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Norepinephrine (NE) is synthesized in the Locus Coeruleus (LC) of the brainstem, from

where it is released by axonal varicosities throughout the brain via volume transmission.

A wealth of data from clinics and from animal models indicates that this catecholamine

coordinates the activity of the central nervous system (CNS) and of the whole organism

by modulating cell function in a vast number of brain areas in a coordinated manner.

The ubiquity of NE receptors, the daunting number of cerebral areas regulated by

the catecholamine, as well as the variety of cellular effects and of their timescales

have contributed so far to defeat the attempts to integrate central adrenergic function

into a unitary and coherent framework. Since three main families of NE receptors are

represented—in order of decreasing affinity for the catecholamine—by: α2 adrenoceptors

(α2Rs, high affinity), α1 adrenoceptors (α1Rs, intermediate affinity), and β adrenoceptors

(βRs, low affinity), on a pharmacological basis, and on the ground of recent studies

on cellular and systemic central noradrenergic effects, we propose that an increase

in LC tonic activity promotes the emergence of four global states covering the whole

spectrum of brain activation: (1) sleep: virtual absence of NE, (2) quiet wake: activation

of α2Rs, (3) active wake/physiological stress: activation of α2- and α1-Rs, (4) distress:

activation of α2-, α1-, and β-Rs. We postulate that excess intensity and/or duration

of states (3) and (4) may lead to maladaptive plasticity, causing—in turn—a variety

of neuropsychiatric illnesses including depression, schizophrenic psychoses, anxiety

disorders, and attention deficit. The interplay between tonic and phasic LC activity

identified in the LC in relationship with behavioral response is of critical importance

in defining the short- and long-term biological mechanisms associated with the basic

states postulated for the CNS. While the model has the potential to explain a large
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number of experimental and clinical findings, a major challenge will be to adapt this

hypothesis to integrate the role of other neurotransmitters released during stress in a

centralized fashion, like serotonin, acetylcholine, and histamine, as well as those released

in a non-centralized fashion, like purines and cytokines.

Keywords: norepinephrine, adrenoceptors, stress, fight-or-flight response, ADHD, depression, psychosis, anxiety

Berserk

“Early 19th century (originally as a noun denoting a wild Norse
warrior who fought with frenzy): from Old Norse berserkr (noun),
probably from birn-, bj̨orn (bear) + serkr “coat,” but also possibly
from berr “bare” (i.e., without armor).” Oxford Dictionary.

“His (Odin’s) men rushed forwards without armor, were as mad
as dogs or wolves, bit their shields, and were strong as bears or
wild oxen, and killed people at a blow, but neither fire nor iron
told upon them. This was called Berserkergang.” Ynglinga saga and
Laing Samuel (1889). The Heimskringla or the Sagas of the Norse
Kings. London: John. C. Nimo. p. 276.

“If a soldier survives the berserk state, it imparts emotional
deadness and vulnerability to explosive rage to his psychology
and permanent hyperarousal to his physiology—hallmarks of
post-traumatic stress disorder in combat veterans. My clinical
experience with Vietnam combat veterans prompts me to place the
berserk state at the heart of their most severe psychological and
psycho-physiological injuries.” Shay Jonathan (1994). Achilles in
Vietnam. New York: Scribner. p. 98. ISBN 0-689-12182-2.

INTRODUCTION

Neurotransmitters Controlling the
Spatio-Temporal Brain Activation Patterns
Evolution has shaped the mammalian brain during millions
of years, endowing it with redundant and inter-related
neurotransmitter networks to manage and administer stress.
The characteristics of the “berserk,” the ultimate warrior—
superhuman physical strength, insensitivity to pain, lack of
concern for the consequences of his actions—are possibly the
display of an extreme state, an upper limit of human physical and
mental condition at the core of norepinephrine (NE)-induced
states.

Although a variety of hormones may turn on neuronal
circuits for the execution of energetically demanding behavioral
tasks, only a fistful of neurotransmitters have the capability
to actually regulate the global state of activation of the
whole brain, managing effectively and parsimoniously the
necessarily limited energy/power capability of the brain and
of the whole organism. The NE-releasing Locus Ceruleus (LC)
is anatomically and functionally intertwined with the brain
area which is arguably the major recipient of stress-related
information: the paraventricular nucleus of the hypothalamus
(PVN, Figure 1). Other hypothalamic nuclei also impinge upon
the LC. Among them the hypocretin-expressing nuclei in the
lateral hypothalamus (Henny et al., 2010; Carter et al., 2012). The
hypothalamus-LC axis controls input and output information
from and to the autonomic system through the brainstem, to and
from the neuroendocrine system through the pituitary gland and

numerous gland-to-brain biochemical feedback loops, as well as
all the rest of the central nervous system (CNS), through brain
and spinal cord volume transmission (Figure 1).

Further hints of the biological importance and pervasiveness
of central adrenergic function come from the analgesic properties
of NE and its agonists (Simpson and Lin, 2007), by its important
role in the control of body temperature, like during inflammatory
response (Bencsics et al., 1995; Ordway et al., 2007; Osaka, 2009),
as well as from the observation that other relevant input to
the LC originate from nuclei coordinating vital functions like
sex/reproduction (Nucleus Paragigantocellularis), respiration
(Parabrachial and Solitary Tract Nuclei), and vestibular balance
control (Simpson and Lin, 2007).

The control of the above functions is likely retained in the
evolution from lower to higher mammals (Tohyama et al.,
1974), but the increase in brain size and complexity associated
with its disproportionate anatomical development makes the
mammalian CNS particularly vulnerable to sudden surges
in energy consumption caused by stressful situations. This
latter evolutionary purpose might have further strengthened
the importance of LC as master energy hub (Berridge
and Waterhouse, 2003; O’Donnell et al., 2012), enhancing—
particularly in humans—its role in the etiology of stress-related
conditions.

Functional and Anatomical Peculiarity of
the LC/NE System
Many hormones have a potential for global control of
energy expenditure and activity regulation. Among them—for
instance—the corticosteroid system is well placed for exerting
a global and sophisticated biochemical regulation of energy
demand and distribution (De Kloet, 2004), but lacks the property
of anatomical and functional contiguity that the LC possesses.
For similar reasons, the cytokine network, which also has
the potential to control the brain (and bodily) global energy
distribution (Guijarro et al., 2006), also does not seem to qualify
as “central energy master.”

Central cholinergic fibers made up a highly divergent and
almost ubiquitous release system (McKinney and Jacksonville,
2005; Smythies, 2005a). However, the existence of a large
number of nuclei and brain areas that independently control the
release of acetylcholine (Ach; Nucleus Basalis of Meynert, medial
septum, latero-dorsal tegmentum, etc.), each toward or within
their respective anatomical targets suggests that the cholinergic
system hardly exerts a genuinely centralized control of energy
expenditure.

The central histaminergic system stemming from the
tuberomammillary nucleus of the hypothalamus appears to
play a powerful and genuinely centralized role in triggering
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FIGURE 1 | Stress pathways. The Nucleus Paraventricularis of the Hypothalamus (PVN) and the Locus Ceruleus lie at the core of the CNS stress pathways. Both

areas are at the center of an intense bi-directional information exchange with multiple targets in the periphery, within the brain, and with each other. The PVN sends

and receives information to and from the autonomic nervous system through the brain stem, and from and to the periphery through the neuroendocrine axes. The LC

sends and receives information to and from the spinal cord and the whole brain. Furthermore, PVN and LC also share monosynaptic bi-directional communication

through the medial forebrain bundle.

an emergency and alert maintenance response (Wada et al.,
1991; Sakata et al., 1997; Shan et al., 2015). To our present
knowledge, though, the histaminergic system does not appear to
display a repertoire of cellular and synaptic actions paralleling the
complexity and flexibility of the LC/adrenergic system, which is
perhaps rivaled in its pervasiveness and variety of effects only
by the Raphe/5HT system (Heisler et al., 2003; Zhou et al.,
2005). In this respect, only serotonergic projections from the
Raphe nucleus and the cholinergic fibers from the basal forebrain
(Nucleus Basalis of Meynert) reach the extent and density of LC
adrenergic projections throughout the CNS (Smythies, 2005b).
The importance of the serotoninergic system in the coordination
of the stress response has been reviewed elsewhere (Waselus et al.,
2011).

While we highlight the importance of developing a
comprehensive theory integrating the roles of the many
neurotransmitters involved in the stress response, we will
henceforth limit our discussion on the role of NE. In the
following sections we will discuss experimental evidence
relating central NE function to activities related to stress (stress
perception, elaboration, and execution of a stress-ridding plan,
as well as storage—or deletion—of related memories), and will
make an attempt to integrate previous literature into a qualitative
model in which increasing levels of NE co-ordinate the activity of
different brain areas, inducing global brain states with increasing
energy consumption and stress levels. We will only briefly
mention the effects of NE on long-term processes, which we have
recently reviewed elsewhere (Salgado et al., 2016).

It is worthwhile emphasizing the genuinely global nature
of NE, differing from its chemical precursor dopamine, whose
cortical projecting axons target more selectively the prefrontal
cortex (Robbins and Arnsten, 2009). For the sake of clarity, we
would like to highlight that stress activates two distinct pools of

NE: a central one and a peripheral one, the latter associated with
sympathetic nervous system activation. While the interaction
between the two pools is essential to the understanding of the
systemic effects of stress, only the former will be considered in
the present discussion.

