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Abstract: We present a deep learning solution to the problem of localization of magnetoencephalogra-
phy (MEG) brain signals. The proposed deep model architectures are tuned to single and multiple time
point MEG data, and can estimate varying numbers of dipole sources. Results from simulated MEG
data on the cortical surface of a real human subject demonstrated improvements against the popular
RAP-MUSIC localization algorithm in specific scenarios with varying SNR levels, inter-source correla-
tion values, and number of sources. Importantly, the deep learning models had robust performance
to forward model errors resulting from head translation and rotation and a significant reduction in
computation time, to a fraction of 1 ms, paving the way to real-time MEG source localization.
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1. Introduction

Accurate localization of functional brain activity holds promise to enable novel treatments
and assistive technologies that are in critical need by our aging society. The ageing of the world
population has increased the prevalence of age-related health problems, such as physical
injuries, mental disorders, and stroke, leading to severe consequences for patients, families,
and the health care system. Emerging technologies can improve the quality of life of patients
by (i) providing effective neurorehabilitation, and (ii) enabling independence in everyday
tasks. The first challenge may be addressed by designing neuromodulatory interfacing
systems that can enhance specific cognitive functions or treat specific psychiatric/neurological
pathologies. Such systems could be driven by real-time brain activity to selectively modulate
specific neurodynamics using approaches such as transcranial magnetic stimulation [1,2] or
focused ultrasound [3,4]. The second challenge may be addressed by designing effective
brain-machine interfaces (BMI). Common BMI control signals rely on primary sensory- or
motor-related activation. However, these signals only reflect a limited range of cognitive
processes. Higher-order cognitive signals, and specifically those from prefrontal cortex that
encode goal-oriented tasks, could lead to more robust and intuitive BMI [5,6].

Both neurorehabilitation and BMI approaches necessitate an effective and accurate
way of measuring and localizing functional brain activity in real time. This can be achieved
by electroencephalography (EEG) [7,8] and MEG [9–11], two non-invasive electrophysio-
logical techniques. EEG uses an array of electrodes placed on the scalp to record voltage
fluctuations, whereas MEG uses sensitive magnetic detectors called superconducting quan-
tum interference devices (SQUIDs) [12] to measure the same primary electrical currents
that generate the electric potential distributions recorded in EEG. Since EEG and MEG
capture the electromagnetic fields produced by neuronal currents, they provide a fast and
direct index of neuronal activity. However, existing MEG/EEG source localization methods
offer limited spatial resolution, confounding the origin of signals that could be used for
neurorehabilitation or BMI, or are too slow to compute in real time.

Deep learning (DL) [13] offers a promising new approach to significantly improve
source localization in real time. A growing number of works successfully employ DL to
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achieve state-of-the-art image quality for inverse imaging problems, such as X-ray computed
tomography (CT) [14–16], magnetic resonance imaging (MRI) [17–19], positron emission
tomography (PET) [20,21], image super-resolution [22–24], photoacoustic tomography [25],
synthetic aperture radar (SAR) image reconstruction [26,27] and seismic tomography [28].
In MEG and EEG, artificial neural networks have been used in the past two decades to
predict the location of single dipoles [29–31] or two dipoles [32], but generally DL methods
have received little attention with the exception of a few recent studies. Cui et al. (2019) [33]
used long-short term memory networks (LSTM) to identify the location and time course of
a single source; Ding et. al (2019) [34] used an LSTM network to refine dynamic statistical
parametric mapping solutions; and Hecker et al. (2020) [35] used feedforward neural
networks to construct distributed cortical solutions. These studies are limited by the number
of dipoles, or aim to address the ill-posed nature of distributed solutions.

Here, we develop and present a novel DL solution to localize neural sources compris-
ing multiple dipoles, and assess its accuracy and robustness with simulated MEG data. We
use the sensor geometry of the whole-head Elekta Triux MEG system and define as source
space the cortical surface extracted from a structural MRI scan of a real human subject.
While we focus on MEG, the same approaches are directly extendable to EEG, enabling a
portable and affordable solution to source localization.

