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Major depressive disorder (MDD) is a common psychiatric condition

associated with aberrant large-scale distributed brain networks. However, it

is unclear how the network dysfunction in MDD patients is characterized by

imbalance or derangement of network modular segregation. Fifty-one MDD

patients and forty-three matched healthy controls (HC) were recruited in

the present study. We analyzed intrinsic brain activity derived from resting-

state functional magnetic resonance imaging (R-fMRI) and then examined

brain network segregation by computing the participation coefficient (PC).

Further intra- and inter-modular connections analysis were preformed to

explain atypical PC. Besides, we explored the potential relationship between

the above graph theory measures and symptom severity in MDD. Lower

modular segregation of the frontal–parietal network (FPN) was found in MDD

compared with the HC group. The MDD group exhibited increased inter-

module connections between the FPN and cingulo-opercular network (CON),

between the FPN and cerebellum (Cere), between the CON and Cere. At the

nodal level, the PC of the anterior prefrontal cortex, anterior cingulate cortex,

inferior parietal lobule (IPL), and intraparietal sulcus showed larger in MDD.

Additionally, the inter-module connections between the FPN and CON and

the PC values of the IPL were negatively correlated with depression symptom

in the MDD group. These findings might give evidence about abnormal FPN in

MDD from the perspective of modular segregation in brain networks.
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Introduction

Major depressive disorder (MDD) is a protect common
psychiatric illness characterized by persistent low mood,
loss of interest, vegetative symptoms and impaired cognitive
function (1). MDD is highly prevalent affecting millions
of people worldwide (2). As a leading cause of disability
for recent several decades, MDD is a major contributor to
the overall global disease burden (3). However, the precise
pathophysiological mechanism underlying MDD is still
unclear. Functional magnetic resonance imaging (fMRI),
as a non-invasive technique, has provided a new insight
for exploring brain mechanism using depicting universal
patterns of brain activity and brain networks (4–6). With
the help of fMRI, the human brain has been found as an
optimized network framework which consists of highly
specialized and relatively independent modules (7–9). In this
framework, the connections between modules are sparse and
the connections within the modules are tight (10), bringing
about a modular segregation pattern which maintains the
balance between functional specialization and integration, and
then underlies individual cognitive processing and behavior
performance (11–13). Convergent evidences using fMRI
have demonstrated that this balance has been broken in
MDD including lower modular segregation and network
dysfunction (14–16). Specifically, changed intra-modular
connections of the default mode network (DMN) regulating
internally orientation is linked to pathological introspection
symptom in MDD (17), the fronto-parietal network (FPN)
and cingulopercular network (CON) involved in top-down
process are associated with emotional dysregulation and poor
concentration (18), and the salience network (SN) monitoring
salient stimuli plays a crucial role in emotional control (19,
20). Likewise, imbalanced inter-modular connections between
these networks are implicated in the expression of various
characteristics underlying MDD. For example, a prior resting-
state fMRI study has documented aberrant connectivity
of the FPN with the SN and DMN leads to imbalance of
externally attention process and internally self-reference and
furthermore gives rise to emotional dysregulation (21). Another
study based on meta-analysis reported hyperconnectivity
between the SN and DMN is associated with overreaction
to negative stimuli, which results in distorted information
processing (22). Reduced connectivity between the executive
network (EN) and DMN contributes to higher cognitive
dysfunction (23). Although these studies regarded MDD
as a “network disease,” modular segregation of the whole-
brain functional networks in participants with MDD is not
yet fully clear.

Graph theory analysis is an effective method to describe
modular segregation of brain networks (24–26). In this
method, the whole brain regions and the relationships between
these regions are mapped as nodes and edges, respectively,

and the graphics composed of these distributed nodes and
edges are used to describe network topology structure
(27). For the sake of evaluating modular segregation in
brain networks, a powerful graph theory metric participant
coefficient (PC) was utilized. The PC enables quantification
of inter- and intra-module connections of brain networks
(28). Applying the PC, a variety of previous neuroimaging
studies have demonstrated aberrant modular segregation in
various neuropsychiatrical or neuropsychological disorders. For
example, Wang et al. reported that children showed higher
intra-modular connections and lower inter-module connections
with age (24). Zhou et al. (29) found that participants with
internet game disorder had reduced intra-modular connections
within the DMN and FPN relative to healthy controls (HC).
Furthermore, a resting-state fMRI study also documented
disrupted modular organization in traumatic brain injury
(30). Therefore, graph theory analysis may contribute to
uncovering abnormal modular segregation of brain network
in MDD patients.