Stress, HPA Axis, and LC Activation
For the purpose of this discussion, we will broadly define stress
as any situation in which an organism increases its energy
consumption beyond an expected or biologically bearable range
(which greatly varies even among individuals of the same
species), and as stressor its objective or perceived source. We
will get back to this definition of stress in Section LC-CNS
Interactions. In the presence of most types of stressors the brain
carries out the following (conscious or subconscious) functions:
(1) evaluation of the stressor characteristics (short- or long-
term intensity, duration, and consequences), (2) elaboration of
a strategy to eliminate the stress(or), (3) execution of such
plan, and (4) long-term storage (or in some case erasing)
of stressor-related memories. Among these memories are the
inner representations of the stress as a measure of potential
danger, as well as the representation of one or more actual
stress exit strategies, and their perceived effectiveness (or lack
thereof).

In the historical context of the studies of the stress response, a
critical element of adrenergic effects had been recognized early
in the interaction between the hypothalamus-pituitary-adrenal
gland (HPA) neuroendocrine axis and LC reviewed in Gold and
Chrousos (2002) and Gold (2015). In fact, NE-releasing neurons
of the LC are important targets of corticotropin-releasing
hormone (CRH)-producing hypothalamic neurons from the
PVN (Nicolaides et al., 2015), as well as from other limbic areas
including the amygdala (Ordway et al., 2007), whose activity
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in turn stimulates LC leading to NE release. The importance
of the PVN-LC axis is underscored by the observation that
the inactivation of glucocorticoid receptors in the LC induces
depression-like symptoms in a mouse model (Chmielarz et al.,
2013).

A critical feature of the well-studied HPA response to stress is
the negative feedback between the production of glucocorticoids
and the activation of the HPA axis, which occurs both at the level
of CRH-producing neurons in the PVN of the hypothalamus as
well as in pituitary ACTH-producing corticotrophs (Figure 2).
An energetically meaningful consequence of the elevation of
glucocorticoid levels is the parallel shut-down or at least decrease
of the high-energy consuming immune adaptive system, which
in turn may increase the chance of infection and cancer in
chronically stressed individuals (Reiche et al., 2004).

Importantly—unlike the glucocorticoid negative-feedback on
HPA axis—the activation of the PVN/CRH/NE/LC branch of
the stress response not only does not produce a negative
feedback (Gold, 2015), but produces a positive feedback which
opposes and jeopardizes the closure of the HPA loop associated
with glucocorticoids (Figure 2). The presence of a feedforward
loop between CRH-producing areas of the cortex and of the
hypothalamus and the LC is a risk factor in the induction
of maladaptive plasticity of the stress system, which greatly
enhances its vulnerability to intense and/or chronic challenge.
Systemic inflammation can be considered as the opposite
phenomenon, whereby a combined action of pro-inflammatory
cytokines induces a temporary state of physical apathy and
inaction (Haroon et al., 2012; Miller et al., 2013). A consequence
of such “sick response” is to spare systemic energy and promote a
prompt recovery of the organism affected by a viral or bacterial
infection.

FIGURE 2 | Feedback loops to PVN and LC: Vulnerability of the LC in

the stress axes. The LC is integral part of the stress response, in addition to

the HPA axis. Different from the HPA axis, which receives a double

negative-feedback (minus signs) of corticosteroids from the suprarenal gland,

both at the level of the pituitary and the paraventricular nucleus of the

hypothalamus (PVN), PVN, and other CRH-releasing cells in the CNS are

connected to the LC through a positive-feedback loop (plus signs), which has

the potential to derange the energy equilibrium of the system.

Decade-long seminal work from the group of Aston-Jones
and Waterhouse provides a solid ground for assessing the basic
functions and activity dynamics of the LC (Rajkowski et al., 1994;
Aston-Jones et al., 1998; Usher et al., 1999; Aston-Jones and
Cohen, 2005; Aston-Jones and Waterhouse, 2016). Using mostly
in vivo electrophysiological recordings from both primate and
rodent models, this body of work has shown that LC displays
virtually no activity during the sleep phase, whereas during the
wake state it displays two emergent firing patterns: a tonic one,
associated with the arousal level of the animal, and a phasic
one, related with decisionmaking and attention. Importantly, the
extent of LC phasic firing appears to follow an inverse-U shape
function with respect to the levels of tonic LC firing. In fact,
while low levels of tonic firing—as during low arousal level—are
insufficient to elicit a consistent behavioral response, intermediate
tonic levels yield optimal phasic firing, whereas high levels of
tonic firing—associated with high arousal and limbic activation—
yield low phasic response as LC units firing activity gets
closer to saturation. The eventual overall effect of NE depends
on the spatio-temporal pattern of its volume release (Fuxe
et al., 2010), on the nature of the cellular and synaptic targets
affected, and on the type of receptor activated (summarized
in Figure 3).

Molecular, Cellular, and Synaptic Effects
of NE
NE is released in the brain by axonal varicosities via volume
transmission (Grzanna, 1980; Jones and Yang, 1985; Agnati et al.,
1995). NE receptors have been first studied in the periphery
and subsequently identified throughout the whole CNS, with
different densities and regional specializations as reviewed earlier
(Ramos and Arnsten, 2007). In terms of molecular effects, they
can be categorized into three main groups, in descending order
of affinity: α2Rs, (≈50 nM), α1Rs (≈300 nM), and βRs (≈0.7–
0.8µM) reviewed in Ramos and Arnsten (2007). Both α2- and
β-Rs are known to activate guanosine-dependent (G–)protein
receptors, each affecting adenylyl cyclase in opposite directions,
namely by decreasing (α2Rs) or increasing (βRs) the intracellular
concentrations of cyclic adenosine monophosphate (cAMP). In
contrast, α1Rs activate phospholipase C (PLC), thus triggering
the synthesis of intracellular diacylglycerol and activation of
protein kinase C as well as of inositol phosphate, which in turn
releases Ca2+ from intracellular stores (Ramos and Arnsten,
2007).

The existence of widespread families of high-affinity
neurotransmitter receptors (NE α2Rs, M2 muscarinic, D2

dopaminergic) whose activation decreases adenylyl cyclase
activity (Gi) suggests that basal (tonic) cytosolic levels of cAMP
are not zero, and that they concur to the regular maintenance
cellular processes active during cell rest. As a corollary, we
hypothesize that the inactivity of the CNS noradrenergic
system—similar to that of the other monoaminergic and the
cholinergic system—during sleep is associated with a non-zero
level of cAMP (Figure 4), and a tonic level of cellular energy
expenditure. Such ground-level of cellular metabolic activity is
possibly necessary to carry out a number of functions including a
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FIGURE 3 | CNS function of different LC firing modes. Seminal work from Aston-Jones groups has shown the existence of a relationship between behavioral

states and LC tonic and phasic firing patterns: During sleep, LC cells display low or no activity (vertical axis in arbitrary units—A.U.); during quiet wake they display

modest tonic firing, and phasic responses to behavioral stimuli; in conditions of intermediate tonic release, associated with moderate stress and energy demand, LC

presents its highest phasic response during biologically relevant behavioral responses; the highest level of LC tonic firing occurs in situations of arousal and

fight-or-flight response, and is associated with the lowest levels of phasic LC activity.

temporary enhancement of immune function during the resting
phase (Kamath et al., 2015) and memory consolidation (Wilson
and McNaughton, 1994; Barnes and Wilson, 2014; Figure 3).
A slight increase in the concentration of neurotransmitters
activating a Gi (in the case of NE up to 100 nM) could be
sufficient to shut down such sleep-associated maintenance
cellular processes and re-direct cellular metabolic energy to
the quiet-wake related activities. Only relatively higher NE
concentrations (around or above 0.4µM) would be able to
solidly activate the PLC cascade and increase cAMP levels above
its resting levels (Figure 3), increasing the cellular supply for
more energetically demanding biological activities (Figure 4).

Cellular and synaptic adrenergic modulation (Salgado et al.,
2016) suggests that the activation of the cortical branch
of the LC/adrenergic system could simultaneously perform
two tasks: (1) single neuron activation by modulation of
intrinsic conductances, with consequent local mobilization of
large amounts of metabolic energy, and (2) temporary shut
down or depression of the activity of other cortical areas

that are unnecessary or irrelevant to the resolution of a
particular behavioral contingence. This end could be achieved
by a combination of selective depression of excitatory and
enhancement of inhibitory synaptic transmission (Waterhouse
et al., 1991; Sessler et al., 1995; Salgado et al., 2016).

Heterogeneous mechanisms of adrenergic modulation in
different cortical areas like sensory vs. prefrontal cortices
(Salgado et al., 2011, 2012b; Roychowdhury et al., 2014) together
with activity-dependent modulation may concur to a functional
selective enhancement or depression of neuronal activity in
specific areas (Hains and Arnsten, 2008; Arnsten et al., 2012;
Edeline, 2012; Roychowdhury et al., 2014). In the following
sections we will review experimental evidence of effects of the
noradrenergic receptor families mentioned above, from clinics
and animal models, in an attempt to condense the related
information in an integrated view. In many cases it will be
hard to guess how a particular cellular or synaptic phenomenon
participates into a behavioral function. In the tables we will either
report the author’s interpretation of their experimental finding,
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FIGURE 4 | Second messengers involved in the effects of NE: time-scales and metabolic energy allocation. Increasing levels of NE activate noradrenergic

receptors by first decreasing cAMP levels by activation of α2Rs, probably reducing homestead maintenance cellular function active during sleep. A further increase in

NE concentration activates α1R, activating the phospholipase C (PLC) cascade while cAMP levels are still low. For still higher levels both PLC and cAMP levels are

heightened, consistent with highest levels of cellular activation. Energetic considerations suggest that this high-demand state need to be associated with decreased

function in at least some brain areas, and has necessarily to be short-lasting, in order to prevent depletion of organismic energy stores and desensitization of

membrane receptor mechanisms. Periods of brief and intense LC activation like during its phasic release may induce temporary activation of βRs associated with

memory and learning. Prolonged high LC activity may be detrimental for learning and memory as it would necessarily reduce phasic LC activity and reduce the spatial

and temporal specificity of βR synaptic effects.

or will formulate a plausible one, keeping in mind that the same
cellular experimental data may play different roles in a systemic
function.

