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Abstract: We recently reported on a potent synthetic agent, 135H11, that selectively targets the
receptor tyrosine kinase, EphA2. While 135H11 possesses a relatively high binding affinity for the
ligand-binding domain of EphA2 (Kd~130 nM), receptor activation in the cell required the synthesis
of dimeric versions of such agent (namely 135H12). This was expected given that the natural ephrin
ligands also need to be dimerized or clustered to elicit agonistic activity in cell. In the present report
we investigated whether the agonistic activity of 135H11 could be enhanced by biotin conjugation
followed by complex formation with streptavidin. Therefore, we measured the agonistic EphA2
activity of 135H11-biotin (147B5) at various agent/streptavidin ratios, side by side with 135H12, and
a scrambled version of 147B5 in pancreatic- and breast-cancer cell lines. The (147B5)n-streptavidin
complexes (when n = 2, 3, 4, but not when n = 1) induced a strong receptor degradation effect in
both cell lines compared to 135H12 or the (scrambled-147B5)4-streptavidin complex as a control,
indicating that multimerization of the targeting agent resulted in an increased ability to cause receptor
clustering and internalization. Subsequently, we prepared an Alexa-Fluor-streptavidin conjugate to
demonstrate that (147B5)4-AF-streptavidin, but not the scrambled equivalent complex, concentrates
in pancreatic and breast cancers in orthotopic nude-mouse models. Hence, we conclude that these
novel targeting agents, with proper derivatization with imaging reagents or chemotherapy, can be
used as diagnostics, and/or to deliver chemotherapy selectively to EphA2-expressing tumors.

Keywords: agonistic EphA2 peptides; streptavidin; pancreatic cancer; breast cancer; cancer imaging;
orthotopic cancer models

1. Introduction

The receptor tyrosine kinase of the Eph family controls various cellular functions
including cell–cell communications that are mediated by their interactions with cell sur-
face ephrin ligands [1–16]. In cancer cells, the EphA2 receptor subtype is pro-oncogenic
when not bound to its ligands, where it promotes angiogenesis, cell migration, and in-
creases metastases. Aberrant EphA2 overexpression causes an excess of unbound receptor
and it contributes to the spread of certain solid tumors including prostate cancer [1,17],
melanoma [13,18], breast cancer [2,3], brain cancer [10,19], ovarian cancer [20], urinary
bladder cancer [11], pancreatic cancer [5,6,21,22], esophageal cancer [23], lung cancer [24],
stomach cancer [25], and several types of leukemia [15,16]. In pancreatic cancer, an ex-
tremely aggressive tumor which accounts for about 7% of all cancer deaths in the United
States, EphA2 overexpression is inversely correlated with patient survival [5,21]. More

Molecules 2021, 26, 3687. https://doi.org/10.3390/molecules26123687 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-5179-470X
https://doi.org/10.3390/molecules26123687
https://doi.org/10.3390/molecules26123687
https://doi.org/10.3390/molecules26123687
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26123687
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26123687?type=check_update&version=1


Molecules 2021, 26, 3687 2 of 12

recent studies underlined the role of EphA2 in driving therapy-resistant pancreatic ade-
nocarcinomas, suggesting that EphA2-targeting agents should be developed and used in
combination with current therapeutics [26]. In addition, our recent studies in a variety of
pancreatic cancer cell lines, or primary pancreatic cancer tissues, demonstrated elevated
EphA2 levels in all studied cases [22].

Similarly, EphA2 is expressed in breast cancer tissue, and its elevated expression
correlates with poor patient survival, particularly in triple-negative breast cancer (TNBC).
TNBCs are characterized by a lack of hormone receptor (estrogen and progesterone nuclear
receptors) expression, as well as a lack of the human epidermal growth factor receptor-2
(HER2), for which therapeutic targeting strategies are available. Currently, TNBC rep-
resents one of the most aggressive forms of breast cancer, and disproportionally affects
young pre-menopausal women and women of African descent, leaving these patients
with limited therapeutic options. Although the EphA2 receptor has been identified as
a clinically-relevant biomarker and potential target for TNBC [27], the development of
effective diagnostics and therapeutics for these aggressive forms of cancers is currently
hampered by the lack of viable pharmacological tools.

