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Abstract: A new type of hydroxyalkyl starch, γ-hydroxypropyl starch (γ-HPS), was prepared by
etherification of alkali-activated starch with 3-chloropropanol. The reaction efficiency, morphological
change, thermodynamic and apparent viscosity properties, and other physicochemical characteristics
were described. The molar substitution (MS) of modified whole starch was determined to be 0.008,
0.017, 0.053, 0.106, and 0.178, with a ratio of 5%, 15%, 25%, 35%, and 45% 3-chloropropanol to
starch (v/w), respectively. Compared to native starch, the granular size and shape and the X-ray
diffraction pattern of γ-HPS are not very different. For low-substituted γ-HPS, the implications
may be less evident. Thermal stability measurements by means of thermogravimetric analyses and
differential scanning calorimetry (TGA-DSC) proved that thermal stability was reduced and water
retaining capacity was increased after hydroxypropylation. Furthermore, the findings also showed
that the solubility, light transmittance, and retrogradation of γ-HPS pastes could be improved by
etherification. The greater the MS of the γ-HPS, the more its freeze–thaw stability and acid resistivity
increased. In this study, we provide relevant information for the application of γ-HPS in food and
non-food industries.

Keywords: γ-hydroxypropyl starch; molar substitution; physicochemical properties

1. Introduction

As an important polysaccharide, starch has received considerable attention in recent
years [1,2]. However, native starch is always modified with chemical, physical, or biolog-
ical treatments [3–5] due to its non-negligible disadvantages, such as low gelatinization
temperature, insolubility in cold water, weak anti-retrogradation ability, heat variable
viscosity, easy swelling, etc. [6] Etherification is one of the most common modification
methods. Among etherified starches, hydroxyalkyl starch has many advantages, such
as better pH stability [7], good liquidity and solubility [8], good swelling capacity [9],
high dispersion and adhesion [10], etc., giving it a place in various industries. Moreover,
hydroxypropylation is a chemical modification method commonly used on starch, achieved
using 1,2-epoxypropane as the etherifying reagent [11]. Classical hydroxypropyl starch
is obtained by introducing the 2-hydroxypropyl group onto the O-2, O-3, and O-6 of a
glucosyl unit. Currently, some reports about classical hydroxypropyl starch synthesis
have been presented [12–14]. We previously developed a new type of hydroxypropyl
starch, namely γ-hydroxypropyl starch (γ-HPS), i.e., with the hydroxyl group on the C-3
position of the propyl group [15], and two simple and efficient methodologies for determin-
ing molar substitution (MS). It is well-known that structure determines nature, whereas
utility is determined by nature. The properties of modified starch are affected by the
degree of modification [16,17]. Therefore, the objective of this study was to investigate
the physicochemical properties of γ-HPS, including its reaction efficiency, morphological
change, thermodynamic and apparent viscosity properties, and other physicochemical
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characteristics, with all levels of MS ranging from 0.01 to 0.2. We studied the effectiveness
of the chemical modification of native starch through γ-hydroxypropylation, in order to
observe any improvements in its functional characteristics that might enhance its potential
application in the food industry.

2. Materials and Methods
2.1. Materials

Corn starch, NaOH, alcohol, isopropanol, and 3-chloropropanol were purchased from
Aladdin Reagent Co., Ltd., (Shanghai, China). All other reagents used in this work were of
analytical grade.

2.2. Preparation of γ-HPS

Hydoxypropylated starch, with varying MSs, was prepared by producing a reaction
between native corn starch and 3-chloropropanol, according to the procedure of Han [18]
and Liu [15] with slight modifications. A sample (10 g, dry basis) and a solution of NaOH
(0.6 g) in 95% isopropanol (100 mL) were added into a 250 mL bottle. The mixtures were
stirred for 1 h at room temperature. The reaction was maintained at 45 ◦C for 12 h after
3-chloropropanol (0.5, 1.5, 2.5, 3.5, and 4.5 mL) was added. After the vacuum filtration step,
the product was neutralized with dilute HCl (0.1 M), washed with a 95% aqueous ethanol
solution three times, and then dried in an oven at 50 ◦C until the moisture content was
reduced to 11–13%. The hydroxypropyl content of γ-HPS was determined according to the
Zeisel-gas chromatographic method reported by Liu [15] and is expressed as a MS.

2.3. Determination of MS

MS was determined using Equation (1), as described by Liu [15], and the reaction
efficiency was calculated using the ratio of experimental MS to theoretical MS. The values
162.14 and 58.08 in the following equations represent the molecular weight of AGU and
C3H6O; WP is the equivalent propyl oxide amount in 100 mg starch.