α2Rs CENTRAL MODULATION

α2Rs are present in many brain areas in both pre- and post-
synaptic membranes, as well as in glia (Lee et al., 1998).

Alertness and Anxiolytic Effects
Based on pharmacological observations in clinics and in animal
models, the activation of α2Rs is deemed necessary for optimal
performance in working memory and other tasks carried out
with a strong prefrontal cortex (PFC) component (Gamo and
Arnsten, 2011; Arnsten and Jin, 2012, 2014). Along with
promoting working memory—and possibly related to it—α2Rs
also appear to contribute to a plethora of functions such as
attention and impulse inhibition (Brennan and Arnsten, 2008;
Robbins and Arnsten, 2009). The activation of α2Rs decreases
the inhibitory synaptic drive onto the tuberomammillary nucleus
of the hypothalamus, contributing to alertness (Nakamura et al.,
2013). α2R activation in the medial septum and hippocampus
increases theta rhythm (Kitchigina et al., 2003), presumably

enhancing cognition. The increase in spontaneous inhibitory
postsynaptic currents (sIPSCs) in the PVN following α2R agonist
application (Chong et al., 2004), together with the α2R-induced
decrease in glutamatergic drive onto the ventral tegmental
area (VTA) may contribute at least part to α2Rs anxiolytic
properties.

PFC Activity Modulation
Ample evidence exists that α2Rs directly modulate PFC activity
(Kovács and Hernádi, 2003; Wang et al., 2010), reviewed in
Arnsten and Li (2005). Most of this literature indicates a
beneficial effect of α2R activation for working memory, although
in some studies beneficial effects of α2R blockers have been
described (Brown et al., 2012; Bari and Robbins, 2013). The
α2R-induced block of N-methyl-D aspartate receptor (NMDAR)-
mediated current (Liu et al., 2006), would corroborate a role in
PFC learning for this receptor, but it could also represent a faster
“clearance” of PFC reverberant circuits. Particularly remarkable
is the evidence from multiple studies, of the beneficial effects
of α2R-induced block of dendritic hyperpolarization-activated
cyclic nucleotide (HCN) channels (Wang et al., 2011; Zhang Z.
et al., 2013), whose age-related decline is considered an important
cause of cognitive deterioration (Wang et al., 2011).
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Motor and Sensory Activity
α2R activation does modulate motor activity (Villégier et al.,
2003), although not always in the same direction (Cathala
et al., 2002; Carey and Regehr, 2009). α2R activation appears to
modulate cerebellar activity, necessary for fine timing and control
of distal movement (Hirono and Obata, 2006; Di Mauro et al.,
2013; Lippiello et al., 2015). Little evidence is reported of α2R
modulation of sensory areas, mainly in auditory (Leão and Von
Gersdorff, 2002; Salgado et al., 2011) and olfactory (Nai et al.,
2009) areas.

Clinical and Pre-clinical Studies
Different—sometimes contradictory—evidence about the global
effects elicited by α2R ligands may perhaps be explained as the
result of two contrasting actions on excitatory (pro-convulsive)
presynaptic α2Rs and inhibitory (anti-convulsive) postsynaptic
α2Rs, as revealed by an epilepsy study (Szot et al., 2004). It
is worth mentioning that the use of tricyclic medication, used
as antidepressant, may induce α2R internalization (Cottingham
et al., 2015), perhaps indicating that depressionmay be associated
with or even caused by an increase in α2R expression, possibly
elicited by a high NE tone associated with prolonged stress.

Overall, the activation of α2Rs by an increased but moderate
NE tone (possibly ≤ 100 nM), appears to increase alertness,
improve working memory, attention, PFC function in general,
and enhance fine motor control and sensory processing, possibly
acting on pre- and post-synaptic receptors carrying out opposite
functions. Table 1 reports a series of α2R-mediated effects
grouped per putative function.

α1Rs CENTRAL MODULATION

A somehow controversial picture emerges from the literature
concerning the roles of α1Rs, reporting either facilitatory or
detrimental effects of cognitive function following the activation
of α1Rs, depending on the assay used. Remarkable information
comes from studies of different subtypes of α1R in constitutively
activated mutant (CAM) mice, reviewed elsewhere recently
(Nalepa et al., 2013). These studies suggest complex—sometime
opposite—interplay of the different subtypes of α1Rs. CAMmice
overexpressing α1BRs display neurodegeneration and grand mal-
like seizures, probably caused by an imbalance between excitatory
and inhibitory synaptic currents. Behavioral assays on these
animals suggest a role for α1BRs in memory consolidation and
fear-driven exploratory behavior (Knauber and Müller, 2000).
On the other hand, α1ARs CAMs live 10% longer than controls,
and display improved memory and learning (Doze et al., 2011),
opposite to α1BRs CAMs (Collette et al., 2014). Another subtype
of α1Rs, the α1DR appears to be inversely related to motor
control, as α1DR KO mice perform better in the rotarod test
(Mishima et al., 2004).

General Activation and Emotion Regulation
In general, α1Rs activation promotes wake and activity by directly
affecting neurons (Schmeichel and Berridge, 2013; Igata et al.,
2014), and possibly also by activating astrocytes (Pankratov and

Lalo, 2015). Activation of α1Rs also concurs to the anorexigenic
effect of NE and amphetamines (da Silva et al., 2014).

A specific and consequential effect of α1R activation is
emotion control. The decrease of the inhibitory drive onto
the VTA may indicate an increase in motivation (Velásquez-
Martínez et al., 2015). α1Rs are also clearly involved in the
stress response, as revealed by acute restraint stress (Alves et al.,
2014), predatory stress (Rajbhandari et al., 2015), and maternal
separation (Coccurello et al., 2014) studies. In agreement with its
role in the stress response, block of α1Rs impairs HPA activation
(Yang et al., 2012).

Working Memory and Motor Control
α1R positive modulation of working memory and other PFC
function also seems to be solidly established by a wealth of
data. For instance, α1R activation improves working memory
deficit induced by applications of the GABAAR agonist muscimol
(Hvoslef-Eide et al., 2015), while α1R block disrupts the “go”
performance in a “go-no-go” task (Bari and Robbins, 2013). At
the synaptic basis of these effects could lay an enhancement in
glutamatergic function (Luo et al., 2014b, 2015a), which may,
in turn, yield a general increase in firing frequency in the PFC
(Zhang Z. et al., 2013). Other cellular and synaptic effects of
α1R activation in the PFC, like an increase in inhibitory drive
(Luo et al., 2015b) or a specific decrease in NMDAR-mediated
response are not necessarily prone to similarly straightforward
interpretations.

Motor effects of α1R activation appear to be associated with
a generalized increase in motor activity (Villégier et al., 2003),
accompanied by a reduced fine motor control (Aono et al., 2015),
suggested also by improved rotarod performance of KO α1Rmice
(Mishima et al., 2004). A decreased glutamatergic cerebellar drive
may concur to a reduced distal motor control (Lippiello et al.,
2015).

Sensory Modulation, Memory, and
Learning
Even more puzzling are the effects of α1R activation on sensory
activity. While the effectiveness of α1R activation on sensory
areas appears to be well established, its overall function remains
enigmatic, possibly due to opposite effects on excitatory and
inhibitory synaptic systems, as well as to a genuine heterogeneity
of the response to different sensory modalities. For instance,
α1R activation increases firing in the somatosensory cortex
(Devilbiss andWaterhouse, 2000), but decreases firing frequency
and responses to glutamate in the visual (Terakado, 2014)
and in the auditory cortex (Manunta and Edeline, 1997;
Dinh et al., 2009). In the latter—in turn—activation of α1Rs
elicits opposite responses on electrically-evoked GABAergic
transmission originating from different cortical layers (Salgado
et al., 2011, 2012a). αRs (possibly α1Rs) are involved in
auditory cortex activity-dependent plasticity evoked by electric
or optogenetic stimulation of LC (Martins and Froemke, 2015).

The olfactory bulb is also not exempt from displaying
apparently contrasting α1R-induced effects, like an increase
of GABAergic response (Zimnik et al., 2013) and membrane
depolarization (Nai et al., 2009). The effects of α1R activation on

Frontiers in Synaptic Neuroscience | www.frontiersin.org 7 August 2016 | Volume 8 | Article 25

http://www.frontiersin.org/Synaptic_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Synaptic_Neuroscience/archive


Atzori et al. NE As Central Activity Regulator

TABLE 1 | Central effects of α2 adrenergic receptors.

Measured or putative function of

α2R activation

Brain area α2R-related physiological effect/finding References

INCREASE IN AROUSAL AND GENERAL ACTIVITY

Modulation of NE release LC α2R are present pre- and post-synaptically and in glia Lee et al., 1998

Increase arousal Tuberomammillary nucleus α2R activation decreases GABAergic synaptic

transmission

Nakamura et al., 2013

Increase arousal and cognitive functions Medial septum and hippocampus α2R activation increase theta rhythm frequency Kitchigina et al., 2003

Reduced stress response PVN hypothalamus α2R activation increases sIPSC frequency Chong et al., 2004

Decreases limbic axis activation VTA α2R act decrease glutamatergic drive onto VTA cells Jiménez-Rivera et al., 2012

Emotional memory consolidation during

sleep

Human amygdala and

hippocampus

α2R activation facilitates consolidation of memories Groch et al., 2011

PREFRONTAL CORTEX/WORKING MEMORY/EXECUTIVE FUNCTION

Improve Executive function Systemic, in rodent, and primates α2R activation Arnsten and Li, 2005

Promote working memory dlPFC α2R activation promotes persistent firing Arnsten, 2011

Modulates error detection mPFC LC lesion increases mPFC firing Wang et al., 2010

α2R activation decreases mPFC firing

Promote working memory PFC α2 block decrease firing frequency (α2 activation

increase firing frequency)

Kovács and Hernádi, 2003

Promote working memory PFC α2Rs block HCN channels Wang et al., 2011

Promote working memory PFC α2Rs prolong persistent activity (up-states) through

block of HCN channels

Zhang Z. et al., 2013

Modulate working memory mPFC

in vivo

α2R act decrease glutamatergic transmission fEPSP.

