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Genome-wide association studies (GWAS) have contributed significantly to predisposing the disease eti-
ology by associating single nucleotide polymorphisms (SNPs) with complex diseases. However, most
GWAS-SNPs are in the noncoding regions that may affect distal genes via long range enhancer-
promoter interactions. Thus, the common practice on GWAS discoveries cannot fully reveal the molecular
mechanisms underpinning complex diseases. It is known that perturbations of topological associated
domains (TADs) lead to long range interactions which underlie disease etiology. To identify the probable
long range interactions in noncoding regions via GWAS and TADs perturbed by deletions, we integrated
datasets from GWAS-SNPs, enhancers, TADs, and deletions. After ranking and clustering, we prioritized
201,132 high confident pairs of GWAS-SNPs and target genes. In this study, we performed a systematic
inference on noncoding regions via GWAS-SNPs and deletion-perturbed TADs to boost GWAS discovery
power. The high confident pairs of GWAS-SNPs and target genes (SE-Gs) provide the promising candi-
dates to understand the molecular mechanisms underlying complex diseases with emphasis on the
three-dimensional genome.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Genome-wide association study (GWAS) is a widely adopted
approach to define single nucleotide polymorphisms (SNPs) associ-
ated with complex diseases [1,2]. However, GWAS-SNPs predomi-
nantly fall into noncoding regions [3]. Despite efforts that have
been made [4–6], the challenge of translating noncoding GWAS-
SNPs into underlying biological mechanisms remains. Interpreta-
tions of GWAS findings are further complicated by noncoding
GWAS-SNPs which can affect distal genes through long range
enhancer-promoter interactions, e.g. an FTO intronic variant
embedded in an enhancer regulating IRX3 in ~ 490 kb away [7],
an intergenic schizophrenia-associated SNP regulating FOXG1
gene ~ 760 kb away [8], an intronic type 2 diabetes associated
SNP regulating ACSL5 gene ~ 624 kb away [9]. Moreover, large dele-
tions (DELs) likely occur around GWAS-SNPs affecting distal target
genes [10]. Therefore, the common practice on mapping SNPs to
the nearest genes or finding causal variants by linkage disequilib-
rium (LD) can generate false positive results.

The advanced technologies and growing number of functional
genomics data could narrow this gap of knowledge. Hi-C and
related technologies have discovered the spatial genome structure,
topological associated domain (TAD), which is relatively stable
across cell types and species [11,12]. Perturbations of TADs can
lead to long range interactions and cause diseases, such as the dys-
regulation of IRS4 in sarcoma and squamous cancer is associated
with DELs at one specific TAD boundary [13]; a type of limb mal-
formations (brachydactyly) is caused by DELs disrupted TAD bor-
ders and produced abnormal gene expressions [14]. Mechanistic
studies collectively suggest that probable long range interpreta-
tions can be prioritized from GWAS-SNPs that embedded in enhan-
cers and genes within DELs-perturbed TADs. Although emerging
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methods or databases have added TADs to gain insights into non-
coding regions, in much the same way as 3Disease [15] aims to
investigate the chromosome translocations with TADs, GWAS4D
integrates Hi-C data and functional annotations on noncoding vari-
ants [16]. Thus far, a systematic study on noncoding GWAS-SNPs
and genes within DELs-perturbed TADs is still lacking.

Here, we describe a scoring system to decipher GWAS findings
at noncoding regions using DELs-perturbed TADs. After integrating
massive data, we ranked GWAS-SNPs based on their potential reg-
ulatory functions and DELs-perturbed TADs based on their consis-
tencies. Finally, we established the connection between GWAS-
SNPs and target genes within DELs-perturbed TADs based on their
closest genomic distances. Our work could provide new insights
into GWAS discovery by locating functional GWAS-SNPs and link-
ing them to the potential affected genes inferred from three-
dimensional genome context.
2. Materials and methods

2.1. Data collections

We collected GWAS-SNPs, enhancers, TADs, and DELs data from
11 different sources listed in Table 1.

