantly associated with both 
baseline and progression of WMH. The final models are shown in the 
regression models #1 & #2 (P < 0.001, Table 2). Neither diabetes nor 
hyperlipidemia showed a significant association with baseline WMH or 
WMH progression after adjusting for age, sex, and hypertension. 

3.2. Risk factors associated with baseline diffusion changes measured by 
DTI and its progression 

We originally considered 12 WM tracts to measure WM health and to 
evaluate their usefulness in predicting WMH. Because FA of all the WM 
tracts are highly correlated, we considered FA of the genu of the corpus 
callosum (Genu-FA) which consists of thin fibers in the anterior part of 
the corpus callosum and has greater vulnerability to aging and neuro-
vascular damage (Wassenaar et al., 2019). Previous data supports the 
use of Genu-FA as an important marker of cerebrovascular disease 
(Vemuri et al., 2018; Raghavan et al., 2020). We also considered three 
other tracts that were also predictive of WMH for comparison - FA of the 
splenium of the corpus callosum (Splenium-FA), FA of the body of the 
corpus callosum (Body-FA), and FA of the anterior limb of the internal 
capsule (ALIC-FA) as presented in Supplement material, section 3 
sensitivity analysis. 

In a model with Genu-FA as an outcome and vascular risk factors as 
predictors, only age, sex, and hypertension were associated with Genu- 
FA. As shown in Fig. 2A, Genu-FA decreases as age increases. Genu-FA 
significantly differed by sex in late-life with most significant findings 
in the 60–69 (P < 0.001), and 80–89 (P = 0.007) age groups (Fig. 2B). 
There were significant differences in Genu-FA between hypertensive and 
normotensive participants for all ages across late-life (P ≤ 0.006) 
(Fig. 2C). Predictions of baseline and progressive WM integrity through 
Genu-FA are shown in Models #3 & #4 in Table 2. Older age, female sex, 
and hypertension were significantly associated with lower baseline and 
longitudinal Genu-FA in both models (P < 0.001, P≤0.003 respectively). 

3.3. Genu-FA mediates the effect of hypertension and male sex on WMH 

When we looked at the relationship between WMH and Genu-FA as 
illustrated in the scatterplot of Fig. 3A, we found high correlation be-
tween the two variables that increased with age. To further investigate 
the relationship between Genu-FA and WMH, we built two standardized 
regression models of WMH, controlling for age, sex, hypertension. In 

Fig. 1. Association between baseline WMH with (A) age, (B) sex, and (C) hypertension.  

Table 2 
Results from two regression (baseline) and two mixed models (progression) on 
WMH and WM health, Genu-FA.  

Model 
# 

Outcome Predictors Estimated 
effect size 

SE P value 

# 1 Baseline WMH Age  0.053  0.002  <0.001   
Male  − 0.183  0.033  <0.001   
HTN  0.172  0.037  <0.001 

# 2 WMH 
progression 

Age  0.060  0.003  <0.001   

Male  − 0.207  0.049  <0.001   
HTN  0.194  0.053  <0.001 

# 3 Baseline Genu- 
FA 

Age  − 0.002  0.0001  <0.001   

Male  0.012  0.0022  <0.001   
HTN  − 0.010  0.0024  <0.001 

# 4 Genu-FA 
progression 

Age  − 0.002  0.0002  <0.001   

Male  0.013  0.0034  0.001   
HTN  − 0.011  0.0036  0.003 

WMH measurements are log-transformed. Higher WMH and lower Genu-FA 
represent poor brain health. HTN: Hypertension. Other potential variables 
were dropped out from the stepwise regression. 1564 participants are included 
in baseline analysis where 1396 are cognitively normal; 740 participants are 
included in the progression analysis, where 632 are cognitively normal. 
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model #5, we included Genu-FA but did not include in model #6 (Table 3). Our goal with this comparison was to understand the differ-
ences in standardized effect sizes between the two models. In model #5 
from Table 3, Genu-FA was significantly associated with WMH (β =
-0.29, P<0.0001). Compared to model #6, where Genu-FA was not 
included, the effect size from male sex and hypertension both dropped 
by approximately 40% (β = -0.1, 0.09 to − 0.06, 0.06). This mediation 
analysis demonstrated that the effect of sex and hypertension was 
mediated by Genu-FA. The above conclusion was also confirmed in 
longitudinal analysis (Supplementary Table S1). 