2. Background on MEG Source Localization

Two noninvasive techniques, MEG and EEG, measure the electromagnetic signals
emitted by the human brain and can provide a fast and direct index of neural activity
suitable for real-time applications. The primary source of these electromagnetic signals
is widely believed to be the electrical currents flowing through the apical dendrites of
pyramidal neurons in the cerebral cortex. Clusters of thousands of synchronously activated
pyramidal cortical neurons can be modeled as an equivalent current dipole (ECD). The
current dipole is therefore the basic element used to represent neural activation in MEG
and EEG localization methods.

In this section we briefly review the notations used to describe measurement data,
forward matrix, and sources, and formulate the problem of estimating current dipoles.
Consider an array of M MEG or EEG sensors that measures data from a finite number Q of
equivalent current dipole (ECD) sources emitting signals {sq(t)}Q

q=1 at locations {pq}Q
q=1.

Under these assumptions, the M× 1 vector of the received signals by the array is given by:

y(t) =
Q

∑
q=1

l(pq)sq(t) + n(t), (1)

where l(pq) is the topography of the dipole at location pq and n(t) is the additive noise.
The topography l(pq), is given by:

l(pq) = L(pq)q, (2)

where L(pq) is the M × 3 forward matrix at location pq and q is the 3× 1 vector of the
orientation of the ECD source. Depending on the problem, the orientation q may be known,
referred to as fixed-oriented dipole, or it may be unknown, referred to as freely-oriented dipole.

Assuming that the array is sampled N times at t1, . . . , tN , the matrix Y of the sampled
signals can be expressed as:

Y = A(P)S + N, (3)

where Y is the M× N matrix of the received signals:

Y = [y(t1), . . . , y(tN)], (4)
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A(P) is the M×Q mixing matrix of the topography vectors at the Q locations P = [p1, . . . , pQ]:

A(P) = [l(p1), . . . , l(pQ)], (5)

S is the Q× N matrix of the sources:

S = [s(t1), . . . , s(tN)], (6)

with s(t) = [s1(t), . . . , sQ(t)]T , and N is the M× N matrix of noise:

N = [n(t1), . . . , n(tN)]. (7)

Mathematically, the localization problem can be cast as an optimization problem of
computing the location and moment parameters of the set of dipoles whose field best matches
the MEG/EEG measurements in a least-squares (LS) sense [36]. In this paper we focus on
solutions that solve for a small parsimonious set of dipoles and avoid the ill-posedness
associated with imaging methods that yield distributed solutions, such as minimum-norm [9]
(Figure 1). Solutions that estimate a small set of dipoles include the dipole fitting and scanning
methods. Dipole fitting methods solve the optimization problem directly using techniques
that include gradient descent, Nedler–Meade simplex algorithm, multistart, genetic algorithm,
and simulated annealing [37–40]. However, these techniques remain unpopular because they
converge to a suboptimal local optimum or are too computationally expensive.

Figure 1. MEG forward and inverse problems. In the forward problem, a well-posed model maps the true sources activation
to the MEG measurement vector. In the inverse (and ill-posed) problem, an inverse operator maps the measurement vector
to the estimated sources activation.

An alternative approach is scanning methods, which use adaptive spatial filters to
search for optimal dipole positions throughout a discrete grid representing the source
space [11]. Source locations are then determined as those for which a metric (localizer)
exceeds a given threshold. While these approaches do not lead to true least squares solu-
tions, they can be used to initialize a local least squares search. The most common scanning
methods are beamformers [41,42] and MUSIC [36], both widely used for bioelectromag-
netic source localization, but they assume uncorrelated sources. When correlations are
significant, they result in partial or complete cancellation of correlated (also referred to
as synchronous) sources) and distort the estimated time courses. Several multi-source
extensions have been proposed for synchronous sources [43–51]; however, they require
some a-priori information on the location of the synchronous sources, are limited to the
localization of pairs of synchronous sources, or are limited in their performance.