The GWAS-SNPs were aggregated from the GWAS Catalog [1]
(1) and PhenoScanner V2 [2] (2). We retained SNPs with rs num-
bers and with p value<1*10-5, in order to include SNPs with a
potential biological significant as well as to minimize the potential
false positive. In total, we got 2,640,328 diseases/traits associated
non-redundant SNPs for further analysis (Fig. S1A). For enhancers,
we obtained 65,423 enhancers from the Functional ANnoTation Of
the Mammalian genome (FANTOM) [17] and 2,255,761 enhancers
from Chromatin State Segmentation by HMM (ChromHMM)
marked by 4_Strong_Enhancer, 5_Strong_Enhancer, 6_Weak_En-
hancer, 7_Weak_Enhancer [18]. Furthermore, we downloaded
TAD data generated by Hi-C Seq under 40 kb resolutions from 20
cell lines in Job Dekker’s laboratory (https://www.encodeproject.
org/data/). Additionally, we downloaded 20,124 protein coding
genes from GENCODE (v30lift37) to locate target genes within
DELs perturbed TADs. As for DELs (one large type of structural vari-
ations), we collected a comprehensive list of structural variations
from various sources [21–24] and extracted 818,716 DELs out of
all sources.

2.2. Scoring scheme

We hypothesize the presence of long range interactions
between enhancers and closest genes through DELs-perturbed
TADs. To model it, we designed a metric covering an enhancer con-
Table 1
Summary of data sources.a

Database Total number of inputs

GWAS-SNP GWAS catalog 58,134
PhenoScanner 2.0 2,629,046

Enhancer ChromHMM 2,255,761
FANTOM5 65,423

TAD ENCODE 44,177
DEL 1000 Genome 42,279

Audano et al. 34,211
Chaisson et al. 37,172
Ensembl 1,686,961
GnomAD 176,222
GoNL 40,550

a Date at data access: GWAS-Catalog (Jan. 2019), PhenoScanner 2.0 (Jul. 2019), Chrom
(Aug. 2019), Audano et al. (Aug. 2019). Chaisson et al. (Aug. 2019), Ensembl (Jul. 2019),

b Total genome refers to the length of genome from chromosome 1 to chromosome Y
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fident score and a DEL-TAD score. The complete workflow is repre-
sented in Fig. 1.

We first calculated the enhancer confident score by combining
the sum of weighted regulatory function scores and numbers of
overlapped enhancers. For each GWAS-SNP, we calculated the reg-
ulatory function score by summing up available scores generated
by eight algorithms if pre-defined thresholds were met
(Table S1). The following eight algorithms integrated in SNPnexus
tool [25] were used: CADD [26], GWAVA [27], fitCons [28], Deep-
SEA [29], EIGEN [30], FunSeq2 [31], FATHMM-MKL [32] and ReMM
[33]. After annotating, the remaining GWAS-SNPs were 2,639,858.
The overlapped enhancers were generated through the following
steps: If there was an enhancer found within 10 bp flanking regions
of GWAS-SNPs, we recorded it as 1, otherwise as 0. We then
marked each GWAS-SNP by the number of overlapped enhancers
and used the enhancer confident score to reflect the possible
enhancer function. Together, the enhancer confident score is calcu-
lated as follows:

S ¼ W ðhits=8Þ �
X8

i

Si þ Senh

The W(hits/8) stands for the number of algorithms which have
scores on GWAS-SNP divided by totally eight algorithms. Si is the
regulatory function score generated by the ith algorithm. Senh refers
to the counts of overlapped enhancers on each GWAS-SNP. A cut-
off of 0.557 was used since it gives the best performance, and
higher than 0.557 meant the GWAS-SNP carried potential regula-
tory function.