Fig. 3B shows the causal structure among the risk factors and WMH 
discovered by the CSD algorithm. A directed edge between two variables 
indicates a direct causal relationship. The relationships in the discovered 
graph are consistent with our previous finding as well as the mediation 
analysis. 

Fig. 2. Association between baseline WM health measured by Genu-FA with (A) age, (B) sex, and (C) hypertension.  

Fig. 3. A Relationship between baseline WMH and baseline Genu-FA in the pre-defined age groups. B shows the estimated local causal structure among age, sex, 
hypertension, WM health, and WMH, generated by the CSD algorithm. 

Table 3 
Results from two standardized regression models on WMH with and without 
controlling for WM health, Genu-FA.  

Model 
# 

Outcome Predictors Standardized effect 
size 

SE P value 

# 5 Baseline 
WMH 

Genu-FA  − 0.29  0.020  <0.0001   

Age  0.52  0.020  <0.0001   
Male  − 0.06  0.017  0.0003   
HTN  0.06  0.018  0.0004 

# 6 Baseline 
WMH 

Age  0.65  0.019  <0.0001   

Male  − 0.10  0.018  <0.0001   
HTN  0.09  0.019  <0.0001 

WMH measurements are log transformed before the standardized regression 
models. 
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3.4. Identifying factors related to the evolution of white matter 
hyperintensities 

Based on previous findings, we studied the relationship between 
midlife risk factors and WMH. We included three midlife indicators, 
midlife cognitive activity, midlife physical activity, and smoking status. 
Table S2 shows that smoking status was strongly correlated with WMH 
(β = 0.05, P=0.0046), and midlife physical activity was significantly 
associated with WM health (Genu-FA) (β = 0.06, P<0.008) after 
adjusting for other predictors. 

To study the effects of risk and protective factors on WMH, causal 
relationships, not merely associations, are needed. Therefore, we 
applied the CSD algorithm to all the sets of predictor variables. On the 
basis of the Fast Greedy Equivalence Search (Ramsey et al., 2017) 
(FGES), the causal structure discovered by the CSD algorithm is shown 
in Fig. 4. The complex relationships were described in one graph where 
an edge implies a direct causal effect. We then fitted multiple regression 
models to estimate the effect sizes for each edge. 

While older age had an impact on all variables, male sex was asso-
ciated with higher frequency of smokers, less cognitive activity, higher 
Genu-FA, and lower WMH. Physical and cognitive activity were highly 
correlated; there might exist other unobserved variables that are com-
mon between the two variables. Smoking (ever/never, measured up to 
midlife) was associated with greater later life WMH load, as has been 
observed in many other studies. The associations between hypertension 
and WM health/WMH that have been described in previous sections are 
also shown as a direct relationship in the graph. A key finding from the 
CSD graph was that greater physical activity in midlife was associated 
with healthier WM outcomes (mainly higher Genu-FA). The effect of 
greater physical activity had two pathways to better WM outcomes – 1) 
higher midlife physical activity was associated with higher Genu-FA 
(directly) and with lower WMH (through its effect on Genu-FA); 2) 
lower midlife physical activity was associated with higher BMI and 
higher BMI was associated with higher frequency of hypertension at the 
time of the scan which in turn contributed to lower WM health (lower 
Genu-FA and higher WMH). 

The sex specific observations were interesting. Male sex was associ-
ated with higher frequency of smokers and had an impact on WM health 
through 1) direct impact on WMH and 2) through higher BMI contrib-
uting to greater frequency of hypertension. However, males in general 

had better WM outcomes as also confirmed by regression models sug-
gesting that the net impact of male sex on WM outcomes was positive. 
While most of the relationships in the graph detected were plausible, 
there was one suggested relationship between higher cognitive activity 
and higher BMI that was not intuitive and should be interpreted with 
caution. Additional longitudinal data in future studies will be able to 
discern the relationship between physical activity, cognitive activity, 
and BMI which are highly inter-related and complex. 

