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Graphical Abstract

An improved ctDNAwhole-genome bisulfite sequencingmethod was developed
to generate unbiased whole-genome ctDNA methylomes using as low as 1 ng
ctDNA.
A diagnostic signature with ctDNA methylation biomarkers demonstrated high
accuracy in early and advanced breast cancer in multicentre patient cohorts.
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Abstract
Background: Cancer cell–specific variation and circulating tumour DNA
(ctDNA) methylation are promising biomarkers for non-invasive cancer detec-
tion and molecular classification. Nevertheless, the applications of ctDNA to
the early detection and screening of cancer remain highly challenging due to
the scarcity of cancer cell–specific ctDNA, the low signal-to-noise ratio of DNA
variation, and the lack of non-locus-specific DNA methylation technologies.
Methods: We enrolled three cohorts of breast cancer (BC) patients from two
hospitals in China (BC: n = 123; healthy controls: n = 40). We developed a
ctDNA whole-genome bisulfite sequencing technology employing robust trace
ctDNA capture from up to 200 μL plasma, mini-input (1 ng) library prepa-
ration, unbiased genome-wide coverage and comprehensive computational
methods.
Results: A diagnostic signature comprising 15 ctDNA methylation markers
exhibited high accuracy in the early (area under the curve [AUC] of 0.967) and
advanced (AUC of 0.971) BC stages in multicentre patient cohorts. Furthermore,
we revealed a ctDNAmethylation signature that discriminates estrogen receptor
status (Training set: AUC of 0.984 and Test set: AUC of 0.780). Different cancer
types, including hepatocellular carcinoma and lung cancer, could also be well
distinguished.
Conclusions: Our study provides a toolset to generate unbiased whole-genome
ctDNA methylomes with a minimal amount of plasma to develop highly spe-
cific and sensitive biomarkers for the early diagnosis andmolecular subtyping of
cancer.

KEYWORDS
cancer early detection, circulating tumour DNA, DNA methylation, epigenetic biomarkers,
liquid biopsy, whole-genome bisulfite sequencing

1 INTRODUCTION

Cancer causes the leading threat of death worldwide.1 The
cancer screening and early diagnosis significantly decrease
the mortality rate, as the timely detected cancer can be
remedied by milder therapeutics or removed via surgery.
Screening involves testing a healthy population to identify
asymptomatic individuals with cancers. Conversely, early
diagnosis focuses on classifying symptomatic patients as
early as possible. Notably, screening requires the collec-
tion of samples from a large population, whereas early
diagnosis requires periodic testing, which is only feasible
using non-invasivemethods. Clinicalmethods for the non-
invasive detection of cancer includemedical imaging tech-
nologies (such as X-ray imaging,2 computed tomography,3
magnetic resonance imaging,4 ultrasonic testing5 and
positron emission tomography-computed tomography6)
and serum antigen protein markers.7 These methods have

their strengths; for example medical imaging reveals the
location andmorphology of tumours, whereas serum anti-
gen protein markers have broad applications. However,
these diagnostic techniques have limitations. For example,
there is usually a lag betweenmedical imaging and tumour
progression, and such techniques may induce harm when
using high-energy rays and contrast agents.8 Additionally,
serum markers would underestimate the heterogeneity of
tumours, leading to rising misdiagnosis rates.9 Thus, con-
ventional methods are not suitable for an early diagnosis
of tumours, and there are urgent and unmet needs for the
exploration of novel early tumour diagnostic markers of
non-invasive sampling, high sensitivity and specificity.
Tumour cells secrete single- or double-stranded DNA

fragments called circulating tumour DNA (ctDNA) to
blood, offering a novel diagnostic tool.10,11 ctDNA exhibits
several distinct advantages: (i) Blood collection for ctDNA
analysis is quick and simple. (ii) The half-life of ctDNA
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(∼2 h) enables its use for the dynamic and real-time
monitoring of cancer progression. (iii) ctDNA detection
reduces the bias associated with intratumoural genetic
heterogeneity. (iv) ctDNA can detect the recurrence risk
several months ahead of medical imaging. Thus, many
ongoing studies apply ctDNA as a non-invasive biomarker
for the early diagnosis of tumours.12–21 Genetic mutations
of cancer-associated genes are attractive candidates, which
could be analysed in plasma-derived ctDNA from can-
cer patients by established methodologies.17 Panel-based
sequencing provided more mutation detection oppor-
tunities. Nevertheless, there are three main challenges
to this approach in cancer screening: (i) For early-
stage cancers, caps on acceptable phlebotomy volumes
and limited ctDNA shedding may impact the sensitiv-
ity. (ii) The contamination of background DNA from
white cells and mutations in plasma ctDNA from non-
malignant or premalignant processes (e.g. age-related
clonal haematopoiesis) may affect the test specificity. (iii)
Mutations are not tissue specific, which brought the uncer-
tainty of the origin of cancer. Therefore, there remains an
urgent need to find a novel, practical method to overcome
these limitations.
DNA methylation changes may be early events in the