We then defined a DEL-TAD score to measure the genome wide
possibility that TAD boundaries affected by DELs. For each TAD, a
DEL-TAD score (SDEL-TAD) was defined as the TADs consistency mul-
tiplied by the DEL-TAD frequency:

SDEL�TAD ¼ 2� STAD�freq � ðSDEL�TAD�left þ SDEL�TAD�rightÞ
The STAD-freq refers to the overlapped number of TADs from cell

lines. SDEL-TAD-left and SDEL-TAD-right are the min–max normalized
values over the number of overlapping DELs detected at the left
or right boundaries of TADs, respectively.

Finally, we combined enhancers and affected genes by connect-
ing GWAS-SNPs to DEL-TADs based on the genomic proximity, i.e.
the affected genes within DEL-TADs were assigned to the closest
GWAS-SNPs. We kept only pairs of GWAS-SNP and target gene
(SE-Gs) on either side of the border where DELs-perturbed TADs.

2.3. External data

To evaluate the enhancer confident scores, we compared the
GWAS-SNPs with 1,339 enhancers documented at VISTA [34] by
Average length (bp) Coverage of total genomeb (%)

1 0.0000188
1 0.000849

532 0.388
281 0.00594

810,640 11.6
9,444 0.129
449 0.00496

7,343 0.0882
8,453 4.61
7,483 0.426
1,138 0.0149

HMM (Jan. 2019), FANTOM5 (Jan. 2019), TAD-ENCODE (Jan. 2019), 1000 Genome
GnomeAD (Aug. 2019), GoNL (Aug. 2019).
.
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Fig. 1. An overview of analysis pipeline. A relatively comprehensive resource of GWAS-SNPs, enhancers, DELs, TADs and protein coding genes were collected from databases
and publications. Pairs of SE-Gs were ranked according to enhancer confident scores and DEL-TAD scores, where an enhancer confident score for each GWAS-SNP was
calculated by summing up weighted regulatory function scores and the numbers of overlapped enhancers, and DEL-TAD was based on conservation. GWAS-SNPs and target
genes were associated by the closest genomic distances between GWAS-SNPs and DELs perturbed TADs. GWAS: Genome Wide Association Study; SNP: Single Nucleotide
Polymorphism; DEL: Deletion; TAD; Topological Associated Domain; SE-Gs, pairs of the GWAS-SNP and the target gene.
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calculating the area under the curve (AUC). Since enhancers from
VISTA are experimentally validated, GWAS-SNPs with enhancer
confident scores and located in enhancer regions were considered
true positives (TP). False positives (FP) were defined as those with
enhancer confident score, but not in VISTA enhancer regions. True
negatives (TN) were those not predicted by enhancer confident
score and not found by VISTA enhancers, and false negatives (FN)
were those not predicted by enhancer confident score, but over-
lapped with VISTA enhancers.

To further assess the performance, we calculated the numbers
of enhancer-gene pairs between SE-Gs with data from the Disea-
seEnhancer database (version 1.0.2) [35] and generated by pro-
moter capture Hi-C (pcHi-C) experiment [36]. We retained 1,122
unique one-to-one enhancer target gene pairs, and 131,843
GWAS-SNPs target genes pairs for validation, respectively.

2.4. Statistical analysis

Statistical analyses and plots were generated by R 3.6.1, notably
using the package ggplots and UpSetR. Data integration and mining
were done by in house shell scripts, Bedtools (v2.26.0) and Perl
v5.16.3. All genomic data were mapped to the hg19 genome
assembly. The performance was assessed by:

Sensitiv ity ¼ TP= TP þ FNð Þ

Specificity ¼ TN=ðTN þ FPÞ
Enrichment analyses were conducted by an R package Clus-

terProfiler. P values from enrichment analyses were multiple cor-
rected by the Benjamín-Hochberg method to calculate q values.
For ranked comparisons, we used the Wilcoxon Signed-Rank Test
for paired samples. To evaluate the enhancer confident scores
and the high confident SE-Gs, we took one sided Pearson’s Chi-
squared test.
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3. Results