Because ligand-bound EphA2 turns the oncogenic receptor into a tumor suppressor,
the design of ephrin mimetics, hence synthetic agonistic EphA2-targeting agents, represents
a potentially therapeutically-viable strategy. Recently we reported on synthetic agonis-
tic peptides that by selectively engaging with the EphA2 ligand-binding domain, cause
internalization of the receptor, followed by its lysosomal degradation [28]. We recently
demonstrated that these agonistic agents strongly reduced BxPc3 pancreatic-cancer cell
migration [29], and suppressed tumor metastases in an orthotopic model of EphA2-driven
aggressive prostate cancer [30]. Because the agonistic agent causes receptor internaliza-
tion, we have also demonstrated that when properly conjugated with cytotoxic drugs,
EphA2-agonistic agents could serve as peptide–drug conjugates to deliver chemotherapy
to EphA2-expressing tumors [22,28,31–34]. For example, we previously demonstrated
that synthetic EphA2-targeting agonistic agents conjugated with gemcitabine or paclitaxel
had superior efficacy compared to gemcitabine or paclitaxel alone in mouse models of
pancreatic cancer [22] and breast cancer, respectively [31].

Using an EphA2 internalization assay in cancer cell lines we recognized that, similar to
the ephrin ligands, dimeric versions of these synthetic agents possessed greatly increased
cellular efficacy in causing receptor degradation, compared to their monomeric versions.

Based on the results summarized above, we determined in the present study that
multimeric versions of EphA2 agonistic peptides can be obtained by biotin derivatization
and conjugation with streptavidin. We report that these streptavidin-based EphA2 targeting
agents induce superior receptor degradation in triple-negative MDA-MB-231 breast cancer
cells and BxPC3 pancreatic-cancer cells. Moreover, we show that when conjugated with
fluorescently-tagged streptavidin, a biotinylated agonist, but not its scrambled control,
targets breast and pancreatic cancers in orthotopic mouse models. The present studies
will enable future design of EphA2-targeting streptavidin conjugates for diagnostic and
therapeutic purposes.

2. Results and Discussion
2.1. Design and Characterization of Streptavidin-Based EphA2 Targeting Agents

We have recently reported on the design of novel EphA2 targeting agonistic ephrin
mimetics consisting of 12-mer peptides, enabling the synthesis of agent 135H11 (Table 1) [35].
To characterize the binding properties of the agents, we developed a heterogeneous assay
based on the Dissociation-Enhanced Lanthanide Fluorescent Immunoassay (DELFIA) [35]
platform, where an earlier-generation biotinylated EphA2-binding peptide is captured on
the surface of streptavidin-coated 96-well plates. Subsequently, a 6xHis-EphA2 ligand-
binding domain and a fluorescent Europium-conjugated anti-6xHis antibody are added
to each well of the 96-well plate, together with a new test agent at various doses. After
an incubation time, followed by washing steps, residual fluorescence is measured and
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correlated with the ability of a given test agent to displace the binding between EphA2-
LBD and the reference peptide [35]. Using the DELFIA assay, an IC50 value for 135H11 of
~130 nM was determined (Table 1). In the same assay, the scrambled version of 135H11 was
inactive (Figure 1). For the current studies with agents that were biotinylated (145B5 and
its scrambled version; Table 1), we could not run the DELFIA assay as the agents would
be captured by the streptavidin-coated plate, hence we opted to measure direct binding
affinities between the agents and EphA2-LBD via isothermal titration calorimetry (ITC).
Hence, binding affinities of 147B5 or its scrambled version were obtained by reverse ITC
titration with purified EphA2-LBD. In this assay we found a dissociation constant for 147B5
of 117 nM, while no appreciable binding was detected for its scrambled version (Figure 1).

Figure 1. Affinity of EphA2-LBD-targeting agents as detected by ITC (panels A and B) or DELFIA (panel C). (a) ITC curve for
agent 147B5 for EphA2-LBD (Kd = 117 nM). (b) ITC curve for the scrambled version of 147B5 against EphA2-LBD, no binding
detected. (c) DELFIA dose–response curves for agents 135H11 (purple, IC50 = 130 nM), 135H12 (blue, IC50 = 150 nM), or the
scrambled version of 135H11 (green, no inhibition).