Mixed effect on synaptic transmission on multi- unit

population (could be due to effects on inhibitory

transmission)

Ji et al., 2008

Improvement of working memory PFC α2R activation blocks HCN channels and increases

excitability

Carr et al., 2007

Promotes temporal summation

Working memory systemic Block of α2R improves sustained attention and

response inhibition

Bari and Robbins, 2013

Modulation working memory PFC α2R activation decrease NMDA currents Liu et al., 2006

Increase false alarm/lower threshold for

event detection

systemic α2R activation increases false alarm Brown et al., 2012

MODULATION OF MOVEMENT CONTROL BY α2 ADRENOCEPTORS

Increase in locomotor activity Systemic/overall brain α2R agonists increase locomotor activity Villégier et al., 2003

Decrease dopamine release/motor

drive

Substatia Nigra pars compacta α2R agonists activate a cationic current increasing

sIPSC frequency

Cathala et al., 2002

Decrease motor learning cerebellum α2R activation decreases associative plasticity Carey and Regehr, 2009

Promote fine movement control cerebellum α2R activation reduces IPSC Hirono and Obata, 2006

Modulate cerebellar input Cerebellar Purkinje cells α2R activation reduce EPSC Lippiello et al., 2015

Movement control fine tuning Cerebellum α2R activation increases and decreases GABA in

different subareas

Di Mauro et al., 2013

MODULATION OF SENSORY ACTIVITY BY α2Rs

Promotes olfaction Olfactory bulb α2R activation increases olfactory discrimination Nai et al., 2009

Modulation of auditory sensitivity Calyx of held α2Rs activation decreases glutamatergic signaling but

increases firing frequency

Leão and Von Gersdorff,

2002

Decrease auditory sensitivity Auditory cortex α2Rs activation increases GABAergic signaling Salgado et al., 2011

ROLE OF α2Rs BRAIN PATHOLOGY

Pro- and anti-convulsant effect systemic α2A presynaptic autoreceptors are responsible for the

proconvulsant effect of α2R agonists

Szot et al., 2004

α2 postsynaptic receptors are responsible for the

anticonvulsant effect of α2R agonists

Antidepressant effect Systemic Tricyclics induce β arrestin-mediated internalization of

α2Rs

Cottingham et al., 2015

(Continued)
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TABLE 1 | Continued

Measured or putative function of

α2R activation

Brain area α2R-related physiological effect/finding References

Antidepressant effect mPFC α2R activation reduces AMPAR currents Yuen et al., 2014

Improve executive functions mPFC Cannabinoid receptors (which impair working

memory) decrease α2R function

Cathel et al., 2014

Decrease distress in drug addiction

(seeking) behavior

BNST α2R activation decreases excitatory transmission Egli et al., 2005

Intra-BNST α2R agonists inhibit drug

seeking

sensory areas may be related to sensory modality selection
after adrenergic activation, and/or maintenance of the
excitatory/inhibitory balance following intense activation.

On the other hand, α1R activation elicits clearly positive effects
on memory and learning (Doze et al., 2011), as corroborated
by studies on constitutively active α1AR mentioned earlier
(Collette et al., 2014), and by a worsened learning and working-
memory related performance in KO α1R mice (Spreng et al.,
2001). An increase in rebound excitation and neuronal ensemble
synchronization associated with an α1R–mediated increase in
GABA release in the entorhinal cortex (Lei et al., 2007; Cilz et al.,
2014) may be at the root of at least some of the α1R–induced
improvements in learning and memory.

Clinical Data
Depression, psychosis, and numerous treatments for stress-
related neuropsychiatric disease appear to modulate importantly
α1Rs expression and function, although the direction of such
modulation is not always consistent with illness or therapeutic
effects. For instance, long-term administration of imipramine
or electroconvulsive therapy increase the expression of α1Rs
(Nalepa et al., 2002), but the antidepressant effects of other
tricyclic antidepressants (TCAs) (Ramakrishna and Subhash,
2012) or quetiapine (Nikiforuk, 2013) reduce α1Rs expression.
The interpretation of these results is further complicated by the
age-dependence of α1Rs function (Deupree et al., 2007). Table 2
summarizes some of the systemic and cellular effects associated
with α1Rs activation.

βRs CENTRAL MODULATION

Similar to α2Rs and α1Rs, the distribution of the various subtypes
of βRs in the brain is almost ubiquitous in the mammalian brain
(Paschalis et al., 2009; Ursino et al., 2009). βRs are, in fact,
expressed in both excitatory and inhibitory cells in the cortex as
well as in subcortical nuclei (Cox et al., 2008; Salgado et al., 2011;
Liu et al., 2014). Among the latter, the amygdala is endowed with
an especially high βRs density (Abraham et al., 2008).

Alertness, Wake, and Metabolism
Many functions identified for αRs are also brought about by
βRs activation. One of them is wake and alertness (Schmeichel
and Berridge, 2013). Especially interesting is the effect of βRs
activation on astrocytes (Song et al., 2015; Dienel and Cruz, 2016;

Sherpa et al., 2016), which induces a decrease in extracellular
brain volume. βR are also neuroprotective (Laureys et al., 2014),
and decrease endotoxin-induced toxicity (Jiang et al., 2015),
possibly by eliciting process retraction in resting microglia
(Gyoneva and Traynelis, 2013), in contrast with the induction of
neurite growth in cultured cortical primary neurons (Day et al.,
2014).

Cognition and Sensory Areas
βRs exert their effects in many sensory areas including the
somatosensory cortex (Devilbiss and Waterhouse, 2000), the
visual cortex (Terakado, 2014), the auditory cortex (Manunta
and Edeline, 2004; Salgado et al., 2011), cochlear nucleus, lateral
lemniscus, inferior colliculus (Wanaka et al., 1989), and the
olfactory bulb (Shakhawat et al., 2015). Activation of βRs impairs
sustained attention (Bari and Robbins, 2013), and increases
the power (but not the frequency) of γ-oscillations (Haggerty
et al., 2013), apparently without impairing cognitive flexibility
(Steenbergen et al., 2015).

Similar to the sensory effects of αRs described in the
previous sections, the effects of βRs do not necessarily appear
to converge onto an unequivocal single function, representing
either genuine differences between sensory areas, or recovery of
the excitation/inhibition balance through adjustment of synaptic
strength or other cellular mechanisms.

Limbic and Motor Function
The body of knowledge concerning the effects of βRs on a variety
of limbic functions is remarkably consistent with the hypothesis
that a high concentration of tonic NE is critical for eliciting or
modulating emotion. Fear memory—for instance—is impaired
after administration of βR blockers (Fitzgerald et al., 2015; Zhou
et al., 2015), and βR activation interferes with fear extinction
induced by novel stimuli (Liu et al., 2015). Interestingly, social
stress generates microRNA which decreases fear response acting
on βRs (Volk et al., 2014). These data indicate that βRs activation
is unequivocally associated with fear and fear memory, most
likely because of their high expression in the amygdala. βRs
are also causally related to anxiety generation, as suggested by
the anxiogenic effect of βR-agonist administration (Hecht et al.,
2014), and corroborated by elegant experiments where βRs were
activated via optogenetic means (Siuda et al., 2015). Interestingly,
βR blockers also reduce the anxiogenic effect of cocaine intake
(Wenzel et al., 2014), while βR agonist administration within
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TABLE 2 | Central effects of α1 adrenergic receptors.

Measured or putative function of α1R

activation

Brain area α1R-related physiological effect References

GENERAL ACTIVATION/METABOLISM

Wake promoting Preoptic area hypothalamus,

medial septum

α1R (and βR) activation promotes wake Schmeichel and Berridge,

2013

General activation Overall brain, astrocytes α1R induces Ca-waves, ATP release in

astrocytes

Pankratov and Lalo, 2015

Hyperexcitability LC Persistent α1R activation increases

hyperexcitability

Igata et al., 2014

Brain activation Brain, systemic α1R activation induces Ca-waves Ding et al., 2013

Food intake Medial raphe α1 block induces food intake da Silva et al., 2014

EMOTION/STRESS/MOOD/MOTIVATION

Promotes motivation VTA α1R activation decreases GABAergic IPSC Velásquez-Martínez et al., 2015

Promotes emotional response Insular cortex α1R (and α2R) activation induce systemic

response to acute restraint stress

Alves et al., 2014

Postnatal stress increase α1R sensitivity (fear) Amygdala Predator stress increase α1R sensitivity Rajbhandari et al., 2015

Prenatal stress decreases α1R sensitivity Systemic/mice Maternal separation induces α1R

downregulation

Coccurello et al., 2014

Emotional memory Amygdala Chronic α1BR activation impaired passive

avoidance

Knauber and Müller, 2000

HPA activation Systemic α1R block inhibits HPA stress response Yang et al., 2012

Is modulated by chronic stress Dorsal raphe Chronic stress impairs α1R-induced LTD Haj-Dahmane and Shen, 2014