One important division of the scanning methods is whether they are non-recursive
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or recursive. The original Beamformer [41,42] and MUSIC [36] methods are non-recursive
and require the identification of the largest local maxima in the localizer function to find
multiple dipoles. Some multi-source variants are also non-recursive (e.g., [44–47]), and
as a result they use brute-force optimization, assume that the approximate locations of
the neuronal sources have been identified a priori, or still require the identification of the
largest local maxima in the localizer function. To overcome these limitations, non-recursive
methods have recursive counterparts, such as RAP MUSIC [52], TRAP MUSIC [53], Recur-
sive Double-Scanning MUSIC [54], and RAP Beamformer [7]. The idea behind the recursive
execution is that one finds the source locations iteratively at each step, projecting out the
topographies of the previously found dipoles before forming the localizer for the current
step [7,52]. In this way, one replaces the task of finding several local maxima with the easier
task of finding the global maximum of the localizer at each iteration step. While recursive
methods generally perform better than their non-recursive counterparts, they still suffer
from several limitations, including limited performance, the need for high signal-to-noise
ratio (SNR), non-linear optimization of source orientation angles and source amplitudes,
or inaccurate estimation as correlation values increase. The are also computationally
expensive due to the recursive estimation of sources.

3. Background on Deep Learning

Inverse problems in signal and image processing were traditionally solved using
analytical methods; however, recent DL [13] solutions, as exemplified in [17,55],provide
state-of-the-art results for numerous problems including X-ray computed tomography,
magnetic resonance image reconstruction, natural image restoration (denoising, super-
resolution, debluring), synthetic aperture radar image reconstruction and hyper-spectral
unmixing, among others. In the following, we review DL principles, which form the basis
for the DL-based solutions to MEG source localization presented in the next section, includ-
ing concepts such as network layers and activation functions, empirical risk minimization,
gradient-based learning, and regularization.

DL is a powerful class of data-driven machine learning algorithms for supervised,
unsupervised, reinforcement and generative tasks. DL algorithms are built using Deep
Neural Networks (DNNs), which are formed by a hierarchical composition of non-linear
functions (layers). The main reason for the success of DL is the ability to train very high
capacity (i.e., hypothesis space) networks using very large datasets, often leading to robust
representation learning [56] and good generalization capabilities in numerous problem do-
mains. Generalization is defined as the ability of an algorithm to perform well on unseen
examples. In statistical learning terms, an algorithm A : X → Y is learned using a training
dataset S = {(x1, y1), ..., (xN , yN)} of size N, where xi ∈ X is a data sample and yi ∈ Y is
the corresponding label (for example, source location coordinates). Let P(X ,Y) be the true
distribution of the data, then the expected risk is defined by:

R(A) = Ex,y∼P(X ,Y)[L(A(x), y)], (8)

where L is a loss function that measures the misfit between the algorithm output and the
data label. The goal of DL is to find an algorithm A within a given capacity (i.e., function
space) that minimizes the expected risk; however, the expected risk cannot be computed
since the true distribution is unavailable. Therefore, the empirical risk is minimized instead:

RE (A) =
1
N

N

∑
i=1
L(A(xi), yi), (9)

which approximates the statistical expectation with an empirical mean computed using the
training dataset. The generalization gap is defined as the difference between the expected
risk to the empirical risk: R(A) − RE (A). By using large training datasets and high
capacity algorithms, DL has been shown to achieve a low generalization gap, where an
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approximation of the expected risk is computed using the learned algorithm and a held-out
testing dataset T = {(x1, y1), ..., (xM, yM)} of size M, such that S ∩ T = ∅.

In the following subsections we describe the main building blocks of DNNs, including
multi-layer perceptron and convolutional neural networks.

3.1. Multi-Layer Perceptron (MLP)

The elementary building block of the MLP is the Perceptron, which computes a non-
linear scalar function, termed activation, of an input x ∈ Rn, as follows

y = f (wTx + b), (10)

where w is a vector of weights and b is a scalar bias. A common activation function is the
Sigmoid [13], defined as

f (z) =
1

1 + e−z ,

and in this case the perceptron output is computed as follows

y =
1

1 + e−(wTx+b)
.