4. Discussion 

In this large dataset of multi-modal imaging and clinical information, 
we investigated the relationships among WM health, WMH, and their 
risk factors. The major conclusion of the study was to identify pathways, 
particularly measuring early brain changes, to prevent WMH. Specif-
ically, our main findings were: i) the effect of older age, hypertension, 
and female sex on greater WMH were mediated by diffusion changes 
seen on DTI; ii) midlife physical activity can aid in maintaining better 
microstructural health (and lower WMH) directly as well as indirectly 
through reduction of BMI which is associated with lower frequency of 
hypertension; iii) measuring Genu-FA can aid in prediction of WMH 
trajectories in the population; iv) further, the causal modeling of com-
plex relationships identified key pathways related to the evolution of 
WMH. 

4.1. Diffusion changes predictive of WMH trajectories 

It has been widely shown that hypertension impacts WMH (Lane 
et al., 2019; Guo et al., 2009; Cox et al., 2019), and there is also 
emerging evidence that vascular risk factors are associated with WM 
damage (Wassenaar et al., 2019; Maillard et al., 2015; Hannawi et al., 
2018). Our results from models 1 and 3 (Table 2) provide further evi-
dence for the association between hypertension and WMH and its rela-
tionship with frontal WM (lower Genu-FA). Consistent with our findings, 
previous studies have reported associations of hypertension with lower 
FA in the genu of corpus callosum (de Groot et al., 2016; Pantoni, 2010). 
However, the actual mechanism underlying the association between 
hypertension and WM health is more complex and not clearly under-
stood. Hypertension may cause vascular impairment leading to vascular 
remodeling and reduced vascular reserve, which may cause 

Fig. 4. The causal structure graph discovered using the CSD algorithm. The estimated standardized coefficients were labeled next to each edge.  
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arteriosclerosis, microatheroma, and microaneurysms. These processes 
result in reductions of blood flow, which can in turn cause myelin 
damage and gliosis (Wardlaw et al., 2013; Young et al., 2008) and the 
pathologies often observed as WMH on MRI (Arfanakis et al., 2020; 
Gyanwali et al., 2019). Our data also extends the past research from our 
group and others, showing that hypertension accelerated the progres-
sion of WMH (Lane et al., 2019; Lai et al., 2020; van Leijsen et al., 2018). 
In additional analyses, we observed that the impact of vascular health on 
WMH were mediated by WM health. Although hypertension was useful 
for prediction of future progression of WMH, WM microstructural 
integrity provides more information which is likely applicable earlier 
than WMH. Our findings are consistent with prior evidence showed that 
information captured by lower microstructural integrity was an inde-
pendent predictor of conversion of normal appearing WM to WMH 
(Maillard et al., 2013; Khan et al., 2021; Vangberg et al., 2019; Vemuri 
et al., 2021). Furthermore, a previous study demonstrated distinct WM 
microstructural patterns with increasing WMH load even before the 
formation of lesions and pleiotropic effects, suggesting WM changes as 
the early measure of WMH (Alqarni et al., 2021). Previous longitudinal 
studies also have shown that microstructural WM alterations measured 
by FA and MD are correlated with future WMH (Cees De Groot et al., 
2000; Maillard et al., 2013). More recently, we also found a stronger 
association between Genu-FA and WMH that lend support of the frontal 
WM damage due to systemic vascular health prior to WMH (Sachdev 
et al., 2009). However, there was no established link for a mediating 
effect of Genu-FA on WMH that makes these study findings more unique. 
This new finding might indicate the importance of targeting early 
changes in WM as a predictor of future changes of WMH in middle-aged 
and older adults. These findings also support the usefulness of DTI in 
clinical prevention trials targeting modifiable vascular risk factors and 
the reduction of WMH. 

