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Successful establishment of a tumour relies on a cascade of interactions

between cancer cells and stromal cells within an evolving microenviron-

ment. Both immune and nonimmune cellular components are key factors

in this process, and the individual players may change their role from

tumour elimination to tumour promotion as the microenvironment devel-

ops. While the tumour–stroma crosstalk present in an established tumour

is well-studied, aspects in the early tumour or premalignant microenviron-

ment have received less attention. This is in part due to the challenges in

studying this process in the clinic or in mouse models. Here, we review the

key anti- and pro-tumour factors in the early microenvironment and dis-

cuss how understanding this process may be exploited in the clinic.
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1. Introduction

The stepwise accumulation of genetic changes from

healthy tissue through to malignancy, is accompanied

by co-option of neighbouring normal cells to support

tumour development and progression. These ‘normal’

cells, which include immune and nonimmune popula-

tions, are collectively termed the stroma. Stromal cells

and cancer cells collectively form the tumour microen-

vironment.

While much work has focused on the characterisa-

tion of oncogenic mutations within epithelial cells from

the point of cancer initiation, the acquisition of muta-

tions alone is not always sufficient to give rise to can-

cer, as the majority of mutagenic cells die or senesce

[1–3]. Indeed, many premalignant lesions already bear

a significant mutational burden; however, only a

minority go on to develop cancer [4–7] and consider-

able lag times from these initial mutations to tumour

development have been reported [8]. This implies a

role for the surrounding stromal environment from the

point of cancer initiation, where non-cell-autonomous

environmental cues provide a niche permissive for

malignant transition.

With our increasing appreciation of the complexities

of the tumour microenvironment, the concept of

exploiting the stroma for therapeutic benefit is becoming

more attractive. Thus, whether the characteristics of an

evolving microenvironment can be exploited towards

early diagnosis and patient stratification approaches in

early stages of carcinogenesis remain- key questions to

be addressed. In this review, we examine the state of our

understanding of components within the microenviron-

ment and their contribution to malignant transition.

While immune components have been the subject of the

most intense research, nonimmune constituents are now

emerging as critical players, and here, we attempt to

emphasise their role, highlighting emerging strategies to

facilitate early detection.

2. Immune cell populations of the
evolving tumour microenvironment:
losing control

The recognition and elimination of genetically distinct

transformed cells by the immune system (immuno-

surveillance) [9] represents a major barrier to the pro-

gression of early cancers. This is evident from

numerous studies reporting a higher incidence of can-

cer in immunocompromised individuals [10–14] and in

mice lacking key cytotoxic components of the immune

systems such as IFN-c, perforin and natural killer cells

(NK cells) [15,16]. The potential of the immune system

to eliminate established tumours in humans has been

well-demonstrated by the effectiveness of immune

checkpoint inhibitors (ICPIs). Therefore, the immune

system’s role in interacting with virtually all nonim-

mune components of the TME as well as mediating

signalling beyond the physical confines of the TME to

the tumour macroenvironment has led to great interest

in the role of the immune system in early tumorigene-

sis [17].

The presence of immune cells in tumours capable of

recognising mutated cancer cells raises several impor-

tant questions, which until now remain a significant

challenge in oncology: How do cancer cells avoid

destruction by the immune system? How is immune

control lost? And when during tumorigenesis is this

control lost?

2.1. Adaptive immunity in malignant

transformation

T lymphocytes are key determinants in tumour fate.

Elevated CD8 infiltration and high CD8:Treg ratios in

established tumours are associated with favourable

long-term prognosis [18–21]. In early lesions experienc-

ing active immune surveillance, tumour neoantigens

generated as a result of genetic instability are pre-

sented on MHC, alerting T cells to the presence of

cancer cells leading to rapid elimination [22–26]. Stud-
ies using carcinogen-driven murine models have shown

that the premalignant microenvironment is signifi-

cantly more immune stimulatory than established

tumour microenvironments, supporting potent T-cell

activation [27,28]. In genetically engineered mouse

models, DuPage et al. [22] elegantly demonstrated

antigen-dependent accumulation of T cells was suffi-

cient to delay malignant lung tumour progression. Pre-

malignant lesions have increased numbers of T cells

compared with fully developed invasive lesions, and

those with lower infiltration exhibit higher incidence of

progression to cancer, indicating a key relationship

between T cells and the epithelium in this stepwise

process [28–33].
However, this is in stark contrast to established

tumours which frequently present with a paucity of

tumour-infiltrating lymphocytes exhibiting an impaired

cytotoxic capacity. Established tumours escape

immune attack through four major mechanisms. First,

mutation of constituents of the antigen presentation

pathway reduces neoantigen presentation rendering

cancer cells ‘invisible’ to T cells. Indeed, 40% of

human non-small-cell lung cancers exhibit defects in

human leucocyte antigens (HLAs), reducing antigen

presentation and promoting immune escape [34].
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Second, functional T cells eliminate immunogenic

clones promoting the development of less heteroge-

neous, less immunogenic tumours in the process, ter-

med immunoediting. In murine sarcoma, antigen-

specific T cells present in early lesions were critical for

immunoediting to permit outgrowth of less immuno-

genic clones [35]. Third, tumours induce a state of dys-

function in infiltrating T cells often termed ‘immune

exhaustion’. DuPage et al. [22] showed that despite an

initially effective T-cell response to delay lung tumour

progression, T cells did not persist and exhibited a

decreased cytotoxicity, despite continued antigen expo-

sure. Indeed, it has been shown that persistent antigen

exposure is a critical trigger for initiation of the T-cell

exhaustion signature [36,37], which is increasingly

appreciated as a graded spectrum of inactivity with its

origins in the early TME. In other models examining

loss of T-cell function in premalignant lesions,

increases in PD-1/PD-L1 expression, Treg diversity and

numbers of circulating Tregs were indicative of T-cell

dysfunction [31,38,39]. Fourth, established tumours

develop an immune-suppressive microenvironment

which protects them from T-cell-mediated immunity.