A single layer of perceptrons is composed of multiple perceptrons, all connected to
the same input vector x, with a unique weight vector and bias, per perceptron. A single
layer of perceptrons can be formulated in matrix form, as follows:

y = f (Wx+b), (11)

where each row of the matrix W corresponds to the weights of one perceptron, and each
element of the vector b corresponds to the bias of one perceptron. The MLP is composed of
multiple layers of perceptrons, such that the output of each layer becomes the input to the
next layer. Such hierarchical composition of k non-linear functions is formulated as follows:

F(x; Θ) = fk( fk−1(· · · f2( f1(x; θ1); θ2); θk−1); θk), (12)

where θi = [Wi, bi] are the parameters (i.e., weights and biases) of the i-th layer and
Θ = [θ1, θ2, . . . , θk] is the set of all network parameters.

In our source localization solution solution for a single MEG snapshot, detailed in
Section 4.1, we utilize a MLP architecture that accepts the MEG measurement vector as an
input and the the final layer provides the sources locations.

In the supervised learning framework, the parameters Θ are learned by minimizing
the empirical risk, computed over the training dataset S . The empirical risk can be regu-
larized in order to improve DNN generalization, by mitigating over-fitting of the learned
parameters to the training data. The empirical risk is defined by

J(Θ) =
1
N

N

∑
i=1
L(F(xi; Θ), yi), (13)

and the optimal set of parameters Θ∗ are obtained by solving

Θ∗ = arg min
Θ

J(Θ). (14)

The minimization of the empirical risk is typically performed by iterative gradient-
based algorithms, such as the stochastic gradient descent (SGD)

Θ̂t+1 = Θ̂t − λ∇ΘJ(Θ), (15)
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where Θ̂t is the estimate of Θ∗ at the t-th iteration, λ > 0 is the learning rate, and the
approximated gradient ∇ΘJ(Θ) is computed by the back-propagation algorithm using a
small random subset of examples from the training set S .

3.2. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) were originally developed for processing
input images, using the weight sharing principle of a convolutional kernel that is convolved
with input data. The main motivation is to reduce significantly the number of required
learnable parameters, as compared to processing a full image by perceptrons, namely,
allocating one weight per pixel for each perceptron. A CNN is composed of one or more
convolutional layers, where each layer is composed of one of more learnable kernels.
For a 2D input I(i, j), a convolutional layer performs the convolution (some DL libraries
implement the cross-correlation operation) between the input to the kernel(s)

C(i, j) = (K ∗ I)(i, j) = ∑
m,n

W(m, n)I(i−m, j− n), (16)

where W(m, n) is the kernel and C(i, j) is the convolution result. A bias b is further added
to each convolution results, and an activation function f () is applied, to obtain the feature
map F(i, j) given by

F(i, j) = f (C(i, j) + b). (17)

A convolutional layer with K kernels produces K feature maps, where kernels of
1D, 2D or 3D are commonly used. Convolutional layers are often immediately followed
by sub-sampling layers, such as MaxPooling that decimates information by picking the
maximum value within a given array of values, or AveragePooling that replaces a given
array of values by their mean. CNN networks are typically composed by a cascade of
convolutional layers, optionally followed by fully-connected (FC) layers, depending on the
required task.

In our source localization solution using multiple MEG snapshots, detailed in Section 4.2,
we utilize 1D convolutions for spatio-temporal feature extractors, which are followed by FC
layers for computing the estimated sources locations.

4. Deep Learning for MEG Source Localization

In this section we present the proposed deep neural network (DNN) architectures and
training data generation workflow.