PREFRONTAL CORTEX/EXECUTIVE FUNCTIONS

Improves working memory mPFC α1R activation increases glutamate release Luo et al., 2015a

Increase working memory mPFC α1R activation increases mEPSC and response

to pressure-applied AMPA and NMDA

Luo et al., 2014b

Improves working memory PFC α1R activation improves muscimol-induced

deficit in working memory

Hvoslef-Eide et al., 2015

Improves working memory PFC α1R (and α2R) activation induces persistent

firing

Zhang Z. et al., 2013

Improves working memory Systemic Block of α1R receptor disrupts go performance Bari and Robbins, 2013

Improves working memory PFC α1R prolong persistent activity (up-states) Zhang Z. et al., 2013

Modulation of working memory PFC α1R activation decrease NMDA currents Liu et al., 2006

Modulation of working memory mPFC α1R activation increases GABA inhibition Luo et al., 2015b

CONTROL OF MOVEMENT

Motor control worsening Basal ganglia α1DR KO has improved motor coordination in

rotarod

Mishima et al., 2004

Motor impairment Nucleus accumbens α1R activation impairs motility Aono et al., 2015

Decrease cerebellar input/motor fine tuning Cerebellar Purkinje cells α1R activation decrease EPSC Lippiello et al., 2015

Increase in locomotor activity Systemic/overall brain α1R agonists increase locomotor activity Villégier et al., 2003

Regulation of walking/rearing/grooming N. Accumbens α1R (but NOT βR) are involved in

reserpine-induced changes in behavior

Verheij et al., 2015

Decrease motor activity Systemic decreased exploratory activity Knauber and Müller, 2000

SENSORY MODULATION/PLASTICITY

Decreased excitability Visual cortex α1R activation decrease EPSC frequency,

amplitude

Terakado, 2014

Increased excitability Somatosensory cortex α1R activation increase glutamate-induced

firing

Devilbiss and Waterhouse,

2000

Decreased excitability Auditory cortex Iontophoretic application of α1R agonists

decrease firing

Manunta and Edeline, 1997

Decreased excitability Auditory cortex α1R activation decrease glutamatergic

response

Dinh et al., 2009

Increased excitability Auditory cortex α1R activation decreases GABAergic currents

from cortical layer 1

Salgado et al., 2011, 2012a

Induces plasticity Auditory cortex Phentolamine blocks auditory cortex plasticity

induced by electric/optogenetic LC stimulation

Martins and Froemke, 2015

(Continued)
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TABLE 2 | Continued

Measured or putative function of α1R

activation

Brain area α1R-related physiological effect References

Decreased excitability Olfactory bulb α1R activation increases GABAergic currents Zimnik et al., 2013

Increased excitability Olfactory bulb α1R activation induces neuronal depolarization Nai et al., 2009

MEMORY

Memory modulation Entorhinal cortex α1R activation increases GABA release Cilz et al., 2014

Increases learning and memory PFC, hippocampus α1AR stimulation improves cognition and

learning capability

Doze et al., 2011

Increases learning and memory PFC, hippocampus α1BR KO mice have reduced learning capability Spreng et al., 2001

Increases learning and memory hippocampus α1AR CAM live longer and have improved

memory and learning

Collette et al., 2014

PATHOLOGY/MODELS

Antidepressant effect PFC Age-dependent effect of tricyclic drugs on α1R

expression

Deupree et al., 2007

Antidepressant effect Cortex, cerebellum Amytryptiline reduces α1R density Ramakrishna and Subhash,

2012

Antidepressant effect, reverse cognitive

impairment on an attention-shift task

PFC Block of α1R by quetiapine Nikiforuk, 2013

Antidepressant effect Cortex, hippocampus Electroconvulsive shock increases α1R

expression

Nalepa et al., 2002

Contributes to drug addiction BNST α1R activation McElligott and Winder, 2008

Induces mGlu insensitivity in depression PFC rodent α1R reduces GluR1 expression (induces

downregulation)

Sekio and Seki, 2015

Drug seeking/mobility Substantia Nigra α1R activation induces drug seeking and

promotes mobility

Goertz et al., 2015

the pre-Botzinger complex increases spontaneous sigh frequency
(Viemari et al., 2013).

Perhaps not surprisingly, βRs are important mediators of
stress effects. For instance, restraint stress reduces dopaminergic
effects but not after blocking βRs (Chang and Grace, 2013).
Along the same line, stress elevates LC release of NE, leading to
desensitization of βRs, an effect that—if chronic—may give rise
to a depressive behavioral phenotype (Porterfield et al., 2012).
Motor function appears to be improved by βR activation. βR
agonists increase cerebellar GABA input (Di Mauro et al., 2013),
increase excitatory input to Purkinje cells, and decrease the
threshold for cerebellar LTD (Lippiello et al., 2015), although
worsening spatial orientation performance (Robinson et al.,
2015).

Memory and Learning
A wide experimental database supports a positive effect of βRs
in learning and memory (Salgado et al., 2016). For instance,
βR activation increases long-term potentiation (LTP) in the
hippocampus and in the neocortex (Laing and Bashir, 2014;
Hansen and Manahan-Vaughan, 2015; O’Dell et al., 2015)
and memory retrieval, possibly by shutting down an after
hyperpolarization activated (AHP) current (Zhang L. et al., 2013;
Zhou et al., 2013), by “unsilencing” of silent synapses (Rozas et al.,
2015), but also by inducing hippocampal long term depression
(LTD; Goh andManahan-Vaughan, 2013; Lethbridge et al., 2014).

βRs involvement in long-term synaptic plasticity is further
indicated by the increased predisposition to long-term changes in

both GABAergic synapses (Inoue et al., 2013) and glutamatergic
synapses (Maity et al., 2015) following exposure to βRs or
stress, in a βR-dependent manner (Grigoryan and Segal, 2013;
Grigoryan et al., 2015).

Neuropsychiatric Disease
The role of βRs in neurologic and psychiatric disease is an
example of bell-shaped curve: on one hand, a βR deficit is
associated with CNS malfunction and impairment, on the
other one, it is a βRs hyperactivation causes distress and
neurodegeneration. The former instance is epitomized by the
βRs deficits associated with decreased LC-adrenergic function in
aging (Santulli and Iaccarino, 2013). The finding of antibodies
against βRs in the plasma of chronic fatigue syndrome (Loebel
et al., 2016), and the improvement in memory (Dang et al.,
2014) and cognitive performance (Phillips et al., 2016) in Down
syndrome patients treated with βR agonist highlight the global
importance of the βR-dependent component of noradrenergic
transmission. The involvement of βRs in Alzheimer disease
(AD) symptomatology is somehow controversial. For instance,
βR activation appears to increase tau-protein phosphorylation—
one of the hallmarks of AD (Wang et al., 2013), while routine
presentation of novel stimuli is reported to protect from
the toxicity from β-amyloid—another important AD marker—
through βR activation (Li et al., 2013).

A βR-dependent increase in excitatory transmission in the bed
nucleus stria terminalis (BNST) has been interpreted as distress
factor in drug addiction seeking behavior (Egli et al., 2005), while
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βR block has been proposed as treatment for depression-related
allodynia (Barrot et al., 2009). A possible general interpretation
of the body of work related to the function of βRs in the context
of stress is that short-term, acute, activation of βRs promotes
demanding performances, whereas their chronic stimulation
may lead to detrimental consequences of the same functions
promoted by βRs short-term action. Table 3 summarizes recent
experimental work on βR central function.

Use of β-Blockers in the Treatment of
Psychiatric Disease
The high expression and high functional relevance of βRs in
the amygdala and overall in the initiation of stress response
would prompt them as target for pharmacological intervention in
the treatment of stress-related psychiatric illness. Administration
of the βR blockers, indeed, does decrease the behavioral and
biochemical effects of social stress (Wohleb et al., 2011), of
restraint stress (Tamburella et al., 2010), and shock-probe
defensive burying response (Bondi et al., 2007), possibly by
inhibiting cytokine release from microglia, among other effects
(Wohleb et al., 2011). Promising results in the treatment of
acute effects of stress come from the development of the blood-
brain permeable β3R agonist amibegron (Stemmelin et al., 2008).
Activation of βRsmay be an important therapeutic component of
the antidepressant effect of mirtazapine (Rauggi et al., 2005).

An old hypothesis positing that the therapeutic effect of
antidepressant was due to downregulation of βRs (as elicited by
TCA treatment; Peet and Yates, 1981) has long been discarded
(Charney et al., 1986). βRs agonists have been proposed also
in the treatment of the memory impairment associated with
psychotic schizophrenia, but the detrimental effects of βR-
agonists on working memory and general cognitive flexibility,
prevent their routine use (Friedman et al., 2004). In spite of
a clear involvement of βRs (and CRH receptors) in amygdala
activation in the etiology of PTSD, less or no effective has
been the use of βR blocker in the long-term treatment of
post-traumatic stress disorder (PTSD; Amos et al., 2014) and
schizophrenia (Wahlbeck et al., 2000). βR blockers lack of
effectiveness may perhaps be explained by the occurrence
of βR internalization induced by their persistent activation.
βR internalization was one of the first β-arrestin mediated
processes to be described (reviewed in DeWire et al., 2007).
Neurons have among the highest expression of non-visual β-
arrestin in the whole mammalian body (Gainetdinov et al.,
2004). Stress activates β-arrestin mediated internalization of βRs
as well as internalization of corticotropin-releasing hormone
(CRH) type 1 receptors (Hauger et al., 2009). Either process
is an important mechanism of neuronal desensitization to
stress response. A related third neuronal desensitization process
is the G-protein receptor kinase (GRK)—mediated switch
of G-protein functioning from its classic pathway (adenylyl
cyclase activation through Gs, in the case of βRs) to a ERK-
only pathway (Hauger et al., 2009). This process prevents
short-term action of βRs (Gs-induced activation of adenylyl
cyclase) but potentially triggers longer-term mechanism like
mitogen activated protein kinase/extracellular signal-regulated

kinase (MAPK/ERK), synaptogenesis, and, possibly, maladaptive
synaptic plasticity.