3.1. Enhancer confident scores prioritize GWAS-SNPs associated
enhancer functions

According to the design, enhancer confident scores consist of
weighted regulatory function scores and overlapped enhancers.
As for regulatory function predictions, 66.42% of GWAS-SNPs were
scored as functionally relevant. We used a combination of eight
algorithms because that the computational methods behind dif-
fered to a certain extent, and one algorithm alone could not com-
prise all the possibilities. In our data, we observed that the
scored GWAS-SNPs were found at most by three algorithms
(Fig. 2).

To dissect enhancers from regulatory elements, we then inter-
sected scored GWAS-SNPs with enhancers documented in
ChromHMM and FAMTON in order to calculate the number of
overlapped enhancers. We found that 23.07% of GWAS-SNPs at
10 bp flanking regions overlapped with at least one enhancer sug-
gesting that these GWAS-SNPs were probably embedded in the
enhancers. Considering the overlapped enhancers in each database,
271,918 GWAS-SNPs (22.85%) overlapped with at least one enhan-
cer in ChromHMM, and 8,530 GWAS-SNPs (0.73%) in FAMTON
(Fig. S2). This difference in the number of GWAS-SNPs indicates
that enhancers identified through machine learning models with
omics data and CAGE experiments have different coverages. Thus,
relying on one type of data would result in low sensitivity in
enhancer identification.

Finally, we combined weighted regulatory function scores and
overlapped enhancers in order to generate the enhancer confident
scores. We observed a rather similar distribution between enhan-
cer confident scores and weighted regulatory function score sug-
gesting a combination of these scores could help to prioritize
enhancers (Fig. S1B).



Fig. 2. UpSet plot of interactions among sets of scored GWAS-SNPs from eight algorithms. The bar chart from the left indicates the total number of scored GWAS-SNPs in each
algorithm. The upper panel bar chart reflects the intersection size between sets of scored GWAS-SNPs from algorithms. The dark connected dots on the bottom panel show
which algorithms are considered for each intersection.
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3.2. DEL-TAD scores pinpoint the target genes

To detect DELs interrupted TADs in a consensus way, we first
defined the TAD conservation score which is equal to the number
of identical TAD boundaries across 20 cell lines. Among 44,177
non-redundant TADs, 168 identical non-redundant TADs were
found among 20 cell lines. The median number of identical TADs
found from 20 cell lines was 4, which suggests that TADs have cer-
tain degrees of conservation. This is in line with previous findings
that TADs are preferentially invariant, but it can be varied by tis-
sues and developmental stages [12]. Then we checked the distribu-
tion of TADs at chromosome level (Fig. S3A). The TADs span over
the entire genome. This proved that our work covered the whole
genome level.

Next, we analyzed the breadth and depth of DELs to ensure the
detection of overlapped TAD borders in genome wide. The DELs
were ranging from 50 bp to 223,214,370 bp and spanning over
the genome (Fig. S3B). Then, we performed the analysis on the
depth of DELs at base level and observed a mean depth of 18.28
(Table S2). Here, we used the depth of DEL as an analogue of the
frequency of a DEL occurring in population because GWAS was
built on ‘‘common disease common variant” and a rare DEL in
the population scale, suggesting that it might have a lower possi-
bility of developing common diseases. Subsequently, we consid-
ered DEL-TADs as DELs present within TAD boundaries. In total,
99% of TAD boundaries overlapped with at least one DEL (Fig. S4).

Combining conservation scores and overlapped DEL-TAD, we
furthermore generated DEL-TAD scores and we set the cut-off of
DEL-TAD score as 2 based on performance. A score greater than 2
may lead to a possible DEL perturbed TAD event.