4.1. MLP for Single-Snapshot Source Localization

MEG source localization is computed from sensor measurements using either a single
snapshot (i.e., a single time sample) or multiple snapshots. The single snapshot case is
highly challenging for popular MEG localization algorithms, such as MUSIC [36], RAP-
MUSIC [52], and RAP-Beamformer [7], all of which rely on the data covariance matrix. A
single snapshot estimation of the covariance matrix is often insufficient for good localization
accuracy of multiple simultaneously active sources, especially in low and medium signal-
to-noise ratios (SNR). Since the input in this case is a single measurement MEG vector,
we implemented four layer MLP-based architectures, where the input FC layer maps
the M-dimensional snapshot vector to a higher dimensional vector and the output layer
computes the source(s) coordinates in 3D, as illustrated in Figure 2. We refer to this model as
DeepMEG-MLP. We implemented three DeepMEG-MLP models, corresponding to Q = 1, 2,
and 3 sources, as summarized in Table 1.
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Figure 2. Illustration of the MLP-based MEG source localization solution. The end-to-end inversion operator performs
mapping from the MEG measurement space to the source locations space.

Table 1. Evaluated DeepMEG Architectures. Fully-connected layers are denoted by FC(N,’activation’), where N is the
number of perdeptrons and the activation function is Sigmoid for all layers excluding output layers, which compute sources
locations and do not employ an activation function. Convolutional layers are denoted by Conv1D(L, T), where L is the
number of 1D kernels, and T is the length of each 1D kernel.

Input Network 1st Layer 2nd Layer 3rd Layer 4th Layer 5th Layer Parameters

Single MEG MLP-1 FC (3000,’sigmoid’) FC (2500,’sigmoid’) FC (1200,’sigmoid’) FC (3,’none’) - 11,428,303
Snapshot MLP-2 FC (3000,’sigmoid’) FC (2500,’sigmoid’) FC (1200,’sigmoid’) FC (6,’none’) - 11,431,906

MLP-3 FC (3000,’sigmoid’) FC (2500,’sigmoid’) FC (1200,’sigmoid’) FC (9,’none’) - 11,435,509

MEG CNN-1 Conv1D (L = 32, T = 5) FC (3000,’sigmoid’) FC (2500,’sigmoid’) FC (1200,’sigmoid’) FC (3,’none’) 11,711,295
Time-Series CNN-2 Conv1D (L = 32, T = 5) FC (3000,’sigmoid’) FC (2500,’sigmoid’) FC (1200,’sigmoid’) FC (6,’none’) 11,714,898

CNN-3 Conv1D (L = 32, T = 5) FC (3000,’sigmoid’) FC (2500,’sigmoid’) FC (1200,’sigmoid’) FC (9,’none’) 11,718,501

4.2. CNN for Multiple-Snapshot Source Localization

For multiple consecutive MEG snapshots we implemented a CNN-based architecture
with five layers, in which the first layer performs 1D convolutions on the input data and
the resulting 1D feature maps are processed by three FC layers with sigmoid activation,
and an output FC layer which computes the source locations. We refer to this model as
DeepMEG-CNN, as illustrated in Figure 3. The 1D convolutional layer forms a bank of L = 32
space-time filters (which can also be interpreted as beamformers [57]). Each 1D temporal
filter spans T = 5 time samples. A different 1D filter is applied to the time course of each of
the M sensors with uniquely learned coefficients. We implemented three DeepMEG-CNN
models, corresponding to Q = 1, 2, and 3 sources, as summarized in Table 1.

Figure 3. Illustration of the CNN-based MEG source localization solution. The end-to-end inversion operator performs
mapping from the MEG time-series measurement space, using a bank of L space-time filters and four fully connected (FC)
layers, to the source locations space.
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4.3. Data Generation Workflow