initiation and development of tumours, making them
promising biomarkers for early cancer diagnosis.22–25 Stud-
ies have demonstrated that particular DNA methylation
signatures are better able to predict the risk of breast
cancer (BC) than copy number variants in tissues.18 Fur-
thermore, the DNA methylation profile obtained by the
Human Methylation 450 (HM450K) microarray was able
to classify central nervous system cancerswith an accuracy
exceeding that of histopathology using tissue.20,25 How-
ever, the methods used in previous studies only cover
0.1%–1% of the genome, and cancer-specific changes in
methylation are easily missed, which markedly impacts
the specificity and sensitivity of the technology. Reduced
representation bisulfite sequencing (RRBS)26 and methy-
lated DNA immunoprecipitation sequencing (MeDIP-
seq)27 have been used to seek an improved method for
detecting DNA methylation. RRBS and MeDIP-seq sig-
nificantly improved DNA methylation coverage to 10% of
the whole genome and were able to distinguish various
types of cancers. Nevertheless, RRBS and MeDIP-seq are
based on enzyme digestion and antibody immunoprecip-
itation, respectively, resulting in locus-specificity of the
obtained data. Low-pass whole-genome bisulfite sequenc-
ing (WGBS) was also performed to reduce the cost of
WGBS sequencing with a low depth (∼5 million reads) of
ctDNA WGBS sequencing,28 which could perfectly cover
the GC-rich region. However, a high coverage of the whole
genome, especially the GC-poor region, still requires high-
depth sequencing, as we described here. Therefore, the

coverage of CpG regions is limited, and information with
low CG contents is omitted in DNA methylation profil-
ing, leading to the loss of cancer-specific messages. To
overcome this limitation, the bisulfite sequencing of DNA
has been developed.29 Bisulfite treatment converts unmod-
ified cytosines in DNA to uracil, while maintaining 5-
methylcytosine (5mC). With PCR amplification, followed
by sequencing, this can reach the single base resolution.
Further, bisulfite treatment was performed together with
next-generation sequencing (NGS) yielded the WGBS data
on the global genomic distribution of 5mC, with over 70%
genome coverage.30 Additionally, the ctDNA concentra-
tion in plasma is extremely low. Approximately 2000 ng
genomic DNA is required for the preparation of a WGBS
library, which significantly exceeds the level of ctDNA in
clinically available plasma samples.
Herein, an improved ctDNA–WGBS method was

reported to accurately profile whole-genome methylation
patterns from trace quantities of ctDNA, which was
extracted from only 200 μL of plasma, compared with
the standard amount of 5–20-mL plasma. Details of this
process are demonstrated in Figure 1A. Considering the
prevention of material losses and the low ctDNA require-
ment, the processes of end repair, dA tailing, adapter
ligation and bisulfite conversion were performed in one
tube. Additionally, beads were used for capture instead
of agarose gel to substantially increase the recovery ratio.
This novel ctDNA–WGBS method was applied for whole-
genome-wide detection of 5mC at single-base resolution
in ctDNA of early-stage cancer patients. This method
enabled early-stage BC detection with high specificity
and sensitivity in multicentre patient cohorts due to
the minimal input (as low as 1 ng) library preparation,
unbiased genome-wide coverage and comprehensive
computational methods, which reduced the noise of
low recurrent fragments and non-tumour originating
ctDNA. Moreover, the method was able to distinguish
among molecular subtypes of cancer, which carry subtle
differences in DNA methylation patterns.

2 RESULTS

2.1 WGBS library preparation with 1 ng
ctDNA input yielded optimum library
quality and high genome coverage,
outperforming existing ctDNAmethylation
library construction methods

The improved protocol was first tested using samples from
123 BC patients (early stage: n= 53; advanced stage: n= 70)
and 40 normal controls. Four pairs of BC tissues were con-
structed to generate WGBS data for the identification of
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F IGURE 1 Workflow chart for data generation and analysis via sequencing of 5-methylcytosine (5mC) in circulating tumour DNA
(ctDNA). (A) Whole-genome methylation sequencing of 5mC in ctDNA. ctDNA is extracted from plasma. Purified ctDNA is ligated with an
adapter and bisulfite-converted. The fragments were completed using PCR amplification followed by beads capture. (B) The breadth of
reduced representation bisulfite sequencing (RRBS) and whole-genome bisulfite sequencing (WGBS) data occupies ∼10% and ∼75% of the
genome, respectively. (C) The sample coverage ratio of WGBS was higher than that of RRBS data. (D) The mean global methylation level of
ctDNA in normal samples was higher than that in cancer samples.
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ctDNA from tumour tissues. The concentration and qual-
ity of ctDNA from each sample are provided in Tables S1
and S2. The results showed that 163 high-quality ctDNA-
WGBS profiles and 8 primary tissue DNA WGBS profiles
were obtained. For both ctDNA and tissue DNA, CpG loci
accounted for more than 65% of the whole genome (Table
S3). The obtained WGBS data were then compared to pre-
viously reported RRBS data.22 As shown in Figure 1B, the
breadth of the RRBS and WGBS data was ∼10% and ∼75%
of the whole genome, respectively. The genome coverage
ratio of the WGBS data was more widespread than that
of the RRBS data (Figure 1C). Additionally, the mean lev-
els of global ctDNA and tissue methylation were higher in
normal samples than in cancer samples (Figures 1D and
S1).
Approximately 10 ng of ctDNA could be obtained in