3.3. Potential associations between GWAS-SNPs and target genes are
evaluated by high confident SE-Gs

We associated SE-Gs by the closest genomic distances between
GWAS-SNPs and target genes in DEL-TADs. In total, 3,245,076 pairs
of SE-Gs were identified and the average distance between SE-Gs
was 436,494 bp. Among all pairs, we defined high confident SE-
Gs as enhancer confident score greater than 0.557 and DEL-TAD
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score greater than 2, resulting in 201,132 pairs. These SE-Gs
included 162,421 GWAS-SNPs and 2,587 genes with an average
distance of 403,329 bp. A complete list of high confident SE-Gs is
provided in Table S3.

To decipher noncoding regions, it is obvious to investigate the
implications from high confident SE-Gs in GWAS-SNPs and target
genes, respectively. We first explored the GWAS-SNPs associated
diseases. where we compared associated diseases between original
GWAS-SNPs and high confident GWAS-SNPs. In doing so, we
noticed a significant difference (p < 0:22� 10�15, Wilcoxon
Signed-Rank Test), indicating that GWAS-SNPs with potential
enhancer functions might be enriched in certain diseases. After
performing enrichment analyses in disease ontology (DO), Kyoto
Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO)
on target genes, significant values (q < 0.05) were generated by
GO, and genes were enriched at developmental processes, morpho-
genesis and leukemia (Fig. 3). We detected Epha4, Pax3, Wnt6 from
high confident SE-Gs around perturbed TADs. This is in line with
the previous study which experimentally validated distal interac-
tions between enhancers and these three genes (Epha4, Pax3,
Wnt6) after structural variations, including DELs rewired TAD
structures and causing limb malformations [14]. We also identified
upstream and downstream enhancer regions of MYC via DELs
interrupted TADs from high confident SE-Gs, which correlates with
the study on T cell acute lymphoblastic leukemia [37].

As we have gathered a relatively comprehensive list of DELs and
connected enhancers and affected target genes via DEL-TADs, we
further investigate the DELs in noncoding regions. Within all DELs
we collected, 41% of DELs did not overlap with any known genes,
where direct impacts on these DELs are unknown. Through our
high confident SE-Gs, we located 22,576 DELs of this kind. We
explored the potential biological implicants on these DELs by
studying the target genes where these DELs were found. In the
enrichment tests, target genes were also significantly enriched
(q < 0.05) for developmental processes (Fig. 3). Specifically, we
observed that these genes were enriched for several developmen-
tal processes on this subset of high confident SE-G pairs. In conclu-
sion, these results all support the role of DELs in developmental
processes and embryonic developments.



Fig. 3. GO and DO enrichment analyses on different sets of high confident target genes. Upper panel: the enrichment result of gene ontology (GO) in biological process was
performed on genes from high confident SE-Gs. Middle and bottom panels: enrichment results of gene ontology (GO-DEL) in biological process and disease ontology (DO-DEL)
were carried out by a subset of genes from high confident SE-Gs after considering DELs in noncoding regions. The color represents the FDR value, the y axis shows top 10
significant categories from each ontology, and X-axis represents the number of genes.
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3.4. GWAS-SNPs with enhancer confident scores are suggestive of
known enhancers

To evaluate the performance of enhancer confident scores, we
computed the AUC by comparing GWAS-SNPs with enhancer con-
fident scores and VISTA documented enhancers. By gradually
changing the threshold of enhancer confident scores, a series of
sensitivity and specificity were computed and these values were
used to plot a receiver operating characteristic curve (ROC). The
AUC was computed accordingly. Comparison between enhancer
confident scores and VISTA gave an AUC of ROC curve of 0.767
(Fig. 4). The result indicated that the enhancer confident score is
effective in identifying enhancers. The best performance was
reached at the threshold of 0.557, where the specificity was 0.69
and the sensitivity was 0.73.
3.5. Identified SE-Gs are found from the manually curated database
and the experimental data

To illustrate whether SE-Gs correlated with previous work, we
first compared our results with manually curated data in Disea-
seEnhancer database. There were 6,595 out of 2,639,858 GWAS-
SNPs covered by 81.47% (598/734) enhancer regions documented
at DiseaseEnhancer. We further examined if both GWAS-SNPs
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and their target genes fell into the enhancers and target gene
regions, respectively. In total, 782 SE-Gs were identified, and 33
pairs remained after applying the cut-offs of enhancer confident
score and DEL-TAD score to 0.557 and 2, respectively.