4.2. Sex differences in WM health 

The current study also showed a sex-specific association with 
microstructural integrity of WM and found a greater vulnerability in 
females with greater baseline WMH burden and progressive WMH. 
These findings extend our past research (Fatemi et al., 2018; Lane et al., 
2019) and several others (van den Heuvel et al., 2004; Sachdev et al., 
2016; Miller et al., 2013), suggesting that sex is an important factor 
contributing to WMH. The possible explanations include genetic and 
hormonal factors, sexual dimorphism in WM microstructure, and their 
influence on CVD. A higher genetic heritability of WMH has been shown 
in women compared to men (Miller et al., 2020). The major hormonal 
changes in women are associated with pregnancy and menopause. 
Studies have suggested the link between hypertensive pregnancy dis-
orders such as preeclampsia and WMH (Cook et al., 2002; Liu et al., 
2009). It is also possible that reduction in estrogen after menopause may 
have an influence and suggested that hormone replacement therapy 
might protect the WM integrity (Liu et al., 2009; Jayachandran et al., 
2020; Zeydan et al., 2019). However, a recent study in women of the 
Kronos Early Estrogen Prevention Study failed to reveal any significant 
association of menopausal hormone treatments with WMH (Coutinho, 
2014). Although studies often considered a possible association of 
bilateral oophorectomy with WMH formation and progression (Cook 
et al., 2002), no significant evidence is available yet (Sullivan et al., 
2010). Evidence also suggested that a higher frequency of arterial 
stiffness in women might lead to increased WMH burden through ce-
rebrovascular remodeling (Westerhausen et al., 2003). 

Interestingly, the male effect on WMH was mediated through better 
WM health, suggesting that organization of WM fiber tracts are rela-
tively preserved in men. The mediating effect of higher Genu-FA 
contributing to lower WMH in men has not been reported previously, 
to our knowledge. However, prior studies of the corpus callosum 
revealed inconsistent findings in association with sex in which some 
reported higher FA in men (Kanaan et al., 2012; Oh et al., 2007), others 

found higher FA in women (Nuñez et al., 2000; Cerghet et al., 2006). 
Animal studies have shown that there is a greater proportion (and area) 
of myelinated fibers in males than females in the corpus callosum 
(Debette et al., 2011), which could explain greater white matter reserve 
in men to ongoing damage. Another possible mechanism may be the 
different protein composition in myelin sheaths and the greater turnover 
of oligodendrocytes observed in females (Durhan et al., 2016). Further 
research is warranted to investigate the sexual dimorphism of WM 
health and WMH. 

4.3. Factors driving WM changes 

The local relationships between midlife modifiers and WM mea-
surements extracted from Fig. 4 are shown in Fig. 5. Consistent with 
previous findings (Gray et al., 2020; Fleischman et al., 2015), we found 
smoking is associated with WMH which were confirmed by both the 
regression and CSD analyses. These associations between cigarette 
exposure and WMH were also well established in two large samples from 
the UK Biobank (Maillard et al., 2015; Vesperman et al., 2018). Our 
findings further provide evidence for an association between smoking 
effects and poorer WM integrity. As expected, there was an association 
between smoking and lower Genu-FA, these anterior fibers are most 
susceptible to normal and neurovascular aging (Wassenaar et al., 2019; 
Maillard et al., 2015). In addition, midlife physical activity showed an 
indirect association with WMH through the path of WM health. There 
are also reports on the short and long term effects of physical activity on 
brain health. Evidence suggests that higher levels of physical activity 
attenuate the amount of WMH in middle aged and older adults (Palta 
et al., 2021; Tarumi et al., 2021). A recent study from Atherosclerosis 
Risk in Communities (ARIC) suggests that greater levels of midlife and 
late-life physical activity may reduce cerebrovascular lesions in late-life 
(Wartolowska and Webb, 2021) and hence aid in preventing cognitive 
decline. Although, there is very little evidence on the effect of midlife 
physical activity on midlife WM integrity, a more recent study suggests 
that midlife aerobic exercise may prevent or slow down the detrimental 
age-related WM fiber integrity degradation (Garnier-Crussard et al., 
2020). They also demonstrated greater FA in the genu, superior longi-
tudinal fasciculus, and uncinate fasciculus in middle aged aerobically 
trained adults compared to middle aged sedentary. 