LC-CNS INTERACTIONS

As discussed earlier, the activation of the PFC-LC-PFC axis is
critically important in the stress response (Itoi and Sugimoto,
2010). The extent of the involvement of the LC/central adrenergic
system in the coordination of organism sensory input, decision-
making, and motor execution suggests that the LC/NE system
plays a critical role in the coordination of all stages of the spatio-
temporal pattern of brain activation from quiet wake to periods
of intense metabolic demand/stress. At the high end of metabolic
demand, detrimental consequences of stress-evoked release of
NEmay derive frommultiple factors, including the simultaneous
abnormal release of cytokines—particularly interleukin 6 (IL-
6; Li et al., 2015)—which by itself may lead to a wide array
of psychiatric consequences from depression to psychosis and
anxiety disorders (Atzori et al., 2012). Not surprisingly, an
increase in the adrenergic (as well as dopaminergic) tone is
an essential component of drug-induced “high” (Weinshenker
and Schroeder, 2007; Sofuoglu and Sewell, 2009; Fitzgerald,
2013), similar to catecholamine hyper-function during psychotic
episodes (Fitzgerald, 2014). An altered sensitivity of adrenergic
receptors, or their abnormal function, may thus be a factor
shared by a variety of stress-related psychiatric diseases, including
post-traumatic stress disorder (George et al., 2013), generalized
anxiety (Goddard et al., 2010), fibromyalgia (Clauw, 2014), as
well as attention-deficit disorder (Chandler, 2015; Sterley et al.,
2016).

We speculate that in a similar fashion, other areas showing
differential adrenergic modulation are the motor cortex/
cerebellum/striatum complex—responsible for commencing,
coordinating, and carrying out rehearsed motor routines and
impulsive behavior—as well as the heterogeneous group of brain
areas labeled as Limbic System, which generate a variety of
positive, negative, and mixed emotional states. The presence
of strong anatomical projections from corticotropin-releasing
hormone (CRH)-producing limbic areas to the LC is consistent
with the hypothesis that negative mood may be a strong trigger
for LC activity increase, at least in a physiological functioning
brain.

We previously defined as stress any circumstance that raises
the energy demand above an expected or biologically bearable
threshold. Keeping in mind this idea, the steady-state energetic
need of different fully-activated cortical areas varies greatly. For
instance, limbic areas appear to be active even during sleep
(default network; Buckner et al., 2008), with minimal energy
demand. Purely sensory tasks, accompanied by sensory cortex
activation, are likely to be the next least energetically demanding
areas, as they are endowed with inbuilt circuitry for passive
activity during the wake state. On the contrary, effective motor
activity requires a combination of intention and sensory-motor
coordination, which sets the motor circuitry to a relatively
high-energy-demanding position. The highest energy need is
requested by the prefrontal cortex, whose “working memory”
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TABLE 3 | Central effects of β adrenergic receptors.

Measured or putative function

of βR activation

Brain area Cellular or synaptic effect References

ALERTNESS/SLEEP + WAKE TRANSITION/METABOLISM

Increase alertness, sensory

processing, cognition, memory

Overall βR activation is necessary for astrocyte aerobic glycolysis Dienel and Cruz, 2016

Wake promoting Overall βR activation decrease extracellular volume Sherpa et al., 2016

Wake promoting Preoptic area hypothalamus

medial septum

βR (and α1R) activation promotes wake Schmeichel and Berridge,

2013

Wake promoting Overall brain βR activation increases astrocyte volume Song et al., 2015

Decrease neuro-Inflammation Cortex, hippocampus βR activation suppress brain inflammation Ryan et al., 2013

Modulates neuro-inflammation Cortex βR activation induces process retraction in resting microglia Gyoneva and Traynelis,

2013

Induce neuroprotection Overall brain βR activation induces neuro-protection Laureys et al., 2014

Protection from toxicity Overall βR activation decrease LPS-induced toxicity Jiang et al., 2015

Induces axonal growth Cortex βR agonists activate glia and induce neurite growth Day et al., 2014

Increase brain inflammation Systemic βR activation increase microglia cytokine production Johnson et al., 2013

COGNITION

Modulates Working memory/error

detection/attention

mPFC βR are present in mPFC GABAergic interneurons Liu et al., 2014

Modulates cognition Hippocampus βR activation increase power (but not frequency) of gamma

oscillations

Haggerty et al., 2013

Weakens working memory/error

detection

mPFC βR activation decreases glutamate release Luo et al., 2014a

Improves attention Systemic Block of βR impairs sustained attention Bari and Robbins, 2013

Does not affect cognitive flexibility Systemic cortex, human Systemic βR block does not affect cognitive flexibility Steenbergen et al., 2015

SENSORY ACTIVITY

Mixed Visual cortex βR activation increases EPSCs Terakado, 2014

βR activation increase EPSC amplitude and mIPSC frequency

Excitation Auditory cortex βR agonists facilitate excitatory response Manunta and Edeline,

2004

Mixed Auditory cortex βR agonists facilitate inhibitory response, increase in

synchronization

Salgado et al., 2011

Inactivation Somato-sensory cortex βR activation decrease glutamate-induced firing Devilbiss and Waterhouse,

2000

Slow down odor discrimination Olfactory bulb βR (and αR) blockage slowed odor discrimination Shakhawat et al., 2015

EMOTION/ANXIETY/FEAR/FIGHT-OR-FLIGHT RESPONSE/STRESS

Emotional memory Amygdala βR block decreases fear memory Zhou et al., 2015

Decrease discrimination memory Cortex/amygdala βR block decrease high arousal induced discrimination

memory

Conversi et al., 2014

Promote fear extinction Amygdala βR block worsens increase in fear extinction promoted by

novel stimuli

Liu et al., 2015

Increase fear response Amygdala Interference microRNA generated by social chronic stress

decrease fear response by decreasing βR activity

Volk et al., 2014

Fear conditioning mPFC, amygdala βR mediated PFC activity increase or decrease induced by

fear conditioning

Fitzgerald et al., 2015

Induce anxiety Amygdala Peripheral βR activation increases anxiety Leo et al., 2015

Cognitive effects/Induce anxiety Cortex/amygdala βR block improves cognition by blocking anxiety Hecht et al., 2014

Induces anxiety Amygdala Activation of βRs with optogenetics induces anxiety Siuda et al., 2015

Induce anxiety Amygdala or BNST to VTA βR block decreases anxiogenic effects of cocaine Wenzel et al., 2014

Sighing frequency increase Pre-botzinger complex

brainstem

βR activation increases sigh frequency Viemari et al., 2013

Stress adaptation Amygdala Restraint stress induces dopamine receptor downregulation

through βRs

Chang and Grace, 2013

(Continued)
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TABLE 3 | Continued

Measured or putative function

of βR activation

Brain area Cellular or synaptic effect References

Stress sensitization PFC, amygdala,

hypothalamus

Stress increases NE turnover, desensitization of βR Porterfield et al., 2012

Long-term changes Overall Acute stress induces gene and HPA axis activation Roszkowski et al., 2016

MOVEMENT CONTROL/SPATIAL MEMORY

Improves spatial orientation Hippocampus βR block worsens performance Robinson et al., 2015

Improves fine tuning of motor

control

Cerebellum βR increases GABA response Di Mauro et al., 2013

Increases cerebellar function Cerebellar Purkinje cells β activation increases EPSCs amplitude and lower LTP

threshold

Lippiello et al., 2015

MEMORY AND LEARNING

Increase Memory PFC βR activation increases LTP amplitude Zhou et al., 2013

Memory retrieval Hippocampus βR activation decreases sAHP and increases memory retrieval Zhang L. et al., 2013

Induce memory Hippocampus βR activation increases AMPARs insertion (unsilencing of

silent synapses)

Rozas et al., 2015

Induce memory/Epigenetic

changes

Overall βR activation triggers epigenetic changes Maity et al., 2016

Induce memory DG hippoc βR activation induces LTP Hansen and

Manahan-Vaughan, 2015

Induce memory Hippocampus βR activation increase metaplasticity of glutamatergic

synapses

Maity et al., 2015

Induce memory Hippocampus βR activation increases LTP O’Dell et al., 2015

Induce memory Perirhinal cortex (medial

temp lobe)

βR activation induces LTP from amygdala fibers but not within

perirhinal cortex

Laing and Bashir, 2014

Induce episodic memory Dentate Gyrus

hippocampus

βR activation induces LTD Lethbridge et al., 2014

Induce memory Hippocampus CA1 βR activation induces LTD Goh and

Manahan-Vaughan, 2013

Induce memory Cortical synaptosomes βrR activation increase glutamate release Ferrero et al., 2013

Induce memory Hippocampus Prenatal stress decrease βR induction of LTP Grigoryan and Segal,

2013

Induces Long-term changes in

inhibitory circuits

PVN hypothalamus βR activation induces metaplasticity at GABA synapses Inoue et al., 2013

Early stress lower threshold for

βRs LTP modulation

Hippocampus Juvenile stress increase LTP sensitivity to βRs Grigoryan et al., 2015

βRs IN NEUROPSYCHATRIC PATHOLOGY

Aging LC Aging correlates with decrement in LC activity Santulli and Iaccarino,

2013

Occurrence of chronic fatigue

syndrome

Whole brain Antibodies against βRs are evelated in Chronic Fatigue

Syndrome

Loebel et al., 2016

Clinical improvement LC βR activation increases performance in Down syndrome Phillips et al., 2016

Memory/Down syndrome Hippocampus human down

syndrome

βR activation improves memory in Down syndrome Dang et al., 2014

Alzheimer prevention Hippoc Novelty activates βRs which protect from amyloid oligomer

toxicity

Li et al., 2013

Induction of Alzheimer symptoms Cortex, hippocampus βR activation increase tau phosphorylation Wang et al., 2013

Improve post-traumatic brain

injury

Systemic βR block reduces mortality rate Ko et al., 2016

Distress induction in drug

addiction (seeking) behavior.