MS =
WP

100 − WP
× 162.14

58.08
(1)

Reaction efficiency(%) =
experimental MS

theoretical MS
× 100 (2)

2.4. Wide-Angle X-ray Diffractometry

The X-ray diffraction patterns of native corn starch (NCS) and γ-hydroxypropyl starch
were tested with a Bruker X-ray diffractometer (D8 Advance, Bruker Corp., Middlesex,
MA, USA) and a CuKα radiation detector (Bruker Corp., Middlesex, MA, USA) under
the following conditions: 40 kV, 30 mA, and 1.5 s time counts. The diffractograms were
registered at the Bragg angle (2θ) = 20◦–80◦.

2.5. Scanning Electron Microscopy

The granule morphologies of NCS and γ-HPS were observed with a JSM-6510LV
ultra-scanning electron microscope (JEOL Ltd., Tokyo, Japan), following the reported
literature [19].

2.6. Thermal Characterization

The thermal stability of the native and etherified starches was measured using an
SDT-Q600. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)
were combined. The sample (10 mg) was heated from 25 to 600 ◦C at a rate of 10 ◦C/min
under the protection of ultra-pure nitrogen. The thermogravimetric curve and differential
scanning calorimetry (DSC) curve were drawn by a computer.
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2.7. Transmittance

The paste clarities of NCS and γ-HPS were determined according to the reported
literature [20,21]. The sample (50 mg) was mixed with 5 mL of distilled water in a 10 mL
graduated test tube with stopper, heated in a boiling water bath for 30 min, and then cooled
to room temperature. The transmittance of the sample was measured at a wavelength of
620 nm with a spectrophotometer (Varian Cary 100, Varian Corp., Palo Alto, CA, USA);
the distilled water was used as a blank. All analyses were carried out in triplicate, unless
otherwise stated (the same applies below).

2.8. Starch Solubility

The solubility of native and modified starch was measured by using 50 mL of the
corresponding starch emulsion solution (2%, w/v), which was heated in a boiling water
bath for 30 min, then centrifuged (3000 r/min) for 20 min. The supernatant was dried and
evaporated in a vacuum oven at 105 ◦C for 12 h. The solubility is expressed as a percentage,
which we determined using the weight of starch contained within the supernatant and the
total weight of the sample as follows:

Solubility(%) =
Weight of water soluble starch(g)× 100

Total weight of sample(g)
(3)

2.9. Retrogradation

To analyze retrogradation, we first measured 100 mL of aqueous suspension of starch
(1%, w/v). Subsequently, we heated it in a boiling water bath under constant agitation
for 20 min, and then cooled it down to room temperature. We poured the solution into
a 100 mL measuring cylinder, diluted it with laboratory-pure water to another volume,
mixed it, and let it stand for a certain amount of time. We recorded the volume of the
supernatant every 12 h. Retrogradation was determined by the percentage of volume of
supernatant over time.

2.10. Freeze–Thaw Stability

The freeze–thaw stability of NCS and γ-HPS was measured by following the method
outlined in the literature [22], with a few small changes. The starch suspension (2%, w/v)
was heated, in order to gelatinize, in a boiling water bath under constant agitation for
20 min, using a beaker with a scale. It was then cooled down and diluted to another volume
with laboratory-pure water. Finally, it was poured into a centrifuge tube, covered with a lid,
and put in a fridge. An alternating freeze–thaw cycle was conducted, freezing for 20 h at
−18 ◦C and thawing for 4 h at 25 ◦C. The centrifuged water was separated and measured
as a baseline for freeze–thaw stability.

Syneresis(%) =
Water separated(g)× 100
Total weight of sample(g)

(4)

2.11. Apparent Viscosity

The apparent viscosity of the cooked starch and γ-HPS samples was determined using
a rotational viscometer (NDJ-1, Lichen Instrument Tech. Co. LTD., Shanghai, China). The
right amount of well-gelatinized starch solution (2%, w/v) was transferred to a proper
beaker. The viscometer measured the viscosity change of an aqueous suspension sample
with different MSs and pHs. We measured three times and calculated the mean value.

3. Results and Discussion
3.1. MS and Reaction Efficiency

MS increased as the input quantity of etherified reagent increased. The MSs obtained
for the γ-HPS were 0.008, 0.017, 0.053, 0.106, and 0.178 for 5%, 15%, 25%, 35%, and 45%
3-chloropropanol to starch (v/w), respectively (Figure 1). This observation is in line with
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the hydroxypropylation process of canna and maize [23], pigeon pea [24], and white
yam [25] starches. The FDA stipulates that all hydroxypropylated starches must not
surpass the maximum permissible level in food applications, that is to say, the MS cannot
be more than 0.2 [26]. As shown in Figure 1, the theoretical value is much higher than the
experimental value. The reaction efficiency for the preparation of γ-HPS was between 6%
and 21%, depending on the concentration of 3-chloropropanol. The reaction efficiency was
influenced by many factors. Altering reaction conditions (pH, temperature, reaction time,
swelling-inhibiting salt type and concentration, etherified reagent type, molar ratio, etc.)
impacted both MS levels and the uniformity of reaction within granules [27,28]. However,
optimizing the proportion parameters and forecasting the optimal process conditions were
not the focus of this study.
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Figure 1. Effect of etherified reagent on molar substitution of hydroxypropylated starches. (Histogram
is theoretical MS, trendline is experimental MS).