To train the deep network models and evaluate their performance on source local-
ization, we need to know the ground truth of the underlying neural sources generating
MEG data. Since this information (i.e., the true locations of the sources) is unavailable
in real MEG measurements of human participants, we performed simulations with an
actual MEG sensor array and a realistic brain anatomy and source configurations. Specif-
ically, the sensor array was based on the whole-head Elekta Triux MEG system with
306-channel probe unit including 204 planar gradiometer sensors and 102 magnetometer
sensors (Figure 4a). The geometry of the MEG source space was modeled with the cortical
manifold extracted from a T1-weighted MRI structural scan from a real adult human sub-
ject using Freesurfer [58]. This source configuration is consistent with the arrangement of
pyramidal neurons, the principal source of MEG signals, in the cerebral cortex. Sources
were restricted to 15,002 grid points over the cortex (Figure 4b). The lead field matrix,
which represents the forward mapping from the activated sources to the sensor array, was
estimated using BrainStorm [59] based on an overlapping spheres head model [60]. This
model has been shown to have accuracy similar to boundary element methods in MEG
data but is orders of magnitude faster to compute [60].

Simulated MEG sensor data was generated by first activating a few sources randomly
selected on the cortical manifold with activation time courses si(t). The time courses were
modeled with 16 time points sampled as mixtures of sinusoidal signals of equal amplitude
with correlations in the range of 0 to 0.9 and frequencies in the range of 10 to 90 Hz.
The corresponding sensor measurements were then obtained by multiplying each source
with its respective topography vector l(pi) (Figure 4c). Finally, Gaussian white noise was
generated and added to the MEG sensors to model instrumentation noise at specific SNR
levels. The SNR was defined as the ratio of the Frobenius norm of the signal-magnetic-field
spatiotemporal matrix to that of the noise matrix for each trial as in [61].

(a) MEG sensor geometry. (b) MEG source space. (c) MEG simulated measurements.

Figure 4. Simulation of MEG data for deep learning localization. (a) Simulations used the anatomy of an adult human
subject and a whole-head MEG sensor array from an Elekta Triux device. (b) Cortical sources with time course si(t) were
simulated at different cortical locations. (c) The activated cortical sources yielded MEG measurements on the cortex that,
combined with additive Gaussian noise, comprised the input to the deep learning model.

5. Performance Evaluation
5.1. Deep Network Training

The DeepMEG models were implemented in TensorFlow [62] and trained by minimiz-
ing the mean-squared error (MSE) between the true (i.e., MEG data labels) and estimated
sources locations, using the SGD algorithm (15) with a learning rate λ = 0.001 and batch
size of 32. The DeepMLP networks were trained with datasets of 1 million simulated
snapshots, generated at a fixed SNR level, yet, as discussed in the following these trained
models operate well in a wide range of SNR levels. The DeepCNN networks were trained
using data generation on the fly and a total of 9.6 million multiple-snapshot signals per net-
work. Data generation on the fly was utilized in order to mitigate the demanding memory



Sensors 2021, 21, 4278 9 of 15

requirements of offline data generation in the case of multiple-snapshots training set. The
DeepCNN network models were trained with MEG sensor data at a fixed SNR-level and
random inter-source correlations, thus, learning to localize sources with a wide range of
inter-source correlation levels.

5.2. Localization Experiments

We assessed the performance of the deepMEG models using simulated data as de-
scribed in the data generation workflow. To assess localization accuracy in different realistic
scenarios, we conducted simulations with different SNR levels and inter-source correlation
values. We also varied the number of active sources to validate that localization is accurate
even for multiple concurrently active sources.

During inference, we compared the performance of the deep learning model against
the popular scanning localization solution RAP-MUSIC [52]. All experiment were con-
ducted with 1000 Monte-Carlo repetitions per each SNR and inter-source correlation value.
In each scenario, we used the deepMEG and RAP-MUSIC with the corresponding number
of sources, which is assumed known by both methods. Estimation of the number of sources
can be conducted with the Akaike information criterion (AIC), Bayesian information crite-
rion (BIC), or cross-validation and is beyond the scope of this work.

5.2.1. Experiment 1: Performance of the DeepMEG-MLP Model with Single-Snapshot Data

We assessed the localization accuracy of the DeepMEG-MLP model against the RAP-
MUSIC method for the case of two simultaneously active dipole sources. The DeepMEG-
MLP model was trained with 10 dB SNR data, but inference used different SNR levels
ranging from −10 dB to 20 dB (Figure 5). The DeepMEG model outperformed the RAP-
MUSIC method at high SNR values, but had worse localization results in low SNR values
(<5 dB). As expected, both methods consistently improved their localization performance
with increasing SNR values.