In the present study, we aimed to explore the modular
segregation of brain networks in MDD using graph theory
analysis. We firstly computed the mean PC in each module to
identify which module or modules drove the pathological
symptom of MDD. We then analyzed the number of
intra- and inter-modular connections. Moreover, the PC
of each node in module exhibiting abnormal modular
segregation was obtained. Finally, Pearson correlation
analysis were employed to investigate potential relationship
between the above graph theory measures and symptom
severity in the MDD group. Based on prior studies (22,
31), we hypothesized that (1) modular segregation of the
whole-brain networks would be disrupted between the
MDD and control groups; (2) graph theory properties
with between-group differences would correlate with
MDD symptom scores.

Materials and methods

Participants

Ninety-four participants were collected in the present
study, including 51 MDD patients (age: 25.80 ± 8.80 years;
gender: 15 males/36 females) and 53 gender-, age-, and
handedness-matched HC (age: 29.42 ± 12.56 years; gender:
16 males/27 females). These participants were recruited from
the Department of Psychiatry at the Affiliated Hospital of
Hangzhou Normal University and the Department of Psychiatry
of Hangzhou Seventh People’s Hospital.

MDD patients were diagnosed based on the Diagnostic and
Statistical Manual of Mental Disorders, Fourth Edition (DSM-
IV) criteria using the Mini-Neuropsychiatric International
Interview (MINI). Symptom severity of MDD was evaluated
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according to 24-item Hamilton Depression Rating Scale
(HAMD). All MDD patients did not take any antidepressant
treatment or drug treatment for 2 months before taking part
in the experiment. All procedures were approved by the local
Institutional Review Board of Hangzhou Normal University and
were conducted in accordance with the Declaration of Helsinki.
Written informed consent was obtained from all participants or
their guardian before participation.

Imaging acquisition and preprocessing

Imaging scanning was performed using a 3.0 T
Discovery MR 750 scanner (General Electric, Waukesha,
WI, United States) at the Center for Cognition and Brain
Disorders of Hangzhou Normal University. All participants
were asked to relax and keep their eyes closed without falling
asleep before the scanning. Functional images (Figure 1A)
were acquired using a T2∗-weighted gradient-echo EPI
pulse sequence with repetition time (TR) = 2,000 ms, echo
time (TE) = 22 ms, flip angle (FA) = 77◦, field of view
(FOV) = 240 × 240 mm2, matrix = 96 × 96, 2.5 mm
isotropic spatial resolution with 42 slices and 240 volumes.
High-resolution T1-weighted structural images in the sagittal
orientation were collected with fast spoiled gradient echo
(3D FSPGR) sequence using the following parameters:
TR = 9 ms, TE = 3.66 ms, FA = 13◦, FOV = 240 × 240
mm2, matrix = 300 × 300, 0.8 mm isotropic voxels, 176 slices
without interslice gap.

The Data Processing Assistant for Resting-State fMRI
(DPARSF)1 software (32) was used to preform preprocessing
and their detailed steps included: (1) discarding the first ten
functional volumes for the scan environmental adaptation;
(2) slice time correction on the remaining images; (3)
implementing head motion correction (translation < 2 mm or
rotation < 2◦); (4) nuisance covariate regression (six motion
parameters, white matter signal and cerebrospinal fluid signal);
(5) normalization into the Montreal Neurological Institute
(MNI) template using the transformation derived from T1
segmentation, and resampling at 3× 3× 3 mm3; (6) smoothing
with a 6 mm full-width half-maximum isotropic Gaussian
kernel; (7) detrending; (8) temporal filtering (bandpass, 0.01–
0.1 Hz).

Brain network construction and graph
theory analysis

We adopted a functional brain template for data analysis
according to a prior study (33). This template divided the brain

1 http://www.rfmri.org/

into 160 regions which covered cerebral and cerebellar regions.
We extracted the average time series from the 160 regions of
interest (ROI) with 3 mm diameter and a 160× 160 correlation
matrix for each participant was obtained by performing
Pearson’s correlation analysis on each ROI pair. Following
prior studies (34, 35), a scarcity threshold of 15% was adopted
to ensure that the number of network edges was the same
across participant. Graph theory analysis was implemented
by the Gretna software. Based on a predefined parcellation
template (33), the 160 ROIs were grouped into six functional
modules, which were labeled as the default-mode network
(DMN), FPN, cingulo-opercular network (CON), sensorimotor
network (SMN), visual network (Visual), and the cerebellum
(Cere). The PC is an effective approach to evaluate modular
segregation (28). For a given node i in the module m, PC