To further evaluate the validity of SE-Gs predicted by our
method, we took one external omics dataset [36]. Given that our
hypothesis is focusing on genes next to TAD borders and version
differences in naming SNPs, we cleaned the data from Jung et al.
by filtering 7,583 genes and 11,268 SNPs. According to our crite-
rion that GWAS-SNPs, DELs and genes must be present on both
sides around the TAD border, it occurred that 6,707 pairs from
Jung’s result were also removed. Finally, we compared the SE-Gs
between two datasets using Pearson’s Chi-squared test and the
high confident SE-Gs were significantly enriched in pcHi-C data
(p ¼ 0:22� 10�15).
4. Discussion

Identification and interpretations of causal variants and affected
genes are an enduring challenge in GWAS. Thus, we developed a
scoring system focusing on downstream functional dissection of
noncoding GWAS-SNPs in three-dimensional context. We com-
pared GWAS-SNPs with enhancer confident scores and SE-Gs to
public datasets, which have led to significant results. Moreover,



Fig. 4. An AUC of ROC curve between enhancer confident scores and VISTA. The x
axis is specificity and y axis represents sensitivity. The AUC is 0.767. At the
threshold of 0.557, the best performance is reached where specificity is 0.691 and
sensitivity is 0.727.
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to our knowledge this is the first attempt in leveraging noncoding
GWAS findings with target genes by DELs perturbed TADs.

By integrating DELs, TADs with GWAS-SNPs, we identified
201,132 high confident SE-Gs pairs that play roles in a ‘‘long-
range” manner. Furthermore, our work on the analysis of high con-
fident SE-Gs uncovered that target genes were enriched in several
developmental processes, leukemia and morphogenesis in line
with previous studies that explored both structural changes and
long range interactions [14,37–40]. Our results could also be
extended to explaining DELs that devoid genes, since direct impact
on these DELs are difficult to interpret. In total, we detected 22,576
high confident SE-Gs by means of this kind of DELs. ‘‘Enhancer
hijacking” is a known event in cancer which is sensitive to pertur-
bations. Our study has shown that MYC was enriched in several
types of cancers where formation of neo-TADs may be involved
in MYC activation as described by Dixon et al. [41].

Although our purpose is to generate consensus results, expand-
ing our analyses to various types of structural variations, cell lines
and developmental periods could aid the prioritization of critical
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regulatory regulatory regions and affected genes. For example,
Javierre et al. has revealed the cell type specific enhancer-
promoter contacts [42]. This is definitely warranted for an impor-
tant follow-up. Next, we focused on mapping noncoding GWAS-
SNPs to target genes in DEL-TADs, however genome-wide studies
under this hypothesis are not available to this date, therefore direct
assessment on such interactions are challenging. Follow-up exper-
iments, such as reporter assays and chromatin immunoprecipita-
tion sequencing (ChIP-Seq), will be helpful to validate the
interactions between enhancers and target genes.

In conclusion, we performed a systematic inference on noncod-
ing regions via GWAS-SNPs and DEL-TADs to boost GWAS discov-
ery power. Our work can be used to locate the functional GWAS-
SNPs as well as to uncover affected candidate genes. Moreover,
with the rapid development in genome sequencing technologies,
our work can also be extended to interpret DELs in noncoding
regions. The high confident SE-Gs provide valuable resources to
elucidate the biological insights behind complex diseases with
emphasis on three-dimensional genome.
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