0.5 mL of whole blood (around 200 μL plasma) from
patients with advanced cancer (Figure 2A). The test per-
formed by an Agilent 2100 Bioanalyzer revealed that the
quality of ctDNA extracted from 0.5 mL of whole blood
was equivalent to that extracted from 1 mL of whole blood
and was enriched around 160–180 bps (Figure 2B). This
demonstrated the reliability of our method. Furthermore,
we collected library preparations for DNA methylation
sequencing and selected those that claimed to generate
a ctDNA library with less than 100 ng of input ctDNA,
including RRBS and another method reported in several
recent papers using SWIFT Accel-NGS@Methyl-Seq DNA
Library kits (referred to as ‘SWIFT kits’ herein).22,31,32
Head-to-head library preparation using triplicate experi-
ments from the same advanced sample showed that the
minimum input ctDNA for both the RRBS and SWIFT kits
was ∼30 ng. With 30 ng of input ctDNA, the minimum
1 ng of DNA Library Preparation (Mini-lib) (Figure 2C),
RRBS (Figure 2D) and SWIFT kits (Figure 2E) presented
an enriched peak of around 300 bps. However, with 1 ng
of input ctDNA, only the Mini-lib generated clear peaks
at ∼300 bps and exhibited excellent performance in sub-
sequent sequencing tasks (Figure 2F). Both the RRBS and
SWIFT kits failed to generate a ctDNA library (Figure 2G).
Taken together, these data indicate that Mini-lib provides
a powerful tool for generating a WGBS library with input
ctDNA as low as 1 ng.
ctDNAmethylation libraries were also constructed from

the same patient sample using RRBS, single-cell WGBS
(sc-WGBS) and ctDNA-WGBS. A head-to-head compari-
son revealed that sc-WGBS covered less than 15% of the
genome. Using ourmethod, the sequencewas able to cover
more than 70% of the genome. Additionally, the ctDNA-
WGBS methylome covered most markers, whereas the
sc-WGBSmethylome only covered one third of the ctDNA-
WGBS methylome, and the RRBS methylome covered no
cancer-specific markers (Figure S2).

2.2 Optimized deep-learning algorithm
revealed cancer-specific recurrent regions

Next, we investigated recurrent regions, termed differen-
tial methylation regions (DMRs), which are associated
with greater stability and reliability. The computational
workflow for the analysis of recurrent regions is shown in
Figure 3A. First, recurrent regions were identified using
normal and cancer samples. Next, hypo- and hypermethy-
lated DMRs were determined in the recurrent regions of
cancer patients and compared with normal people. Opti-
mal biomarkers were then identified, and cancer tissue
was used to generate the WGBS data and to filter the
level of consistency in tumour tissue to ensure a uniform
amount of DNA input for ctDNA samples. Next, random
forest algorithms and logistic regression were used for fea-
ture selection. Finally, the model was constructed and val-
idated using multicentre data, and recurrent regions were
compared on the whole-genome scale using the RRBS and
WGBS methods. The genome coverage ratio of the recur-
rent regions exceeded 66.94% using our improved WGBS
method.Nevertheless, the recurrent regions forRRBSwere
less than 1% (Figure 3B). Compared to the RRBS data for
gene distribution, our WGBS data demonstrated extensive
coverage across the whole genome, indicating that more
genomic regions were used for subsequent biomarker
identification (Figure 3C).

2.3 High genome coverage ctDNA
methylome enabled the sensitive detection
of tumours

Based on these encouraging outcomes, we next identified
583 DMRs (Table S4) from ctDNA among normal people
(n = 30) and early stage BC patients (n = 38). The average
length of the obtained ctDNA DMRs was ∼82 bp (Figure
S3A). In addition, these DMRs were chiefly enriched in
the intron and intergenic regions (Figure S3B). The hier-
archical clustering results precisely classified patients and
healthy individuals by the DMRs methylation levels in the
training set (Figure 4A). t-Stochastic neighbour embed-
ding (t-SNE) analysis revealed a similar clear classification
in the testing dataset (Figure 4B).
Considering the tissue specificity of DNA methylation,