Table 1. Sequences of agonistic agents cited in the present report. IC50 values (nM) were derived from the DELFIA assay
while dissociation constant (Kd) values were obtained by reverse ITC measurements. Reported standard errors represent
the indicated number of experiments, each having duplicate measurements. Hyp = trans 4-hydroxy-L-proline. N.B. No
binding detected by ITC (see also Figure 1). LC indicates a long 6 atom hydrocarbon chain between the biotin and the amide
bond at the C-terminus of the agent.

ID Sequence IC50 (DELFIA) or Kd
(ITC) (nM)

135H11 (3-CH3,6,7-OCH3,Benzofuranoic acid)LA(4-CH3-Tyr)PDA
V(Hyp)(4Cl-Phe)RP -CONH2

130 ± 1, n = 4
(DELFIA)

147B5
(135H11-biotinylated)

(3-CH3,6,7-OCH3,Benzofuranoic acid)LA(4-CH3-Tyr)PDA
V(Hyp)(4-Cl-Phe)RP-GK(Biotin LC) -CONH2

117
(ITC)

135H12
(dimer of 135H11)

((3-CH3,6,7-OCH3,Benzofuranoic
acid)LA(4-CH3-Tyr)PDAV(Hyp)(4Cl-Phe) RPG)2-K-CONH2

150 ± 60, n = 3
(DELFIA)

Scrambled-135H11 (3-CH3,6,7-OCH3,Benzofuranoic
acid)DP(4-CH3-Tyr)A(Hyp)LRG(4-Cl-Phe)PVA-CONH2

>10,000
(DELFIA)

Scrambled-147B5
(scrambled 135H11-biotinylated)

(3-CH3,6,7-OCH3,Benzofuranoic
acid)DP(4-CH3-Tyr)A(Hyp)LRG(4-Cl-Phe)PVA-GK(Biotin

LC)-CONH2

N.B.
(ITC)

In cellular assays, monomeric peptide mimetics, much like the ephrin ligands, dis-
played limited agonistic activity, measured by observing either receptor phosphorylation or
total receptor degradation. Receptor activation with 135H11, or earlier generation agonistic
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peptides, could be observed only after exposing cells to very high concentrations of ligand
(>100 µM) [5,29,31,35–37]. This agrees with the observed activity of isolated ephrin ligands,
that, even if they have binding affinities in the nanomolar range against EphA2, they
are not effective as agonists in cellular assays in monomeric form. In contrast, a dimeric
ephrinA1-Fc chimera (Figure 2) is dramatically more effective as an agonist [5] in inducing
receptor degradation at nanomolar concentrations [28–31,34]. Similarly, a previous study,
with an earlier and less potent agonistic peptide of sequence SWLAYPGAVSYR, reported
that when the agent was dimerized at the C-terminus by an aminoexanoic acid linker,
the resulting dimeric peptide was much more potent than its monomer in activating the
receptor in the cell [36].

It is likely that the dramatically-increased activity of the dimers in cells is due to their
ability to catalyze receptor dimerization and subsequent clustering, triggering internaliza-
tion and degradation via the lysosome [31,35]. Based on these observations, we recently
reported on the synthesis and cellular evaluation of dimeric versions of 135H11, leading
to agent 135H12 (Table 1). Of note is that the agents are not cytotoxic for cancer cell lines
even when tested at 100 µM, but by causing EphA2 degradation, they limit cell-migratory
properties and inhibit metastases in vivo [29–31,35].

In the present report we explored the opportunity to obtain multifunctional EphA2-
targeting multimers using the biotin–streptavidin system (Figure 2). Hence, we synthesized
a biotinylated 135H11 and its scrambled version as a control (Table 1), following the general
solid-phase synthetic protocols we have recently reported [35].

Figure 2. Schematic representation of EphA2 receptor dimerization by agonistic agents. The struc-
tures of the EphA4 subtype were used for schematic illustration (PDB IDs 4M4P and 4M4R were
used for the apo and ephrinA5 bound, respectively) [38]. Dimeric agents ephrinA1-Fc and 135H12
can efficiently induce dimer formation and receptor activation, internalization, and degradation. The
present study evaluates the biotin–streptavidin system (far right) to affect receptor internalization
and for its application for imaging and targeted cancer chemotherapy.