Intra-BNST βR antagonists

inhibition of drug seeking behavior

Bed Nucleus Stria Terminalis βR activation increases excitatory transmission Egli et al., 2005

Depression treatment and

antiallodynic effect

Systemic/clinic βR block inhibits pain and decreases depression Barrot et al., 2009
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juggles between multiple tasks including attention, planning
future actions based on the retrieval of behavioral rules and
sensory information stored earlier, and inhibition of momentary
impulse. In addition, a high tone of limbic areas may drive high
energy consumption from the PFC, to which is anatomically
and functionally bi-directionally connected. It is likely, then,
that stress affects to different extents brain areas with different
stress-imposed additional energy requirement. Cortical areas
in Figure 5 are numbered (1–4) in order of increasing energy
need (anticlockwise), starting from limbic areas (1, lower right),
sensory areas (2, upper right), motor areas (3, upper left), up to
the prefrontal cortex (4, lower left).

LC-NE Induced Activation States
Good evidence exists for gap-junction mediated synchronous
LC activation (Ishimatsu and Williams, 1996; Rash et al.,
2007). Computational modeling supports the hypothesis of
simultaneous activation of LC neurons, and simultaneous
increase in brain NE (Gao and Holmes, 2007; Patel and Joshi,
2015), although alternative hypothesis have been proposed
(Chandler et al., 2014a,b; Chandler, 2015). These observations
suggest that different brain states may be elicited by increasing
NE concentrations progressively activating ARs from high to low

FIGURE 5 | Brain areas regulated by LC activation. LC activity controls in

a centralized fashion the level of activity and functional connectivity among of

virtually all brain area. Keeping in mind that the effects of LC might have

regionally specific effects, for the purpose of this discussion we will only

consider differential LC effects onto prefrontal, motor, sensory, and limbic

cortices, and lump together the activity subcortical nuclei. Different levels of

activity are indicated by increasing color intensity, while the strength of

inter-regional connectivity will be represented by the thickness of the arrows.

This figure represents the legend for the Figures 6–8. The number (1–4) on

the side of each sketch represents the putative resting energy demand of each

activated state, from the least-demanding (LA) to the most demanding (PFC).

affinity for NE. In each of these states a different combination
of tonic and phasic NE levels would give rise to regional
differences in the brain activity, as well as to specific patterns
of global function. In this section we will describe a largely
speculative proposal for a sequence of cortical states in the
order of progressively higher energy demand (Constantinople
and Bruno, 2011), higher CNSNE levels, and progressive binding
to the sequence of adrenoceptors α2R, α1R, and βRs in the order
of affinity from the highest to the lowest (Figure 6). The intensity
of gray indicates the level of physiological (non-pathological)
activation, the thickness of the arrows indicates the strength of
the connectivity between areas.

Sleep is the lowest-energy state, corresponding to a virtual
absence of adrenergic tone. The whole organism—particularly
the CNS—refills metabolic energy stores depleted during the
previous wake phases. During this metabolic stage the organism
is able to carry out important low-energy demand functions
which do not require behavioral performance, like maintenance
immune functions, rehearsal of mnemonic segments (Foster
and Wilson, 2006) or motor sequence silent replay (Barnes and
Wilson, 2014), aimed to synaptic stabilization and episodic or
procedural memory consolidation.

The second state in the energy-demand ladder (quiet wake) is
associated to low LC tonic firing, an active reward system, and
mostly positive emotion in limbic areas. In this circumstance,
the VTA releases dopamine that stabilizes the motivation axis
represented by LC-Nucleus Accumbens-PFC receiving further
input from the limbic cortices, and producing an optimal balance
in the activity and reciprocal interaction among cortical areas
and between cortical and subcortical regions. This state is
characterized by optimal and flexible exchange of information
between cortical areas and a relatively low physical and mental
energetic load. In terms of LC activation/NE release, is associated
with low but not nihil LC tonic firing and a high dynamic range
for phasic LC responses to novel or salient stimuli, while, in
terms of adrenoceptor activation, corresponds to tonic activation
of α2 adrenoceptors, sporadic activation of α1Rs, and memory-
promoting activation of βRs during phasic LC activation.

Tonic NE concentrations in the α1R activation range would
promote a third condition (active wake) represented by a series of
states characterized by selective activity-dependent enhancement
of energy consumption in particular cortical areas. Such areas
would be selected depending on the specific demands of the
circumstance, driven by a relatively high emotional tone in limbic
areas. For instance, during strenuous physical activity, strong
sensory engagement, or critical behavioral planning, NE released
from LC would selectively depress the activity in non-critical
cortical areas in an α1R-dependent fashion, through depression
of glutamatergic synapses (Dinh et al., 2009; Roychowdhury
et al., 2014). At the same time, NE release would enhance
energy consumption in critical cortical area(s) (i.e., motor
controlling, sensory areas, working memory, or other brain
areas) in an activity-dependent fashion, through a combination
of phasically activated α1- and β-AR activation. This state
would be associated with a relatively high tonic level of LC
firing, a limited range of phasic LC responses to salient or
new stimuli, and a decreased but still functional communication
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FIGURE 6 | LC-regulated brain activation states. Refer to Figure 5 as legend for the representation of different brain areas. While many intermediate states are

likely to exist, we depict in the sketch only four of them, in order of energy demand. During the sleep state (upper left) the LC is inactive, all cortices (except possibly

limbic cortices) are virtually inactive, maintenance processes (like memory consolidation and basal immune activity) are on-going, while cellular energy content is

restored. During quiet wake(upper right), LC is moderately active in the tonic mode, maximizing phasic release of NE which allows optimal intracortical communication

and flexible behavioral and decision-making strategies and memory and learning associated with high phasic LC activation and βR-mediated activation. During

high-energy demand (stress, lower left), an increased drive in the limbic cortex induces higher LC activation and hyperactivity in other cortical areas relevant to the

specific stressor (most often the PFC, but on occasion could be other areas like motor or sensory cortices could be over-activated to carry out specific behavioral

tasks). Extreme stress induces hyperactivity in parts of the limbic system, fight- or-flight response (lower right), overdrive and functional shut-down of the PFC, and

hyper-activation of motor areas and subcortical nuclei (symbolized by the grid lines, MA: motor areas, SA sensory areas, SCN: subcortical nuclei, PFC: prefrontal

cortex, LA: limbic areas, LC: locus ceruleus).

between different cortical areas. In the “active wake” state, an in-
built circuitry, prepared by evolution for automatic processing,
would promote strong but not overwhelming activity in sensory
areas, motor areas, as well as in the PFC. The latter would
elaborate variable strategies to resolve the specific demands of
the contingency for which automatic processing is not effective.
In social mammals, extinguishing a stressor may require an
additional inter-individual interaction (social) component that
overburdens the limbic system and is therefore especially vexing
on the individual.

At the physiological highest level of energy consumption, the
LC would display the strongest tonic activation, high tonic NE
release, and a limited or inexistent range of phasic NE release,
corresponding to the “fight-or-flight” (FoF) response described
in the pioneering work of Cannon reviewed in Fee and Brown
(2002), at the extreme of which could lay the berserk condition.
This state is characterized by strong activation of cortical βARs,
strong negative or positive emotion, impulsive response, deficient
sensory activity, shut-down of the planning (PFC) areas, and
scant or inefficient intra-cortical communication (Holmes and

Wellman, 2009). This condition would be terminated with either
of two outcomes: (1) the elimination of the stressor, resetting
of LC activity to low tonic state, reactivation of a temporarily
inhibited dopaminergic system, and return of the system to a low-
energy state (sleep or idle wake), or, on the opposite end (2) failure
to eliminate the stressor, depletion of organic energy reserve, and,
possibly onset of long-term deficit or even death. In humans,
this condition may give rise to neuropsychiatric disorder
including epilepsy, burn-out syndrome, psychosis, depression,
or anxiety, depending on the stressor pattern, individual genetic
predisposition, and previous life history.

The maximum duration and intensity of high-energy states
(active wake and distress/FoF) bearable by a specific individual
would display significant inter-individual differences related to
genetics, previous training/experience, and motivational state,
and strongly depends on the history of the subject, to the
point that periodic and controlled incursions into the stress
state may be beneficial to increase the probability of successfully
extinguishing unexpected future stressors. The hypothesis is
graphically summarized by the sketches in Figures 5, 6.
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An oft found bell-shaped dependence of specific
PFC-dependent performance on adrenergic activation
(Roychowdhury et al., 2012; Sapolsky, 2015) could be interpreted
as a transition from a low-energy state (state 2: quiet wake), to
state 3 (active wake), associated with a larger energymobilization,
stronger engagement, and improved cognitive performance (left
part of the bell shape curve). At the right end of the curve
would lay the transition between state 3 (stress) and state 4 (FoF,
right part of the bell shape), with a massive engagement of βRs
in the cortex as well as in subcortical nuclei—particularly the
amygdala—and consequent dysfunctional working memory,
in favor of an optimal impulsive, automatic, motor response
and full-fledged autonomic sympathetic response (Bouret and
Sara, 2005; Hains and Arnsten, 2008; Gamo and Arnsten, 2011).
Needless to say, a comprehensive theory of energy mobilization
in high-demanding states (active wake and distress/FoF) should
include the role of other global transmitters, particularly
acetylcholine, histamine, and 5HT. Such discussion is left for
important future work, and falls outside the scope of this review.