we identified 58 of these 583 DMRs with trends in ctDNA
methylation levels that were consistent with those in tissue
DNA. Next, the random forest algorithm was applied for
feature selection, resulting in 15 DMRs (Table S5) as poten-
tial early BC diagnosis biomarkers. We used multicentre
samples to test the obtained biomarkers and recruited
three Chinese BC cohorts in two hospitals, as follows: a
training set consisting of early/non-metastatic BC sam-
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F IGURE 2 High-quality circulating tumour DNA (ctDNA) extracted with Max-cap and the library product of the Mini-lib
whole-genome bisulfite sequencing (WGBS) library preparation. (A) The amount of ctDNA extracted with Max-cap from 0.5 mL (∼200 μL
plasma) and 1 mL whole blood in different samples. The experiment was performed in triplicate. (B) Agilent 2100 Bioanalyzer results show
that ctDNA extracted with Max-cap from 0.5 mL (∼200 μL plasma) and 1 mL blood is enriched around 160–180 bps. (C)–(E) An analysis of
library prepared with Mini-lib from 30 ng ctDNA input with LabChip GX touch (head-to-head experiments with Mini-lib, reduced
representation bisulfite sequencing [RRBS], and SWIFT kit). (F) An analysis of library prepared with Mini-lib from 1 ng ctDNA input with
LabChip GX touch. (G) In comparison with other advanced library preparation methods, only Mini-lib enabled 1 ng input ctDNA library
preparation for WGBS (head-to-head experiments with Mini-lib, RRBS and SWIFT kit; note that the latter two methods failed with 1 ng input
DNA, and no product was available). The experiment was performed in triplicate. The minimum input of ctDNA for use with the SWIFT kit
and RRBS is around 30 ng.

ples recruited from the Tianjin Medical University Cancer
Institute andHospital (TMUCIH). TheTest set 1 comprised
early/non-metastatic BC samples from the Cancer Hos-
pital, Chinese Academy of Medical Sciences (CHCAMS).
The Test set 2 included advanced/metastatic BC samples
recruited from TMUCIH. Detailed clinical information
and demographic characteristics of these patients are
shown in Tables S6 and S7. The receiver operating char-
acteristic (ROC) curves demonstrated that the sensitivity,
specificity and area below the ROC curve (AUC) were
100%, 100% and 1 for Training set; 87%, 100% and 0.967
for Test set 1; and 94%, 100% and 0.971% for Test set 2,
respectively (Figures 4C, S4 and S5). The positions of 15
potential markers are shown in the box plot in Figure 4D.
The mean methylation distribution of 15 optimal ctDNA

DMRs biomarkers comprised 4 hyper- and 11 hypomethy-
lated biomarkers in normal, early stage and advanced stage
BC samples. As it is very important to use other easily
accessed methods for clinical translation, we performed
droplet digital PCR (ddPCR) to double-check the marker
panel that we found by ctDNA-WGBS (Figure 4E and Table
S8).
In addition, we further validated the as-obtained early

diagnostic biomarkers by independent datasets from The
Cancer Genome Atlas (TCGA) HM450K. In total, 34 of
583 DMRs were reproducible in the TCGA dataset, and we
evaluated their performance in the TCGA dataset, includ-
ing 98 normal adjacent tissues and 785 early-stage BC
tumour tissues (Table S9). The ROC curves demonstrated
that the AUC was 0.996, indicating that ctDNA DMRs
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F IGURE 3 Computational workflow analysis of recurrent regions. (A) Workflow showing the processing of recurrent regions. (B) and
(C) Bar plots showing the identified recurrent regions on the whole-genome scale for reduced representation bisulfite sequencing (RRBS) and
whole-genome bisulfite sequencing (WGBS), respectively

obtained from plasma were consistent with those obtained
from primary tumours (Figure S6).

2.4 Different cancer types and subtypes
could be discriminated using the
methylomes of ctDNA

Encouraged by the high specificity and sensitivity of early
stage BC screening, we further evaluated the discrimi-
nating ability of our method to different subtypes of BC.
The BC patients were evaluated based on ctDNA DMRs
using 30 estrogen receptor-negative (ER−) and 30 ER-
positive (ER+) patients with the described computational
framework. Eventually, 1332 ctDNA DMRs were identified

(Table S10), and both hierarchical clustering (Figure 5A)
and t-SNE (Figure 5B) analyses obtained a clear classifi-
cation of these two BC subtypes. Moreover, the identified
DMRs were subject to external validation using indepen-
dent TCGA 450 K data. In total, 47 of 1332 DMRs were
reproducible in the TCGA dataset, and we evaluated their
performance on the TCGA dataset, including 570 ER+ and
169 ER− BC tissues. In Figure 5C, the ROC data demon-
strated that the CpG site methylation levels in ctDNA
DMRs could effectively distinguish primary tumour tis-
sues with distinct ER states (AUC = 0.909). A random
forest algorithm was applied for feature selection, result-
ing in 12 ctDNA DMRs as potential markers. To further
assess the capability of as-obtained ctDNA DMRs to dis-
tinguish the clinical subtypes of BC, we randomly divided
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F IGURE 4 Early detection of breast cancer using circulating tumour DNA (ctDNA) differential methylation regions (DMRs). Heat map
(A) and t-stochastic neighbour embedding (t-SNE) plot (B) showing the clustering of healthy individuals and patients with early-stage breast
cancer using 583 differentially methylated regions on ctDNA. (C) Receiver operating characteristic curves suggest the classification of healthy
individuals and patients with early-stage breast cancer in the independent training and testing datasets in the two cohorts. The receiver
operating characteristic curves suggested the classification of normal individuals and patients with early- and advanced-stage breast cancer in
training data and other independent testing datasets using the same 15 differentially methylated regions with potential for biomarkers. (D)
Box plot showing the position of 15 potential markers. The mean methylation distribution of 15 optimal ctDNA DMRs biomarkers consisted of
4 hypermethylated and 11 hypomethylated biomarkers in normal samples and early- and advanced-stage breast cancer samples, respectively.
Centrelines show the median; boxes represent the interquartile range (25%–75%); whiskers correspond to 1.5 times the interquartile range.
p-Value was computed using a two-tailed Student’s t-test. ns, p > 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001. (E) The vertical scatter plot
showing the methylation level of ctDNA from healthy controls and breast cancer patients