We did not expect that the dimer would display increased affinity compared with its
monomer for the isolated EphA2-LBD [31,35] (Table 1). Hence, to evaluate the ability of the
newly-derived biotinylated version of 135H11 (147B5, Table 1) to activate the receptor, we
monitored the ability of the agents to induce EphA2 internalization and degradation in the
TNBC cell line MDA-MB-231, and the pancreatic cancer cell line BxPC3. In these cell-based
assays, receptor activation and degradation could be simply monitored by detecting the
ability of each agent to reduce EphA2 expression levels over time, after exposure of cells
to test ligands. We tested various (147B5)n-streptavidin ratios (n = 1, 2, 3, or 4), while
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dimeric ephrinA1-Fc and 135H12 were used as positive controls. Negative controls were
DMSO-treated cells or cells treated with the (scrambled 147B5)4-streptavidine complex
(Figure 3).

For the control scrambled agent, we tested it at its maximal 4:1 molar ratio with
streptavidin. For these experiments we treated cells with increasing concentrations of
147B5 (from 50 nM to 200 nM) in the absence or presence of streptavidin (50 nM). Positive
controls included cells treated with 135H12 (at 50 nM or 200 nM, monomer concentration)
or ephrinA1-Fc at 1 µg/mL concentration (~22 nM ephrinA1).

After a brief exposure time (1 h), cell lysates were probed for total EphA2 using an anti-
EphA2 antibody (1C11A12; Thermo Fisher Scientific). When tested against MDA-MB-231
breast-cancer cells (Figure 3), control agents ephrinA1-Fc and 135H12 were very effective
in causing EphA2 degradation, compared to a vehicle control. In contrast, monomeric
147B5-streptavidin (1:1 ratio 50 nM) was less effective in causing receptor degradation,
in agreement with several previous studies indicating that monomeric agents, including
135H11 alone, showed receptor activation only at very high concentrations (100 µM or
higher) [5,29,31,35–37]. However, increasing the 147B5/streptavidin ratio resulted in
dimeric, trimeric, or tetrameric compounds that induced a more sizable reduction of
EphA2 levels in exposed cancer cells (Figure 3). In contrast, the negative control tetrameric
(147B5-scrambled)4-streptavidin did not alter EphA2 levels (Figure 3). Because receptor
activation caused its rapid degradation, we opted to measure total EphA2 levels and not
receptor phosphorylation or de-phosphorylation events that would be confounded by
overall protein degradation.

Figure 3. Effect of 135H11-biot (147B5, Table 1), and its complexes with streptavidin at various ratios, on EphA2 receptor
degradation. (a) Western blot of MDA-MB-231 cells treated (1 h) with ephrinA1-Fc, EphA2 agents 135H12 (135H11
synthetic dimer; tested at 50 nM and 200 nM monomer concentration), and 147B5 (50 nM to 200 nM) and its scrambled-biot
corresponding compound (200 nM) (Table 1), tested in the absence and presence of streptavidin (50 nM) for 1 h. Anti-EphA2
blot suggests that the positive control ephrinA1-Fc (22 nM monomer) treatment led to significant degradation of the EphA2
receptor, similar to (147B5)n-streptavidin when n= 3 or 4 (150 nM or 200 nM 147B5 concentration in the presence of 50 nM
streptavidin) but not when n = 1. (b) Densitometry analysis based on duplicate measurements of band intensities relative to
the bands of DMSO-treated cells. * p ≤ 0.05, ** p ≤ 0.01 as determined by a one-way analysis of variance using Dunnett
post-test analysis. Uncropped images for the WB are available as supplementary materials.
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In a similar experiment, BxPC3 pancreatic-cancer cells were exposed to the same
treatments as described above for MDA-MB-231 cells and total EphA2 level in each treat-
ment was probed (Figure 4). Although multimeric EphA2-targeting agents appeared very
effective in both cell lines, the data suggested that degradation of the receptor seemed more
pronounced with the BxPC3 pancreatic-cancer cells compared to breast-cancer MDA-MB-
231 cells.