was calculated as PCi = 1−
∑

m∈M

(
kim
ki

)2
, where M is the

set of modules, kim is the number of connections between
node i and other nodes in the module m, and ki is the
total number of connections of node i. The PC quantifies
the patterns of inter- and intra-module connectivity of node
i. Specifically, for a node i in the module m, higher PCi

value indicates lower connections within the module m and
higher inter-module connections (lower modular segregation)
while lower PCi value suggests higher connections within
the module m and lower inter-module connections (greater
modular segregation). For each participant, the mean PC in
each module was calculated by averaging the PC values of
all nodes belonging to the module, so as to uncover which
module causes the core symptom of MDD. In addition to PC,
we calculated the number of intra-module connections in each
module and the number of inter-module connections in each
pair of modules. The number of inter-module connections was
obtained by calculating the sum of connections between all
nodes in a certain module and all nodes in another module.
Finally, in order to explore abnormal modular segregation at
node level, we calculated the PC of each node in the module
showing atypical modular segregation.

Statistical analysis

We performed two-sample t-test to compare between-group
differences in the mean PC of each module, the number of
intra-module connections and inter-module connections, and
the PC of each node in the module with aberrant modular
segregation. The normal test analysis showed that each item of
data analyzed conformed to a normal distribution. Bonferroni
correction was conducted for multiple comparisons correction
and the significant threshold was set at α = 0.05/6 (six
measures) = 0.0083. The chi-square test assessed the gender
difference between the MDD and HC group. In order to measure
the relationship between graph theory metrics and clinical data,
we carried out Pearson correlation analysis in the MDD group.
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Results

Demographic and clinical data are listed in Table 1. There
were no significant differences in gender (p = 0.43) and age
(p = 0.11) between the MDD and HC groups. The MDD
group exhibited significantly higher HAMD scores (p < 0.001)
compared with the HC group.

As shown in Figure 1B, the whole brain was parcellated
into six functional modules including the DMN, FPN,
CON, SMN, Visual, and Cere, which have been broadly
applied in prior works. We examined the PC of each
module in the MDD and HC groups (Figures 1C,D). MDD
patients showed significantly higher mean PC of the FPN
(t = 2.826, pcorrected = 0.036) and Cere (t = 2.796, p
corrected = 0.042) compared with the HC group (Figure 2 and
Table 2). In addition to PC, we also determined whether
these changers mentioned above were caused by abnormal
connections of intra-module and inter-module (Figure 1E).
As shown in Figure 3A and Table 2, MDD displayed
significantly increased inter-module connections between the
FPN and CON (t = 2.423, p uncorrected = 0.017), FPN and
Cere (t = 2.764, p uncorrected = 0.007), CON and Cere
(t = 2.335, p uncorrected = 0.022) relative to the HC group.
No significant between-group difference was observed in the
intra-module connections. Correlation analysis revealed that
the inter-module connections between the FPN and CON
were significantly negatively correlated with HAMD scores
(r = −0.378, p uncorrected = 0.006) in MDD (Figure 3B and
Table 2).

As shown in Figure 4A and Table 2, MDD patients
exhibited significantly increased PC in the right ventral anterior
prefrontal cortex (aPFC, t = 2.039, p uncorrected = 0.044), left
aPFC (t = 2.868, p uncorrected = 0.005), left anterior cingulate
cortex (ACC, t = 2.903, p uncorrected = 0.005), right inferior
parietal lobule (IPL, t = 3.298, p uncorrected = 0.002), and
left intraparietal sulcus (IPS, t = 2.648, p uncorrected = 0.010)
compared with the HC group. The PC values of the right IPL
were significantly negatively correlated with HAMD scores (r = -
0.336, p uncorrected = 0.016) in the MDD group (Figure 4B and
Table 2).

We selected a range of network density to evaluate the
reliability of our findings found above. The threshold range
used was 0.10 (10% has been proved to provide high test-retest
reliability of graph theory metrics) to 0.20 (20% can potentially
reveal the cognitive-relevance of weak brain connections) with a
step size of 0.02. Most of the results reported above were retained
(Supplementary Tables 1, 2).

Discussion

In the present study, we delineated the modular segregation
patterns of the brain networks by applying graph theory

analysis in the MDD and healthy participants, and then
examined the relationship between the graph theory properties
and depression symptom. We found significantly lower
modular segregation in FPN and Cere in the MDD group
than in the HC group. MDD patients exhibited increased
inter-module connections between the FPN and CON, FPN
and Cere, CON and Cere compared with the HC group.
PC in the aPFC, ACC, IPL, IPS of MDD patients were
increased than that of HC group. Moreover, the inter-
module connections between the FPN and CON and the PC
values of the IPL were negatively correlated with depression
symptom in MDD. These findings extend our understanding of
disrupted functional brain networks underlying MDD from a
modular perspective.