the BC patients into two almost equal-sized subsets to train
a model (using binary logistic regression as described ear-
lier) and tested the model. As displayed in Figures 5D,E,
S7 and S8, the results suggested that the predictive model
comprising 12 biomarkers could distinguish the two BC

subtypes in the Training set (AUC= 0.984, sensitivity: 93%,
specificity: 93%) and independent Test set (AUC = 0.780,
sensitivity: 73%, specificity: 87%). Collectively, these results
indicated that changes in ctDNA methylation in BC
could be used to discriminate the ER status of patients.
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F IGURE 5 Circulating tumour DNA (ctDNA) methylation as potential biomarkers for the subtype classification of breast cancer and
prediction of ER status. Heat map (A) and t-stochastic neighbour embedding (t-SNE) (B) plot of 1332 differential methylation regions (DMRs)
between ER+ and ER− breast cancer samples. (C) External validation of 1332 DMRs using The Cancer Genome Atlas (TCGA) 450 K data. In
total, 47 of 1332 DMRs were reproducible in TCGA data, and the receiver operating characteristic curve exhibited good discrimination ability
between ER+ and ER− breast cancer samples. Receiver operating characteristic curves of a predictive model comprising 12 markers in the
Training set (D) and independent Test set (E) (Training set: 30 ER+ breast cancer samples and 30 ER− breast cancer samples; Test set: 48 ER+

breast cancer samples and 13 ER− breast cancer samples)

To investigate the potential of our established method for
subtyping cancers, different types of cancers were fur-
ther investigated. Importantly, the t-SNE analysis revealed
that BC, hepatocellular carcinoma, lung cancer and nor-
mal control samples could be well distinguished using this
method (Figure S9). Although further research is required,
the previous data indicated that our method provides a
toolset that can be used to develop highly sensitive and
specific biomarkers for discriminating different types and
subtypes of cancer.

3 DISCUSSION

Epigenetic abnormalities can lead to tumourigene-
sis, and recent works showed that DNA methylation
could be a promising biomarker for different types of
tumours.21,22,33,34 Detecting DNA methylation provides
advantages over detecting copy number variants and
somatic mutations.18 However, there are many obstacles
to its clinical application. Detection sensitivity and speci-
ficity are critical for identifying cancer, especially in its
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early stages. Thus, it is critical to cover as many genome
sequences as possible to obtain reliable sensitivity and
specificity results. Recent research has concentrated on
the application of RRBS to detect DNA methylation in
different types of tumours.21,22,33,34 Although data have
been obtained with RRBS,26 MeDIP-seq27 and low-pass
WGBS,28 researchers have continued to search for an
‘unbiased’ method of detecting DNAmethylation that can
cover more genomes than RRBS or MeDIP-seq.
WGBS was selected as a promising method to detect

ctDNA methylation because it can cover the highest
genome ratio among all methods of DNA methylation
detection. However, when applied with ctDNA detection,
currentWGBS researchwas not found to outperform other
methods as expected.33–35 Notably, WGBS requires a large
amount of input DNA for library preparation, usually
2000 ng, and 5 mL of whole blood generally contains
10–50 ng ctDNA (in early stages of cancer).19,35 Thus, it
was critical to develop a method, such as the ctDNA-
WGBS method, using trace amounts of input DNA for
library preparation. In the present study, an improved
ctDNA–WGBS method was reported to accurately profile
whole-genome methylation patterns from trace amounts
of ctDNA obtained from plasma. This ctDNA–WGBS
method enables us to detect ctDNA levels as low as 1 ng in
plasma, which increases the sensitivity of WGBS detection
from 18%35 to 87%.
Data analysis was also optimized by filtering the back-

ground signals. Our data were shown to cover more
regions than the RRBS for both normal samples and those
from patients with cancer. The obtained methylomes con-
tained a higher amount of methylation information for
ctDNA than that from RRBS, resulting in the identifi-
cation of 15 specific biomarkers, which may be missed
by RRBS or other methods. Overall, we demonstrated
that ctDNA methylation could identify BC in both early
and advanced stages with high specificity and sensitiv-
ity. We verified the reliability of biomarkers by ddPCR,
which is a cost-effective method and can be performed for
high-throughput clinical detection in the future.
Most of the fragmented DNA in plasma is cell-free DNA