Figure 4. Effect of 147B5 and its complexes with streptavidin at various ratios on EphA2 receptor degradation. (a) Western
blot study of BxPC3 pancreatic cancer cells treated (1 h) with ephrinA1-Fc, EphA2 agents 135H12 (135H11 synthetic dimer;
tested at 50 nM and 200 nM monomer concentration), and 147B5 (50 nM to 200 nM) and its scrambled version (200 nM)
(Table 1), tested in the absence and presence of streptavidin (50 nM), as indicated and for 1 h. Anti-EphA2 blot indicates that
the positive-control ephrinA1-Fc (22 nM monomer) treatment led to nearly complete degradation of the EphA2 receptor,
similar to (147B5)n-streptavidin when n = 2, 3 or 4 (hence at 100 nM, 150 nM, or 200 nM 147B5 concentration in the presence
of 50 nM streptavidin), but not when n = 1. (b) Densitometry analysis based on duplicate measurements of band intensities
relative to the bands of DMSO-treated cells. * p ≤ 0.05, as determined by a one-way analysis of variance using Dunnett
post-test analysis. Uncropped images for the WB are available as supplementary materials.

These results clearly suggest that the streptavidin–biotin system can be used to in-
crease the agonistic activity of EphA2-targeting ligands such as 135H11. Given the readily-
available conjugated forms of streptavidin and the ease of biotinylating other agents, this
platform represents a versatile strategy to couple EphA2 targeting agents with other func-
tionalities, including, for example, imaging reagents or chemotherapy as we demonstrate
below using orthotopic models of breast and pancreatic cancers.

2.2. (147B5)4-Streptavidin-AlexaFluor Visualized in MDA-MB-231 TNBC and BxPC3 Pancreatic
Cancer Orthotopic Nude-Mouse Models

To assess the utility of the streptavidin–biotin complex to target EphA2, streptavidin
labeled with AlexaFluor was coupled with four equivalents of 147B5 or with its scrambled
equivalent. Subsequently, we used orthotopic nude-mouse models of MDA-MB-231 TNBC,
expressing green fluorescent protein (GFP). Tumor stock was grown subcutaneously (s.c.)
by injecting 5 × 106 MDA-MB-231-GFP cells in 100 µL PBS into the flank of nude mice. The
strong GFP expression in the tumors grown in the subcutis of mice was demonstrated using
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the FluorVivo imaging system (INDEC Biosystems, Los Altos, CA) before tumor harvest.
The tumor stock was harvested, inspected and any suspected or grossly necrotic tissues
or non-GFP-expressing tumor tissues were removed. Selected tumor tissues were subse-
quently cut into small fragments of approximately 1 mm3 and used for orthotopic tumor
implantation in nude mice. Fluorescence whole-body imaging was used to monitor tumor
growth. After 21 days, mice were injected with either (147B5)4-streptadivin-AlexaFluor
or the (scrambled-147B5)4-streptavidin-AlexaFluor control (100 µL via the tail vein, to
obtain 10 mg/kg) and green and red fluorescence in vivo imaging was used to monitor the
EphA2-targeting strategy (Figure 5). Three hours after injection, red fluorescence could
be observed that clearly co-localized with green-fluorescence (tumor site) more predomi-
nantly in (147B5)4-streptadivin-AlexaFluor treatment versus the scrambled agent (Figure 5).
This could be appreciated also in the resected tumors, suggesting that EphA2 targeting is
accumulating the fluorescent dye at the tumor.

Figure 5. (147B5)4-streptavidin-AF accumulates in breast cancer. (a) Mice harboring orthotopic human breast cancer
MDA-MB-231-GFP (white circles) were treated with either (147B5)4-streptavidin-AF or its control (scrambled-147B5)4-
streptavidin-AF (100 µL, via tail vein, 10 mg/kg) and images were taken at various time points. (b) images for the resected
tumors from the experiment in (a).

To extend these findings to pancreatic cancer as well, we used the human pancreatic
cancer cell line BxPC-3-GFP. First, tumor stock was grown subcutaneously (s.c.) by in-
jecting 5 × 106 BxPC-3-GFP cells in 100 µL PBS into the flank of nude mice. The strong
GFP expression in the tumors grown in the subcutis of mice was demonstrated using
the FluorVivo Imaging system before tumor harvest. Viable tumor tissues were subse-
quently used for orthotopic tumor implantation. Primary tumor size was measured using
a fluorescence imaging system up to day 35, at which time mice were injected with either
(147B5)4-streptadivin-AlexaFluor or the (scrambled-147B5)4-streptavidin-AlexaFluor con-
trol (100 µL via the tail vein, 10 mg/kg), and green and red fluorescence in vivo imaging
was used to assess the EphA2-targeting strategy (Figure 6). Red signal accumulated at
the tumor site immediately after injection in the (147B5)4-streptadivin-AlexFluor treated
versus the scrambled equivalent complex (Figure 6). Concentration of fluorescence in the
tumor is also appreciable in the resected tumors (Figure 6), again in agreement with cellular
data on EphA2 receptor internalization by (147B5)4-streptadivin.
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Figure 6. (147B5)4-streptavidin-AF accumulates in pancreatic cancer. Mice harboring orthotopic human pancreatic cancer
BxPC3-GFP (white arrows) were treated with either (147B5)4-streptavidin-AF or its control (scrambled-147B5)4-streptavidin-
AF (100 µL, via tail vein, 10 mg/kg) and images were taken at various time points.