We found MDD patients had significantly increased
PC of the FPN and Cere compared with the HC group,
suggesting lower intra-modular connections and higher inter-
modular connections in MDD. The FPN regulates the top-
down process of emotion and attention (36). Previous studies
frequently reported that atypical connectivity of the FPN
was linked to MDD (31, 37). Luo et al. have observed
lower connectivity within the FPN and higher connectivity
between the FPN and other brain regions in MDD group,
which indicated alterations of the FPN play a crucial role
in the pathophysiology of MDD (31). Furthermore, we also
found abnormalities of the Cere in MDD. Many studies
have focused increasingly on cerebellar role in delineating the
neural loops of MDD. Prior study implies Cere is involved in
regulation of emotion process via communications with limbic
regions (38). Another study demonstrated that the cerebellar
connections with DMN might modulate self-reference process
(39). Our findings emphasized cerebellar contributions to
MDD and further investigations are expected to explore its
brain mechanism.

Further analysis suggested that the decreased modular
segregations of the FPN and Cere resulted from the
increased inter-modular connections between the FPN
and CON, FPN and Cere, CON and Cere. The FPN and
CON are task-positive networks and modulate processing
of emotion and attention (40). In line with our current
findings, previous study found participants with MDD
had aberrant connectivity between the FPN and CON and
correlated with dysregulation of emotion and attention (41).
Furthermore, abnormal connectivity between the FPN and
CON may contribute to dysfunction of executive control
(42, 43). Accordingly, abnormalities between the FPN
and CON may underlie depression-related dysregulation
of emotion and poor concentration, as well as executive
control deficits.

Interestingly, correlation analysis showed that the
inter-modular connections between the FPN and CON
were negatively correlated with depression symptom,
whereas the MDD group displayed higher inter-modular
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TABLE 1 Demographic and clinical data.

MDD (Mean ± SD) HC (Mean ± SD) t/χ2-value P-value

Gender (male/female) 51 (15/36) 43 (16/27) 0.64 0.43b

Age (years) 25.80± 8.80 29.42± 12.56 −1.64 0.11a

Handedness (R/L) 51/0 43/0

Mean FD 0.05± 0.02 0.06± 0.03 −1.58 0.12a

HAMD 28.55± 6.84 1.35± 1.38 27.73 <0.001a

Duration of illness (months) 8.08± 14.09

MDD, major depressive disorder; HC, healthy controls; SD, standard deviation; R, right; L, left; FD, framewise displacement; HAMD, 24-item Hamilton Depression Rating Scale. aTwo-
sample t-test. bChi-square test.

FIGURE 1

The schematic illustration of processing steps. This figure showed the data analysis pipeline of the present study. (A) Resting-state fMRI (R-fMRI)
images were acquired from all subjects. (B) The Dosenbach 160 regions were used as network nodes of the whole brain and the 160 nodes
were parcellated into six functional modules. (C) We conducted Pearson’s correlation analysis between each pair of nodes to construct a
160 × 160 correlation matrix for each participant. (D) The mean participation coefficient (PC) for each module was calculated to quantify the
modular segregation. (E) The number of intra- and inter-module connections were calculated to explore the reasons for PC abnormalities
among the two groups.

connections between the FPN and CON relative to HC
group, exhibiting two opposite tendencies. A large number
of neuroimaging studies have demonstrated that MDD
not only affects long-distance connections, but also affects
local spontaneous neural activity in the brain (44–46).
It is worth noting that long-distance connections and
local brain neural activities often occur simultaneously
and interact (47, 48). In addition, previous studies have
documented that depression symptoms are negatively
correlated with local neural activity in the brain (49,
50). Therefore, the inter-modular connections between
the FPN and CON that decrease with the increase in
depressive symptoms may reflect the decrease in local
neural activity in the brain, rather than long-distance
abnormal changes.