It is tempting to speculate further that the regional pattern
of energy consumption in this condition may have changed
in the course of mammalian evolution, and possibly along
mankind history, such that the effects of stress on motor
and sensory cortices used to be a lot more severe during
early history/evolution/developmental stages, compared with the
effects on the PFC, while the latter has become (is becoming) the
major subject—and potential victim—of stress inmodern society,
particularly for adolescent and adult humans.

Clinical Consequences of Stress-Induced
Maladaptive Plasticity
Stress notoriously impairs the dynamic balance between
sympathetic and parasympathetic autonomic branches, affecting
sleep, digestion, endocrine function, by altering the balance
between peripheral parasympathetic and sympathetic tones
(Grippo and Johnson, 2009; Silvani et al., 2016). Even more
consequential, in the CNS, physiological stress of high intensity
and/or prolonged duration may lead to β arrestin-mediated
internalization of adrenergic receptors, studied in detail for
βRs (Stone and Quartermain, 1999), leading in turn to a de-
sensitization of βR-mediated central adrenergic pathways (Fu
andXiang, 2015). A possible consequence of intense or prolonged
stress could be a decrease in effectiveness of the LC adrenergic
system, leading to a decrease in the expression of the β1R type
(Porterfield et al., 2012) in limbic areas, and to a change in the
expression of βR-related effectors in other parts of the limbic
system like the hippocampus (Benes et al., 2004).

We represented the two poles of LC/NE function with two
examples each, in Figure 7 (LC hypofunction) and Figure 8

(LC hyperfunction). In these figures, red and yellow represent
pathologically hyper- or hypo-active areas, respectively. The
intensity of the blue stripes inside LC sketch (light in Figure 7

and strong in Figure 8) represents the level of tonic LC activation.
As example of LC hypofunction we represented attention deficit
disorder with hyperactivity (ADHD), in which a monoaminergic
hypofunction yields a hypofunctional PFC, which in turn fails

to exert a satisfactory inhibitory control on automatic motor
activity, associated with sensory distractibility (Figure 7, left).
While other monoaminergic deficits (principally dopaminergic)
are most likely also involved in ADHD, the efficacy of the
NE-reuptake inhibitors like atomoxetine in ADHD treatment
corroborates the notion that an LC/NE deficit is a critical
component of this condition.

While the causes and mechanisms of clinical depression
involve factors other than the LC/NE system, a similar
pharmacological argument—the efficacy of selective
serotonin/norepinephrine reuptake inhibitors (SNRIs)—
also indicates that a deficient noradrenergic system plays a
critical role in the treatment of this affliction. In our hypothesis,
depression—like ADHD—is also associated with a LC/NE
and PFC deficit, but, compared to ADHD, is associated with
opposite roles of limbic (hyperactive in depression) and motor
(hypoactive in depression) areas (Figure 7, right).

As examples of conditions associated with long-term
consequences (maladaptive plasticity) of LC hyper-function we
selected anxiety disorder (Figure 8, left) and psychosis (Figure 8,
right). Anxiety disorders are characterized by hyperactivation of
the limbic-sensory axis, with a prevalence of a reality-detached
negative mood. Different anxiety disorders may be associated
with different degrees of motor activation, ranging from
aggression (like in post-traumatic stress disorder), to freezing
(like in a rodent response to a predator). Remarkably, anxiety
and depression would only differ in terms of motor areas
(in)activation, suggesting that further maladaptive plasticity may
quickly convert an anxious state into a full-fledged depression,
and that the same subject may oscillate between two conditions,
which could even take place simultaneously. The large co-
morbidity of anxiety and depression (van Tol et al., 2010)
corroborates our hypothesis.

An example of even more severe mental condition associated
with LC hyperfunction is psychosis (Figure 8, right). This
condition is associated with hyperfunction of most cortical areas,
promoted by a high monoaminergic tone, leading, in turn, to
severe PFC functional impairment. Signs of generalized cortical
hyper-function are pathognomonic symptoms of psychosis, like
paranoia and hallucinations, as well as aggression. In this
condition, prolonged and/or intense stress elicits a type of
maladaptive plasticity that sensitizes limbic and sensory areas
leading to loss of touch with reality, and—in the most dramatic
cases—aggression and gross working memory impairment.
Clinical support for a strong involvement of the LC/NE system—
together with other monoaminergic systems—in psychoses, is
the precipitation of psychotic episodes after intake of drugs
including legal or illegal NE and other monoaminergic re-uptake
blockers. Up-regulation of α1Rs may be a component of PFC
impairment observed in the ventral-hippocampal lesion model
of schizophrenia (Al-Khairi et al., 2009).

Depression and psychosis share the traits of working memory
impairment, some level of detachment from reality, and
hypersensitivity of limbic and sensory system, all of which can
be triggered by prolonged or intense stress. Clinically, these two
conditions may thus represent the result of a parallel process
of stress-induced maladaptive plasticity landing on opposite
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FIGURE 7 | Maladaptive plasticity: Examples of LC hypofunction. Left: ADHD. Attention deficit disorder with hyperactivity (ADHD) is treated clinically with

pro-monoaminergic drugs, particularly with NE re-uptake blockers. This condition may represent a dysfunction of the active wake (Figure 6) caused by NE/LC

hypofunction. The condition is characterized by a prevalence of a motor-sensory areas and a decrease of working memory and inhibitory control. The deficit should

not be considered a severe impairment insofar it is not associated with major alteration of limbic function. Right: Depression. The use of NE- (along with 5HT-)

reuptake blockers is also in the mainstream treatment for depression. While depressed patients also display similar traits of ADHD subjects, like impaired working

memory and low threshold for sensory activation, contrary to ADHD, depression is associated with long-term impairment of limbic function. According to our model, in

depression, the normal physiological cycling between the 4 states illustrated in Figure 5 is turned into a single dysfunctional state. Refer to Figure 5 as legend for the

representation of different brain areas. Captions as in Figure 6.

poles of motor drive because of genetics or cultural factor. The
similarities between depression and psychosis may explain the
presence of both conditions (plus bipolar disease) associated
with genes including DISC1 and neuregulins (Blackwood et al.,
2007). This hypothesis is further supported by the finding of
a reduced monoaminergic drive in a DISC1 animal model
displaying depressive symptoms (Lipina et al., 2013).

CONCLUSIONS

Many unanswered questions remain about the role of the
LC/NE system. While the presence of gap junctions within
the LC has been suggested by anatomical (Rash et al., 2007)
and functional (Ishimatsu and Williams, 1996) studies, to
our knowledge, synchronous and proportional release of NE
in different brain areas following LC activation has not yet
been shown unambiguously. The question about simultaneous

increase in NE concentration in different brain regions might
be answered with precise—in time and space—measurement of
monoamine levels, possibly with future developments of already
existing electrochemical and microdialysis techniques.

Understanding the nature and extent of the interference
between the noradrenergic system and other alertness- and
attention-related modulator systems, notably, the serotoninergic,
the histaminergic, and the cholinergic systems, and the
possible specific role of each neurotransmitter in the global
coordination of brain activity is also of critical importance.
The presence of reciprocal presynaptic hetero-receptors between
neurotransmitters pairs (including GABA and glutamate) may
offer important and relatively unexplored mechanism of
interaction between different modulatory systems. Hopefully,
quantitative modeling will be able to pinpoint a precise
correlation between global states induced by NE (and other
modulators) and behavioral states.
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FIGURE 8 | Maladaptive plasticity: Examples of LC hyperfunction. Left: Anxiety. Prolonged or intense stress may deplete organismic energy stores, possibly

along with α1R overexpression, and βR β arrestin-induced internalization, leading to sensitization of the limbic areas (limbic cortices and amygdala) and of sensory

areas. This condition would simulate a permanent reality-detached state of fight-or-flight. Right: Psychosis. Failure to eliminate a stress can turn an anxious condition

into psychosis, by furthering the impairment of PFC function, possibly accompanied with aggression. Stress and stimulants may precipitate this condition by

increasing monoaminergic—particularly dopaminergic and noradrenergic tone—in the PFC, where catecholamine transporter is responsible for the re-uptake of both

molecules. Depression would differ from psychosis mainly in monoaminergic function (decreased in depression but increased in psychosis), causing an exaggerated

motor response, but would share with it working memory impairment and sensory and limbic sensitization (compare with Figure 7, captions as in Figure 6).

Computational models reproducing experimental results
(Gao and Holmes, 2007; Patel and Joshi, 2015), particularly
on the roles of adrenoceptors in behavioral tasks (Chandler
et al., 2014b; Chandler, 2015; Somkuwar et al., 2015) are
starting to reach a remarkable level of sophistication, and
will undoubtedly contribute to integrate the large amount
of experimental results collected along many decades on the
adrenergic effects on the modulation of intrinsic neuronal
conductances and long- and short-term plasticity. Possibly the
most important related issue concerns the specific mechanism
through which distress elicits maladaptive plasticity, turning a
number of physiologically connected, functional, brain areas
into a series of dysfunctional circuits as seen in psychiatric
disease.

An important and largely overlooked adrenergic mechanisms
emerged in the last decade is the role of NE receptors in astrocyte
and microglia modulation (O’Donnell et al., 2012; Pankratov

and Lalo, 2015). Further, studies will be necessary to integrate
the relationships among neuronal function, glial function, and
noradrenergic activity.
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