Collectively, these data strongly suggest that the proposed peptide-biotin-streptavidin
system can effectively target EphA2-rich cells in vitro and in vivo, and thus it could find a
variety of applications in basic or translational studies to further evaluate whether targeting
EphA2 is a viable therapeutic strategy.

3. Materials and Methods
3.1. Synthetic Chemistry

For the synthesis of the agents we followed standard solid-phase strategies using
a Rink amide resin and a Liberty Blue Peptide Synthesizer (CEM Corp.). All reagents
were commercially available including Fmoc (fluorenylmethyloxycarbonyl) protected
amino acids, the N-terminal acid, and resins that were used without further purification.
The synthetic protocol for each coupling involved 6 equivalents of Fmoc-amino acid,
3 equivalents of N, N’-Diisopropylcarbodiimide (DIC), and 1 equivalent of OximaPure
in 4.5 mL of DMF (dimethylformamide) (90 ◦C, 5 min via microwave irradiation). The
following step involved Fmoc deprotection that was performed by treatment with 20%
piperidine in DMF (2 × 3 mL) (90 ◦C for 3 min). Final peptide cleavage from the resin
was accomplished with a mixture containing TFA (trifluoroacetic acid), triisopropylsilane,
water, phenol (94:2:2:2) for 3 h, followed by precipitation of the peptide in cold diethyl
ether. After redissolving the precipitate in DMSO, the solution was purified by preparative
RP-HPLC using a XTerra C18 column (Waters) with a JASCO preparative HPLC system
and gradient water/acetonitrile (5% to 70%) containing 0.1% TFA (purity > 95%). The
identity of the peptides was further confirmed by high resolution mass spectrometry.

3.2. Cell Lines, Cell Culture, and Antibodies

BxPC-3 and MDA-MB-231 cell lines were purchased from the American Type Culture
Collection (ATCC) and cultured in RPMI-1640 and DMEM, respectively. The media were
supplemented with 10% FBS and 1% Pen/Strep. Anti-EphA2 antibody (1C11A12) and
HRP-conjugated goat anti-mouse secondary antibody were purchased from Thermo Fisher
Scientific and β-tubulin antibody was purchased from Santa Cruz Biotechnology.

3.3. Immunoblotting Assays

Cells were lysed with cell lysis buffer (20 mM Tris, pH 7.4, 120 mM NaCl, 1% Triton
X-100, 0.5% sodium deoxycholate, 0.1% SDS, 1% IGEPAL, 5 mM EDTA), supplemented
with EDTA-free Protease Inhibitor Cocktail and PhosStop (Sigma Aldrich) for 15 min on
ice. Cell lysates were then centrifuged to remove cell debris for 20 min at 13,000 rpm
at 4 ◦C. Samples were prepared and loaded into 4–12% NuPAGE Bis-Tris Precast Gels
and transferred to PVDF membranes as indicated previously [35]. The membranes were
blocked with 5% non-fat milk in TBS and 0.1% Tween (TBST) for 1 h, probed for primary
antibodies raised against EphA2 or β-tubulin at 4 ◦C overnight, and then with secondary
antibodies for 1 h. Subsequently, Clarity Western ECL solution (BIO-RAD) was added
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to the blots prior to being imaged on a FluorChem (ProteinSimple) and analyzed with
AlphaView software.