3.2. Wide-Angle X-ray Diffraction Pattern

As exhibited in Figure 2, the X-ray diffractograms of NCS and γ-HPS meet the “A”
pattern characteristic of cereal starches. There is a prominent peak at 15◦, a doublet
at 17◦ and 18◦, and only one peak at 23◦. Similar patterns were also observed after
hydroxypropylation. Other similar observations were reported for plantain [26], rice [29],
and hydroxypropylated starches with similar peaks at 2θ = 15, 17, and 23. In this study,
when increasing the extent of etherification, the strength of the doublet peaked around
2θ = 17◦, while 18◦ weakened. Meanwhile, a slight weakening in the intensity of the peaks
at 2θ = 15◦ and 23◦ was observed. The initial results indicate that the crystalline region of
the starch may undergo changes after the etherification reaction [30,31]. This is similar to
the findings of reports on pigeon pea [24] and white yam starch [25]. In contrast, a slight
increase in corresponding X-ray intensity was found for hydroxypropyl canna starch [23].
The explanation for this phenomenon may be the low level of hydroxypropyl modification
used in this study.

3.3. Morphology of γ-HPS

The SEMs of the NCS and γ-HPS are demonstrated in Figure 3. The granules of
NCS were almost rounded or oval or disk-shaped, with a slick surface. In our study,
hydroxypropyl modification at all levels of substitution did not completely change the
form or surface features of the granules [23]. Furthermore, after hydroxypropylation, the
granules stayed intact, as no breakage occurred. Treatment of the NCS granules with
3-chloropropanol resulted in changes on the granule’s surface. The surface corrosion
consisted of bumps and hollows, comparable to the moonscape. Compared with the
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small size granules, the large size granules were more likely to be affected. This is similar
in the hydroxypropylation of pigeon pea starch [24]. The reason for this may lie in the
differences in structure and fragility of the granules. The above observations could be
attributed to native starch morphology and the preparation process of the hydroxypropyl
starch derivatives.
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3.4. Thermal Properties

In this study, thermogravimetric analysis (TGA) and differential scanning calorimetry
(DSC) were combined to investigate the thermal stability of NCS and γ-HPS. The curves
of TGA experiments for the whole series of starch derivatives are presented in Figure S1.
As we can see in the above curves, native and modified starches exhibit at least three
decomposition stages. For example, in the case of native starch, below 100 ◦C, there
is a small weight loss in the curve graph. Generally, this sort of situation is caused by
a loss of adsorbed and bound water [32]. Between 260 and 340 ◦C, there is significant
weight loss, which occurs in the second stage. The prime reason for this may be the
depolymerization and degradation of products, such as carbon dioxide, carbon monoxide,
water, acetaldehyde, and furan, in a non-oxidation process. Above 340 ◦C, this trend in
weight loss is relatively modest. The last decomposition stage corresponds to carbonization
and the total degradation of intermediate products at high temperatures. Similar results
are seen in the TGA-DSC curves of γ-HPS, except for the narrow magnitudes. According
to the TGA curve of γ-HPS, the initial and final temperatures of the thermal decomposition
reaction decreased as MS increased, which can be observed at the following temperature
ranges: 220–320 ◦C (MS 0.008), 210–320 ◦C (MS 0.017), 200–320 ◦C (MS 0.053), 200–320 ◦C
(MS 0.106), and 200–310 ◦C (MS 0.178). Meanwhile, the second decomposition stage shows
an endothermic peak at 319.16 ◦C, which corresponds to the fusion of the native starch [33].
The temperature of the endothermic peak decreased with the increase in MS, such as at
266.14 ◦C (MS 0.008), 264.3 ◦C (MS 0.017), 255.66 ◦C (MS 0.053), 255.21 ◦C (MS 0.106), and
252.04 ◦C (MS 0.178). Therefore, the thermal stability of the original starch is reduced after
hydroxypropylation. Conversely, we found that a separate endothermic peak from the
first evaporation stage increased as MS increased. The temperature of the endothermic
peak increased from 75 ◦C to 125 ◦C, which indicates a stronger water retaining capacity at
higher MSs.
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3.5. Paste Clarity

The light transmittance of native starch and γ-HPS was investigated. The results
indicated that hydroxypropylation can improve paste clarity. Furthermore, the higher MS
of hydroxypropyl starches can increase paste clarity. All of them are listed below: 2.3%
(native), 7.6% (MS 0.008), 18.7% (MS 0.017), 30.3% (MS 0.053), 56.4% (MS 0.106), and 67.8%
(MS 0.178). These results are in line with hydroxypropyl potato, corn, and amaranth
starch [22,34]. Thus, the introduction of γ-hydroxypropyl substituents (-CH2CH2CH2-OH)
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should increase steric hindrance, prevent the accumulation and crystallization of amyloid
chains, and effectively weaken the strength of inter-chain hydrogen bonds.