(cfDNA), which is released by apoptotic cells from differ-
ent tissues. ctDNA is part of the cfDNA, and only 1%–10%
of the cfDNA is ctDNA. It is very important to reduce
the background of cfDNA to search for cancer-specific
biomarkers.36 First, we chose to investigate methylation
markers because methylation is tissue-specific. Second,
we carefully performed extraction to ensure the ∼160 bp
ctDNA product. Third, we performed the previous data
analysis and filtered the data with cancer tissue data to
minimize the background cfDNA background noise.
Previous studies have shown that DNA methyla-

tion patterns can help distinguish different types of

cancers.20–22,35,37 Here, we have revealed that ctDNA–
WGBS is sensitive enough to distinguish different subtypes
of BC. Overall, our findings demonstrated that overcoming
the technical limitations of ctDNA–WGBS enabled us to
detect ctDNAmethylation signals in concentrations as low
as 1 ng. The combination of deep learning and data anal-
ysis may provide a powerful and sensitive whole-genome
coverage tool for early-stage cancer detection and subtype
classification. With the NGS cost decreasing, it is hoped
that the ctDNA–WGBS approach will become increasingly
accessible for both basic and clinical research.

4 CONCLUSIONS

In summary, an improved ctDNA–WGBS method was
reported to accurately profile whole-genome methyla-
tion patterns from trace amounts of ctDNA, which was
extracted from only 200 μL of plasma. This method
enabled the early-stage BC screening with high speci-
ficity and sensitivity in multicentre patient cohorts due to
mini-input (as low as 1 ng) library preparation, unbiased
genome-wide coverage and comprehensive computational
methods, which reduced the noise of low recurrent frag-
ments and non-tumour-originating ctDNA. Moreover, the
protocol was effective at developing highly specific and
sensitive biomarkers for distinguishing various types and
subtypes of cancer. We anticipate that our established
method for early diagnosis of cancer will have substantial
clinical translation potential.

5 MATERIALS ANDMETHODS

5.1 Patient cohorts

We recruited three Chinese BC cohorts from two hospi-
tals. The discovery set (Training set) consisted of female
patients of Chinese descent with early/non-metastatic
BC from the TMUCIH (Dec 2016–Dec 2017). The first
replication cohort (Test set 1) consisted of Chinese
female patients with early/non-metastatic BC recruited
from the CHCAMS (May 2018–Oct 2018). The second
replication case series (Test set 2) comprised female
advanced/metastatic BC patients from TMUCIH. Specifi-
cally, 38 Chinese female early/non-metastatic BC patients
were recruited (mean age ± standard deviation [SD]:
50.87 ± 11.05) in the training set. For Test set 1, 15 Chinese
female early/non-metastatic BC patients were recruited
(mean age ± SD: 53.47 ± 8.88). For Test set 2, 70 female
advanced/metastatic BC patients were recruited (mean
age ± SD: 50.7 ± 10.31). In total, 123 female BC patients
were included. Age-matched Chinese females without
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cancer were enrolled in the healthy control group from the
Beijing Institute of Genomics. In addition, 40 females were
divided into two control groups (n = 25 for Control group
1, and n = 15 for Control group 2).

5.2 Phenotype evaluation

The BC and metastasis diagnosis were established on
pathological analysis. Based on the American Joint Com-
mittee on Cancer for BC staging (the eighth edition),
pathological staging of the lymph node, primary tumour
and metastasis was double-checked and carefully defined
and was further classified into stages I–IV.38 Immuno-
histochemistry (IHC) was applied to obtain the ER and
progesterone receptor (PR) status. A tumour was defined
as ER/PRnegative if IHC results of tumour nucleiwere less
than 1%. However, when IHC analysis was borderline, flu-
orescence in situ hybridization was used to access human
epidermal growth factor receptor 2 (HER2). According to
the St Gallen 2017 criteria, the molecular subtypes were
determined by HER2 and hormone receptor status.39

5.3 ctDNA extraction

DNA extracted from blood was stored in blood collection
tubes (Streck, Omaha, NE). Plasma was obtained from
blood using centrifugation for 10 min at 1900 × g and then
for another 10 min at 18 000 × g with EDTA and pro-
teinase K. Afterwards, the plasma samples were processed
by the QIAamp Circulating Nucleic Acid Kit (55114, Qia-
gen, Valencia, CA). An average of 20–80 ng ctDNA could
be obtained from∼4–5mL of plasma. As-obtained samples
were kept at −80◦C prior to use.