It is also well known that hypertension affects WMH (Lane et al., 
2019; van Leijsen et al., 2018; Lampe et al., 2019; Griffanti et al., 2018), 
however, the indirect pathway through BMI was not established before. 
Interestingly, BMI association with WMH has been reported (Griffanti 
et al., 2018; Lampe et al., 2019), with higher volumes in women, 
especially in the deep WMH (van den Heuvel et al., 2004). In the present 
work, using a causal model, without any prior information, the model 
identified an indirect relationship with WMH. Further investigations are 
needed to confirm this hypothesized mechanism and better establish the 
interrelationships. Altogether, our data revealed the neuroprotective 
mechanism by which better midlife physical and cognitive activity and 
not smoking may protect against cerebrovascular sequelae. Further, we 
provided evidence that DTI based measures may be appropriate as 
surrogate measures of WMH for clinical trials targeting vascular risk 
factors. 

While studying the midlife modifiers of WMH, we implemented 
causal structure discovery to generate the causal graph among risk 
factors and WMH. The discovered graph was then compared with the 
results from traditional statistical analyses. The workflow that 
embedded CSD method provides benefits in the following ways: (1) 
Under a set of assumptions, the relationships discovered from CSD 
methods have a causal interpretation. For example, a causal relationship 
from X to Y has the interpretation that changes in X lead to changes in Y. 
We also note that these causal conclusions are potential hypotheses that 
still need to be validated with further experiments; (2) When the goal of 
the study is not merely predicting the outcome, knowing the structure 
among risk factors helps understand the underlying biological 
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mechanism with reasonably high accuracy (Shen et al., 2020); (3) In our 
current workflow, the CSD model was mainly used for validating the 
conclusion from well-established traditional methods. However, it can 
also be used for hypothesis generation. We can design the regression 
analyses based on the causal graph obtained through CSD methods. The 
workflow of how the CSD model was used may change the way of 
investigating the relationship between risk factors and targets of in-
terests. The goal of the study is not to study all variables that influence 
WM outcomes. In our study, the framework is focused on finding early 
brain measures and early (risk and protective) factors that influence 
WMH trajectories. We tested this framework by modeling brain mea-
sures as outcomes (i.e. WMH and DTI) using regression models and also 
modeled the complex relationships using CSD with all factors in a single 
model. Our goal was to generate test hypotheses but not design treat-
ment trials. Given the large number of variables, causal analysis can be 
leveraged to identify critical variables for further rigorous investigation. 
The method allows identification of key variables that can be potentially 
targeted for treatment trials. 

4.4. Strengths and Limitations 

The study has several strengths. First, the availability of large data 
set with diffusion, FLAIR, and T1 weighted MRI across the adult lifespan 
enabled us to study their complex causal relationship. Second, the in-
formation on the vascular risk factors based on their medical records 
through REP was crucial, although none of laboratory values showed 
significance. The third strength was the newly implemented workflow, 
which by combining the CSD methods with regression analysis, may 
improve the design of prevention trials. 

The study also has some limitations. First, although we considered 
the longitudinal aspect, only 10 percent of participants had 3 or more 
observations, and more than half of participants have one available visit. 
To make use of all available data, we conducted pairs of analyses, one 
regression analysis for baseline observations, and one mixed effect 
analysis for longitudinal data. Ideally, longitudinal data can provide 
more knowledge when studying the mixed effect, and we have shown 
before that the temporal information naturally provided by the longi-
tudinal data also helps the CSD method to achieve higher accuracy[84]. 
Second, we only considered the global measure of WMH and did not 
consider regional variability. Third, relatively shorter longitudinal 
observation intervals. Fourth, though we did extensive bootstrapping to 

confirm our study findings, we acknowledge that the uniqueness of this 
dataset with extensive clinical and imaging data limits our ability to 
replicate this in an independent dataset. Fourth, a possible limitation 
may be that many laboratory values were under control by medications, 
so they are likely to become less predictive compared with the disease 
diagnosis code. Fifth, the smaller sample size in the cognitively impaired 
participants reflects the population-based sample. In the future, we 
would be able to extend the study to a large sample to investigate the 
complex interplay between regional measures of WM health and WMH. 

5. Conclusions 

The present study demonstrated a significant age, sex, and hyper-
tension association with WMH. The relationship between vascular fac-
tors and WMH can be better explained by early changes in WM 
microstructural integrity. The midlife modifiers emerged as important 
components of WM health. Hence midlife may be the relevant window 
for prevention of late-life WMHs and measuring microstructural integ-
rity using DTI can aid in better design and monitoring of prevention 
trials. 
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