Figure 5. Localization accuracy of the DeepMEG-MLP model at different SNR levels for the cases of
two dipole sources.

5.2.2. Experiment 2: Performance of the DeepMEG-CNN Model with Multiple-Snapshot Data

We extended the above experiment for the case of multiple snapshot data with T = 16
time samples and two or three sources with different inter-source correlation values. The
DeepMEG-CNN model was trained with −15 dB SNR data, and inference used −15 dB,
−12.5 dB, and−10 dB SNR. In the low SNR case (−15 dB), the DeepMEG-CNN consistently
outperformed the RAP-MUSIC method with the exception of high (0.9) correlation values
where the RAP-MUSIC had a slightly better accuracy (Figure 6a,b). As SNR increased to
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−12.5 dB, the Deep MEG model remained overall better or had comparable performance
to RAP-MUSIC (Figure 6c,d). This advantage was lost at −10 dB SNR, where RAP-MUSIC
had an advantage (Figure 6e,f).

(a) Two Sources, −15 dB SNR. (b) Three Sources, −15 dB SNR.

(c) Two Sources, −12.5 dB SNR. (d) Three Sources, −12.5 dB SNR.

(e) Two Sources, −10 dB SNR. (f) Three Sources, −10 dB SNR.

Figure 6. Localization accuracy of the DeepMEG-CNN model with T = 16 time samples at different inter-source correlation
values for the cases of two and three sources with −15 dB, −12.5 dB and −10 dB SNR levels.

5.2.3. Experiment 3: Robustness of DeepMEG to Forward Model Errors

Here we assumed that the actual MEG forward model is different from the ideal
forward model that was used for building the training set of the DeepMEG solution. The
actual model was defined as follows:

Ã(P) = A(P) + ∆A(P), (18)

where ∆A(P) denotes the model error matrix, which can be arbitrary. In this experiment we
considered the model error matrix to represent inaccuracies due to imprecise estimation
of the position of the head caused by translation or rotation registration errors. Figure 7
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presents the DeepMEG-CNN localization accuracy with model registration errors equal to
3 mm translation and 1 degree rotation across different axes. The DeepMEG-CNN achieved
robust localization accuracy in all cases: up to 1 mm degradation for head translations and
up to 0.25 mm degradation for head rotations.

(a) Two sources, −5 dB SNR, Head Model Translation. (b) Three sources, 0 dB SNR, Head Model Translation.

(c) Two sources, −5 dB SNR, Head Model Rotation. (d) Three sources, 0 dB SNR, Head Model Rotation.

Figure 7. Robustness of DeepMEG-CNN localization accuracy to forward model errors due to head model translations by
3 mm (a,b), and head model rotations by 1 degree (c,d).

5.3. Real-Time Source Localization

An important advantage of the DL approaches is that they have significantly reduced
computational time, paving the way to real-time MEG source localization solutions. We
conducted a computation time comparison (compute hardware: CPU 6-Core Intel i5-
9400F@3.9 Ghz, CPU RAM 64 GB, GPU Nvidia GeForce RTX 2080), detailed in Table 2, for
each of the proposed DL architectures and the RAP-MUSIC algorithm. The comparison
reveals 4 orders of magnitude faster computation of DeepMEG models as compared to the
RAP-MUSIC, which requires O(Q) M×M matrix inversions and O(Q× Ndipoles) matrix-
vector multiplications, with each multiplication having complexity of O(M2). Here, the
total number of dipoles Ndipoles = 15,002 and the number of sensors M = 306.



Sensors 2021, 21, 4278 12 of 15

Table 2. Computation Time Comparison.