5.4 Tissue DNA extraction

Fresh frozen cancer tissues were used to obtain genomic
DNA by a QIAshredder (79654, Qiagen, Valencia, CA). An
average of 2 μg genomic DNA was obtained from ∼0.3 mg
of tissues. As-obtained samples were kept at −80◦C prior
to use.

5.5 ctDNAmethylation library

We used DNA to prepare methylation libraries for WGBS.
First, ctDNA (1–10 ng) and control non-methylated λ-
phage DNA (1/1000–5/1000 ng, D1521, Promega, Madison,
WA) were blended. λ-phage DNA was sheared to obtain
200 bp fragments with a Covaris S220 ultrasonicator
(Covaris,Woburn,MA). Second, theNEBNext Ultra End II

Repair/dA Tailing Module (E7442S/L, NEB, Ipswich, MA)
reagents were used to synthesize the DNA fragments by
end repair adenylation of the 3′-ends (30 min@20◦C for
the end repair reaction, and 30 min@65◦C for the dA tail-
ing reaction). Third, theNEBNextUltra II LigationModule
(E7445S/L, NEB, Ipswich, MA) reagents were applied to
ligate the methylation adaptor (15 min@20◦C). The adap-
tor sequences for NGSwere obtained from Illumina. Then,
the EZDNAMethylationGoldKit (D5005, ZymoResearch,
Orange, CA) was used to bisulfite-converted DNA. After-
wards, amplify DNA by PCR as follows: 25 μL of KAPA
HiFi HS Uracil+ ReadyMix (KK2801, KAPA, Wilming-
ton, MA), 10 μM primer 1.0, 10 μM primer index and
20 μL DNA, under the following conditions: 45 s@98◦C;
10–14 cycles of 15 s@98◦C, 30 s@64◦C, 30 s@72◦C and
60 s@72◦C. Finally, we used Agencourt AMPure XP beads
(Beckman Coulter, Miami, FL) to select efficient captures
(∼290 bp) as the resulting library. The Qubit dsDNA HS
Assay Kit (Thermo Fisher, Waltham, MA) was used to
analyse the library purity. The X-ten system (Illumina,
San Diego, CA) was used to sequence the final DNA
methylation library.
The ctDNA methylation library was prepared with the

SWIFT kit as described in the previous study.31,32 Briefly,
5 ng of ctDNA and 100 ng of germline DNA were son-
icated to 180–220 bp by the Covaris S220 ultrasonicator
and bisulfite converted by the EZ DNA Methylation Gold
Kit (D5005, Zymo Research, Orange, CA). Single-stranded
DNA was treated with the Accel-NGS Methyl-Seq DNA
Library kit (36024, Swift Biosciences, Ann Arbor, MI) for
library construction. Briefly, the Adaptase Module (Swift
Biosciences, Ann Arbor, MI) was applied to incorporate
truncated adapter sequences into single-stranded DNA
in template-independent reactions step by step. Then,
DNA was enriched via PCR using Illumina sequencing-
compatible primers for nine cycles for ctDNA and six
cycles for genomic DNA. The RRBS library was prepared
as described previously.22

5.6 Genomic DNAmethylation library

Single-cell DNAmethylation WGBS (sc-WGBS) and RRBS
DNA methylation libraries were prepared as previously
described.22 The X-ten system (Illumina, San Diego, CA)
was used to sequence DNA methylation libraries.

5.7 Quality analysis andWGBS data
mapping

Raw sequencing data in FASTQ format were trimmed
to delete low-quality bases, amplification primers and
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sequencing adapters from the read ends. After quality con-
trol, Bismark was applied to map reads to the human
reference genome (hg19) and remove PCR duplicates.40
The spike-in of totally non-methylated λ-phage DNA was
used to calculate the bisulfite conversion ratio. A BAM file
containing only the mapped and duplicate deleted reads
was applied for subsequent bioinformatics analyses.

5.8 Bioinformatics pipeline for cancer
early detection

A rigorous and comprehensive computational workflow
was developed to screen optimal ctDNA methylation
biomarkers for the early detection of cancer from 163 high-
quality ctDNA-WGBS profiles and 8 primary tissue DNA
WGBS profiles.

1. Regions of ctDNA recurrence were identified in a
population of two groups of BC patients and healthy
people. To minimize the influence of missing values
of ctDNA fragments in the sample cohorts, ctDNA
recurrent regions within a population of samples were
determined by the Poisson tests in BC ctDNA samples
and healthy controls. The recurrence rate for each site
was assessed through the percentage of samples cov-
ered by at least one read at that site. High confidence
ctDNA recurrent regions were extracted using a strin-
gent thresholdwith p< 0.01, and the ratio of recurrence
at each sitewas>70%.Overlap among recurrent regions
of normal ctDNA controls and those of BC ctDNA cases
were selected as reference recurrent regions.