At the nodal level, the between-group comparison
showed that the PC in the aPFC, ACC, IPL, and IPS
significantly increased in MDD group compared with the
HC group. These nodes participate in these functions
via coupling with other modules. For example, previous
structural and functional neuroimaging studies have
confirmed that aPFC modulates high-order cognitive
function through connections with lateral parietal cortex
(51, 52). Many studies have found that subjects with MDD
had aberrant activation in the ACC under the emotional
tasks (53–55). Rive et al. reported hyperactivation in the
ACC during negative tasks and hypoactivation during
positive tasks (56). Moreover, Fournier et al. observed
that MDD patients exhibited hyperactivation in the ACC
when confronted with anger stimuli (57). IPL has been
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FIGURE 2

Between-group differences of mean participant coefficient (PC). Major depressive disorder (MDD) patients showed significantly higher PC on
the fronto-parietal network (FPN) and cerebellum (Cere) than the healthy controls (HC). *Indicates p < 0.05.

TABLE 2 Significant differences in the mean PC of modules, the inter-module connections and the PC of nodes.

MDD (Mean ± SD) HC (Mean ± SD) t-value P-value

Mean PC of the modules
FPN 0.654± 0.038 0.619± 0.073 2.826 0.036

Cere 0.588± 0.094 0.509± 0.162 2.796 0.042

Inter-module connections
FPN and CON 89.900± 26.837 75.440± 31.031 2.423 0.017

FPN and Cere 38.180± 23.936 24.950± 22.086 2.764 0.007

CON and Cere 53.270± 32.959 37.700± 31.309 2.335 0.022

PC of the nodes in FPN
R aPFC 0.615± 0.110 0.559± 0.154 2.039 0.044

L aPFC 0.641± 0.106 0.563± 0.150 2.868 0.005

L ACC 0.685± 0.079 0.619± 0.135 2.903 0.005

R IPL 0.636± 0.084 0.514± 0.230 3.298 0.002

L IPS 0.688± 0.079 0.623± 0.143 2.648 0.010

MDD, major depressive disorder; HC, healthy controls; SD, standard deviation; PC, participation coefficient; FPN, fronto-parietal network; CON, cingulo-opercular network; Cere,
cerebellum; R, right; L, left; aPFC, ventral anterior prefrontal cortex; ACC, anterior cingulate cortex; IPL, inferior parietal lobule; IPS, intraparietal sulcus.

confirmed to be involved in emotional perception. Wang
et al. observed that participants with MDD displayed
significantly decreased local spontaneous neural activity
in bilateral IPL compared to HC group (58). Therefore,
current results of increased PC in the ACC and IPL may
link to emotional deficits of MDD patients. IPS is necessary
for attention control and memory processing. Previous
studies on MDD frequently reported IPS alterations.
Martin et al. revealed increased activity in the IPS and
IPS exerted a negative modulation on visual cortex (59).

Fairhall et al. documented dissociation between IPS and
hippocampus (60).

There are several limitations in our present study.
Firstly, the number of nodes in a module will affect
the PC value, so more advanced methods should be
designed to calculate PC. Secondly, our results did
not find abnormal modular segmentation about DMN,
which is often reported in previous network studies on
MDD. Further studies are expected to give reasonable
explanations to our findings in the current study. Thirdly, only
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FIGURE 3

Between-group comparison of inter-module connections and their correlation with HAMD scores. (A) Compared with the healthy controls
(HC), the major depressive disorder (MDD) patients exhibited significantly increased inter-module connections between the frontal–parietal
network (FPN) and cingulo-opercular network (CON), FPN and cerebellum (Cere), CON and Cere. (B) The inter-module connections between
the FPN and CON are significantly negatively correlated with HAMD scores in the MDD group. *Indicates p < 0.05, **indicates p < 0.01.

FIGURE 4

Between-group differences of participation coefficient (PC) of the nodes in frontal–parietal network (FPN) and their correlation with HAMD
scores. (A) The major depressive disorder (MDD) patients exhibited significantly increased PC in the bilateral ventral anterior prefrontal cortex,
left anterior cingulate cortex, right inferior parietal lobule, and left intraparietal sulcus relative to the healthy controls (HC). (B) The PC values of
the right inferior parietal lobule were significantly negatively correlated with HAMD scores in the MDD group. *Indicates p < 0.05, **indicates
p < 0.01.
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Dosenbach’s template was chosen for network construction, and
future research should choose different templates to test the
reproducibility of our results.

Conclusion

Using graph theory analysis, the present study demonstrated
decreased modular segregation of the FPN and Cere, which was
resulted from the increased inter-modular connections between
the FPN and CON, FPN and Cere, CON and Cere. Moreover,
we found significantly increased PC in the aPFC, ACC, IPL, and
IPS. The above findings explain the emotional dysregulation,
cognitive deficits and inattention related to depression from the
perspective of modular segregation.
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