3.6. Solubility

The solubility of NCS and γ-HPS was affected by factors such as temperature and
modification extent (Figure 4). Just as with paste clarity, solubility is impacted by the intro-
duction of γ-hydroxypropyl substituents (-CH2CH2CH2-OH). Solubility is proportional
to the increased MS of γ-HPS. In the present study, γ-HPS with an MS of about 0.178 was
not particularly soluble in normal temperature water. Meanwhile, hydroxypropyl starch
showed a significant increase in solubility above 75 ◦C. Temperature is also a favorable
factor. High temperatures resulted in an increase in solubility. The gelatinization tem-
perature and higher MSs are crucial for improving solubility. Similar observations for
hydroxypropylated sago starch [35] were reported.
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3.7. Freeze–Thaw Stability

There is an apparent difference in Figure 5 between NCS and γ-HPS. For native starch,
the gel turned into a sponge-like material after only one freeze–thaw cycle. The freeze–
thaw stability of modified starch gels improved dramatically after hydroxypropylation.
Compared with native starch, the period yielding separated water was improved and
exhibited better freeze–thaw stability (depending on the MS). In the second cycle, the
hydroxypropylated starch of lower MS (0.008) began to precipitate water. For the starches
with MS > 0.178, no syneresis was recorded until the fourth cycle. The more exposed the
3-hydroxypropyl group into starch chains, the better the effect of syneresis reduction. This
phenomenon was also reported for sago starch [36].

3.8. Retrogradation

Table 1 shows the stability of NCS and γ-HPS put through a continuous record over
72 h. Native starch began to retrograde after 6 h and grow over time. Hydroxypropylation
could effectively mitigate the syneresis in starch gels for 48 h (MS 0.178). Even in the
lower substituted hydroxypropylated starch (MS = 0.02), the effect of anti-retrogradation
was obvious. In addition, the boundary between water and gel grew more blurred. A
reasonable explanation is that the interaction and structural arrangements between starch
chains already were affected by the grafted γ-hydroxypropyl substituents (-CH2CH2CH2-
OH), all of which can directly affect starch retrogradation.
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Table 1. Retrogradation of native starch and γ-HPS.

Time/Sample 1 Native A B C D E

6 h 3.6% - - - - -
12 h 12.5% 2.2% 1.3% - - -
24 h 25.2% 9.8% 5.1% 3.3% - -
36 h 36.1% 21.5% 13% 7.6% 4.6% -
48 h 53.2% 32.4% 24.6% 23.8% 18.6% 5.6%
72 h 59.5% 43.2% 36.8% 27.6% 25.2% 10.7%

1 Unless otherwise stated, A–E: γ-HPS with MS 0.008, 0.017, 0.053, 0.106 and 0.178, respectively.

3.9. Apparent Viscosity and Acid Resistivity

The apparent viscosity of native and γ-HPS was measured at different concentrations
and pH levels (Figure 6). The decrease in the viscosity of the γ-HPS, relative to that of MS,
occurred due to introduction of the solubilizing hydroxypropyl group. Viscosity decreased
when solubility increased. In addition, as pH decreased, the apparent viscosity of native
and γ-HPS decreased. Nevertheless, the extent of the reduction in apparent viscosity
decreased as MS increased, which indicated that hydroxypropylation may effectively
increase acid resistance.
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4. Conclusions

In this study, γ-HPS was successfully prepared with different levels of MS, ranging
from 0.01 to 0.2, and the influence of MS on γ-HPS physicochemical properties was ex-
amined. After γ-hydroxypropylation, the functional parameters underwent significant
changes, particularly the solubility and paste clarity, as well as the freeze–thaw and retrogra-
dation stability. Some of these relevant functional parameters indicate what is needed to
make starch derivatives useful in various industries. The low-substituted etherified γ-HPSs
were tailored within the confines of the limits allowed by the appropriate regulation agen-
cies regarding food application. Generally, the physicochemical characteristics enhance
as the level of modification increases. Apart from the food sector, starch derivatives may
also be relevant in other applications such as hydrogels and composite coating. Further
investigations into the effectiveness of such applications of γ-HPS with a high degree of
substitution are currently underway in our laboratory.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27072119/s1. Figure S1: TGA and DSC traces as a
function of temperature for native and γ-HPS.
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