2. Identification of de novo differentially methylated
regions. To identify precise and reliable ctDNA DMRs
between healthy controls and cancer patients in the
training set, de novo ctDNA DMRs calling was per-
formed in the ctDNA reference recurrent regions. We
identified de novo ctDNA DMRs based on changes in
adjacent CpG-methylated patterns using the previously
reported CpG_MPs protocol with a rigid threshold
for the absolute mean methylation difference of each
region being >0.2 and p < 0.01.41

3. Identification of optimal ctDNA methylation mark-
ers of BC. To minimize the influence of methylation
noise from other tissues in plasma, BC-specific ctDNA
DMRs were extracted from the primary tumour tis-
sue WGBS samples. The consistency of methylation
patterns between ctDNA DMRs in ctDNA and tissue
was evaluated by the mean methylation difference.
The ctDNA DMRs remained as cancer-specific ctDNA
methylation biomarkers due to the consistent absolute
mean methylation difference >0.2. Moreover, a back-
ward stepwise strategy identified the optimal ctDNA

DMRs for use as cancer-specific markers. All cancer-
specific ctDNA DMRs were ranked based on their
importance score, and the least important features were
iteratively discarded one by one. The random forest
R package was applied to evaluate the importance
scores.42 Finally, the predictive model was constructed
based on the optimal 15 cancer-specific ctDNA DMRs.

4. Model construction and validation. A random forest
algorithm was used to construct the model by fitting
500 trees using the methylation levels of 15 markers
selected as before. The ultimate model derived from the
training set was applied to the test set for independent
validation. For unseen test samples, we estimated the
methylation level of the region by averaging that of all
covered CpG sites within the region. Considering the
importance attached to outliers, missing values were
replaced with the median of all available methylation
values in the corresponding group.

5.9 Data processing and analysis

WGBS data were processed for the ctDNA and tissue
samples. Raw data in FASTQ format were filtered using
trim_galore after sequencing. The filter readsweremapped
to Bismark using the hg19 reference genome sequences.
Considering the low detection rate of ctDNA in some

genomic regions, we first used DANPOS43 to identify
highly recurrent regions in BC and normal ctDNA sam-
ples, respectively. Thosewith a recurrence rate greater than
70% and an adjusted p-value <1 × 10−10 were identified
as recurrent regions. Overlaps between those of normal
ctDNA samples and the recurrent regions of BC ctDNA
samples were extracted for further analysis.
By continuous scanning in the recurrent regions, seg-

ments comprising CpG sites with high methylation sim-
ilarities across all samples were obtained using the
genome segmentation function of SMART2.44 Segments
with lengths greater than 10 bp and comprising more than
three CpG sites were reserved to identify DMRs. Differen-
tial methylation between early-stage cancer samples and
normal sampleswas examined using a two-tailed Student’s
t-test and the absolute mean methylation difference. Only
those segmentswith absolutemeanmethylation difference
>0.2 and p < 0.05 were regarded as DMRs.
To reduce the number of false-positive DMRs, four pairs

of BC tissue DNA and normal tissue DNA samples were
used. Only those DMRs with a significant absolute mean
methylation difference (>0.2) between BC tissue DNA and
normal tissue DNA and consistent directional changewith
ctDNA were retained for further analysis.
To avoid overfitting, a backward stepwise strategy was

implemented to reduce the model complexity. Specifically,
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all features were sorted according to the importance score,
and the least important features were iteratively discarded
one by one. A random forest algorithmwas applied to eval-
uate the importance scores. Finally, a predictivemodel was
developed based on the optimal 15 features. Themodel was
constructed by the least absolute shrinkage and selection
operator-penalized logistic regression.

5.10 ddPCR analysis

For ddPCR, droplets were generated based on the instruc-
tion manual to avoid the formation of bubbles, transferred
into 96-well microtitre plates and sealed. PCR amplifi-
cation was performed in a thermal cycler with a 2◦C/s
ramp rate to avoid the breakage of oil droplets. The
droplet reader (QX200, Bio-Rad, Hercules, CA) was used
to measure the fluorescence signals.
The methylated sequences were labelled with car-

boxyfluorescein (FAM), and the unmethylated sequences
were labelled with hexachloro-fluorescein (HEX). The
specificity of the probe was detected by the EpiTect PCR
Control DNA kit (Qiagen, 59695): methylated human con-
trol DNA as a template to detect the specificity of the FAM
probe. Unmethylated human control DNA is considered
a template to detect the specificity of the HEX probe. For
each experiment, water was used as a blank control. The
input amount of methylated template and unmethylated
template was 0, 3, 5, 7 and 10 ng, respectively.
The temperature conditions (55, 55.7, 57, 59, 61.4, 63.3

and 64.5◦C, respectively) were optimized, and the optimal
temperature is 59◦C. Then, the specificity and the concen-
tration of the hybridization probes and the primers were
optimized. The final concentration was 900 nM primers
and 200 nM probes, 400 nM primers and 250 nM probes,
200 nM primers and 100 nM probes, and other condi-
tions were optimized. Finally, 900 nM primers and 200 nM
probes were used. According to the optimal concentration
and temperature of the previous primers and probes, the
biomarkers we found by ctDNA–WGBS were verified by
ddPCR.
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