Sources Time Samples Algorithm Time [ms]

1 1 RAP-MUSIC 135.47
1 1 DeepMEG MLP-1 0.19

2 1 RAP-MUSIC 452.17
2 1 DeepMEG MLP-2 0.19

3 1 RAP-MUSIC 736.76
3 1 DeepMEG MLP-3 0.19

1 16 RAP-MUSIC 136.59
1 16 DeepMEG CNN-1 0.25

2 16 RAP-MUSIC 478.23
2 16 DeepMEG CNN-2 0.27

3 16 RAP-MUSIC 741.51
3 16 DeepMEG CNN-3 0.27

6. Conclusions

Fast and accurate solutions to MEG source localization are crucial for real-time brain
imaging, and hold the potential to enable novel applications in neurorehabilitation and
BMI. Current methods for multiple dipole fitting and scanning do not achieve precise
source localization because it is typically computationally intractable to find the global
maximum in the case of multiple dipoles. These methods also limit the number of dipoles
and temporal rate of source localization due to high computational demands. In this
article, we reviewed existing MEG source localization solutions and fundamental DL
tools. Motivated by the recent success of DL in a growing number of inverse imaging
problems, we proposed two DL architectures for the solution of the MEG inverse problem,
the DeepMEG-MLP for single time point localization, and the DeepMEG-CNN for multiple
time point localization.

We compared the performance of DeepMEG against the popular RAP-MUSIC lo-
calization algorithm and showed improvements in localization accuracy in a range of
scenarios with variable SNR levels, inter-source correlation values, and number of sources.
Importantly, the DeepMEG inference was estimable in less than a millisecond and thus
was orders of magnitude faster than RAP-MUSIC. Fast computation was possible due to
the high optimization of modern DL tools, and even allows the rapid estimation of dipoles
at near the 1 kHz sampling rate speed of existing MEG devices. This could facilitate the
search for optimal indices of brain activity in neurofeedback and BCI tasks.

A key property of DeepMEG was its robustness to forward model errors. The localiza-
tion performance of the model remained relatively stable even when introducing model
errors caused by imprecise estimation of the position of the head due to translations or
rotations.This is critical for real-time applications where the forward matrix is not precisely
known, or movement of the subject introduces time-varying inaccuracies.

To apply the DeepMEG models in real MEG experiments, the networks must first
be trained separately for each subject using the forward matrix derived from individual
anatomy. Training should take place offline using simulated data, and then the trained
model can be applied for inference on real-data. The amount of simulated data for train-
ing can be easily increased if necessary. To improve the validity of the predictions, the
distributional assumptions of the simulated data should follow those of the experimental
data as closely as possible, including the number of sources, and realistic noise distribution
and shape of source time courses. Future work is needed to determine how to best specify
and evaluate the impact of different distributional assumptions in the quality of the DL
model predictions in different experimental settings. Once a model achieves the desirable
performance, extending to new subjects could be achieved with transfer learning to fine
tune the parameters with reduced computational cost.
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While the DeepMEG-MLP and DeepMEG-CNN architectures yielded promising local-
ization results, more research is needed to explore different architectures, regularizations,
loss functions, and other DL parameters that may further improve MEG source localization.
It is also critical to assess whether DL models remain robust to model errors under more
cases of realistic perturbations, beyond the imprecise head position estimation assessed
here. This includes inaccurate modeling of the source space (e.g., cortical segmentation
errors); imprecise localization of sensors within the sensor array; and inaccurate estimation
of the forward model (e.g., unknown tissue conductivities, analytical approximations or
numerical errors) [63,64].

As both theory and simulations suggest, when the true number of sources is known,
RAP-MUSIC and TRAP-MUSIC (a generalization of RAP-MUSIC) localize sources equally
well [53]. Thus our localization comparisons should also extend to TRAP-MUSIC. Of
course, this holds under the critical assumption that another method has assessed the true
number of sources, as required by the DeepMEG-MLP and DeepMEG-CNN models. This
can be done with AIC, BIC, cross-validation, or other criteria [65]. However, as extension
of our work, different DL architectures could be developed to estimate both the number of
sources and their location simultaneously, obviating the need to separately estimate the
true number of sources.
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