3.4. Establishment of MDA-MB-231 and BxPC3 Orthotopic Models of Human Breast Cancer and
Pancreatic Cancers, Respectively

Human breast cancer MDA-MB-231-GFP and human pancreatic cancer cell line BxPC-
3-GFP were maintained in DMEM supplemented with 10% heat-inactivated fetal bovine
serum and 1% penicillin and cultured at 37 ◦C in a 5% CO2 incubator. Tumor stocks were
grown subcutaneously (s.c.) by injecting either 5 × 106 MDA-MB-231-GFP cells or 5 × 106

BxPC-3-GFP cells in 100 µL PBS into the flank of nude mice. The strong GFP expression in
the tumors grown in the subcutis of mice was demonstrated using the FluorVivo Imaging
system before tumor harvest. The tumor stock was harvested, inspected, and any suspected
or grossly necrotic tissues or non-GFP-expressing tumor tissues were removed; tumor
tissues were subsequently cut into small fragments of approximately 1 mm3 and used for
orthotopic tumor implantation. All procedures of the surgery were performed under an
8× magnification microscope under a HEPA-filtered laminar flow hood. Animals were
anesthetized by intramuscular injection of ketamine. The surgical area was sterilized using
iodine and alcohol. For the breast cancer model, an incision of approximately 0.5 cm long
was made in the nude mouse using surgical scissors to expose the second mammary gland.
The capsule of the mammary gland at the transplantation site was stripped, and one MDA-
MB-231-GFP tumor fragment (1 mm3) was transplanted and secured with 8-0 surgical
sutures (nylon) [39]. The skin was closed with 5-0 surgical sutures. For the pancreatic
cancer model, an incision of approximately 1 cm long was made in the left upper abdomen
of the nude mouse using surgical scissors. The pancreas was exposed, the capsule of the
pancreas at the transplantation site was stripped, and one BxPC-3-GFP tumor fragment
(1 mm3) was transplanted and secured with 8-0 surgical sutures (nylon). The abdomen
was closed with 5-0 surgical sutures [40].

After 21 days (breast cancer) or 35 days (pancreatic cancer), mice received 100 µL, via
tail vein, of either (147B5)4-streptavidin-AF or (scrambled)4-streptavidin-AF and images
were acquired using the FluorVivo fluorescence imaging system [41]. Images were pro-
cessed for contrast and brightness and analyzed with the use of IMAGE PRO IMAGE 6.1
software. High-resolution images of 1392 × 1040 pixels were captured directly on a Lenovo
PC. Likewise, after euthanasia, tumors were resected and imaged.

4. Conclusions

Therapeutic targeting of the EphA2-LBD for the development of novel therapeutics
in oncology is currently being pursued by a variety of approaches [19,25,32,37,42–50]. We
recently reported that dimeric 12mer agonistic peptides can be very effective in induc-
ing EphA2 receptor dimerization and subsequent activation and degradation [29–31,35].
These previous studies suggested a possible molecular mechanism of EphA2 activation by
dimeric agents that involved transient EphA2 dimerization and subsequent clustering and
internalization [29,51]. This is well in agreement with previous observations with EphA2
activation by isolated ephrinA1 ligands, which require dimerization or clustering for opti-
mal activity in the cell. In an attempt to create a novel and more flexible EphA2-targeting
system, we report here that proper peptide–biotin streptavidin complexes can be used
to effectively target EphA2 in both breast- and pancreatic-cancer cells and tumors. The
process of receptor dimerization, clustering, internalization, and degradation is complex
and not fully understood at the molecular level, given its complexity. However, current
theories evoke the possibility that preformed clusters are presumably more prone to activa-
tion and degradation, involving secondary interactions between the second extracellular
fibronectin domain binding transiently with the ligand-binding domain of an adjacent
receptor [38]. Engagement of ephrinA1 ligands in cis (within the same cell) could also make
the ligand-binding domain less available to external agonistic agents. Speculatively, we
propose that these phenomena could attenuate or amplify the effect of agonistic agents
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in different cancer cell lines, as we observed in the present report comparing the effect of
agonistic agents in targeting EphA2 in MDA-MB-231 or BxPC3.

Given that several streptavidin conjugates are readily available, and considering
the ease of synthesis of biotinylated agents, we believe that the proposed system can
be useful in devising novel pharmacological tools to evaluate the merits and pitfalls of
EphA2 targeting in vitro and in vivo. Hence, we envision that derivatizing streptavidin
with imaging reagents and/or cytotoxic agents can result in novel therapeutic agents for
diagnostic purposes and/or for targeted delivery of chemotherapy.

Supplementary Materials: The following are available online, Uncropped western blot images
(MDA-MB-231 and Bx-PC3).
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