This has been historically demonstrated by the phe-

nomenon of ‘concomitant immunity’. Tumour forma-

tion is induced in a mouse. Following excision of the

tumour, the same mouse demonstrates immune-medi-

ated resistance to rechallenge with cells from its own

tumour. This is an elegant demonstration that the

immune system may eliminate isolated tumour cells,

but once the microenvironment is formed the tumour

is protected from circulating immunity [40]. Within the

evolving TME, transforming growth factor beta

(TGF-b), epithelial or immune derived, can further

amplify loss of T-cell-mediated immune surveillance

[41,42]. Tregs suppress T-cell effector functions [43,44],

downregulating genes involved in the cytotoxic func-

tion of CD8 T cells including granzyme B and IFN-c,
ultimately tipping the immune balance towards toler-

ance and facilitating immune evasion. TGF-b is key to

the initiation of regulatory programmes and differenti-

ation of CD4 T cells into Tregs [41,45–48]. Interest-

ingly, during malignant transition TGF-b operates in a

context-specific manner, playing opposing roles, ini-

tially functioning as a tumour suppressor capable of

inducing apoptosis in premalignant cells before behav-

ing as a potent immune suppressor, reviewed exten-

sively elsewhere [49–51]. The wider immune functions

of other microenvironment components are discussed

in more detail later in this review. Thus, the perturba-

tion of T-cell functionality in premalignant lesions

does not occur in isolation, but via crosstalk with

other constituents of the immune milieu.

Collectively, these reports add to a growing body of

evidence suggesting that while T cells are essential for

immune control of premalignant lesions, loss of T-cell-

mediated immune surveillance may occur prior to

malignant transition and that immune involvement

actively promotes progression to cancer [31,38,52].

2.2. Innate modulation of the transforming

tumour microenvironment

Although critical fate determinants, T cells do not

operate in isolation, engaging in extensive crosstalk

with other immune cells within the developing

microenvironment [32]. The innate immune system,

comprising neutrophils, NK cells, innate lymphoid

cells (ILCs), dendritic cells (DCs) and macrophages,

functions primarily as a rapid response to pathogens.

In the tumour context, an initially protective response

switches to promote carcinogenesis. While directly con-

tributing to tumorigenesis by selecting immunogenic

clones, the innate immune compartment ultimately

shapes the formation of a tumour microenvironment

providing inflammatory cues capable of controlling T-

cell fate, modulating mutated cancer cells themselves

and modifying underlying tissues.

2.2.1. Macrophages

Of all immune cells, macrophages are the most abun-

dant and display arguably the highest plasticity,

responding rapidly to a diverse array of environmental

stimuli. Activated pro-inflammatory (M1) and anti-in-

flammatory (wound healing, M2) populations have

been described extensively [53,54]. However, in the

context of a tumour, M1 and M2 nomenclatures repre-

sent a grossly oversimplified classification, with macro-

phages existing along a spectrum of phenotypes from

pro- to anti-inflammatory depending on the localised

cues they receive [55–59]. Indeed, reflecting the breadth

of diversity of tumour-derived cues, studies have

described macrophages expressing both markers typi-

cal of M1 and M2 phenotypes, and traits overlapping

with myeloid-derived suppressor cells (MDSCs).

Heterogeneity within the microenvironment of a devel-

oping tumour further amplifies intratumoral macro-

phage diversity and diversity across cancer types.

In very early stages of tumour development,

enhanced numbers of macrophages have been observed

[32,60], and those recruited exhibit a pro-inflammatory

phenotype, activated by host factors such as DAMPs

and tumour cell DNA [24,61,62]. Such infiltrates con-

tribute to immune surveillance and are capable of

directly eliminating immunogenic tumour cell clones

2602 Molecular Oncology 15 (2021) 2600–2633 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Role of the microenvironment in tumorigenesis J. O. Jones et al.



via release of toxic mediators such as TNF, inter-

leukin-2 (IL-2), reactivate nitrogen and oxygen species

[63–67]. This behaviour is reminiscent of their role in

infection, phagocytosing and presenting tumour-

derived antigen to incoming CD8 T cells [68–72].
Moreover, augmenting these effects, macrophage-

derived IL-1 activates surveilling innate and adaptive

immune cells to inhibit malignant progression. As

occurs for T-cell surveillance, tumours evolve strategies

to evade immune control. Recent work has identified a

mechanism used by neoplastic cells to avoid macro-

phage-mediated immune surveillance during the early

stages of tumorigenesis. Epithelial-derived GDF-15

suppressed macrophage cytotoxic activity by inhibiting

TNF and NO production in an NF-jB-dependent
manner [73]. Therefore, in response to a rapidly adapt-

ing cytokine milieu within developing lesions including

TGF, IL-10, IL-4 and M-CSF, macrophages acquire a

tumour-promoting, immune-suppressive phenotype,

remodelling the microenvironment in the process [74–
77].

However, these antitumour effects of very early

lesions are replaced by a tumour-promoting phenotype

at an early stage of carcinogenesis. This requirement

for macrophages in malignant progression was ele-

gantly demonstrated by Lin et al. who crossed

MMTV-PyMT mice, which develop breast tumours

spontaneously, with osteoporotic (op/op) mice lacking

CSF-1, a cytokine critical for macrophage function.

While they observed little impact on the development

of premalignant lesions, progression to invasive carci-

noma was significantly impaired [76,78].

A key feature of once antitumour, inflammatory

macrophages is the acquisition of immune-suppressive

traits to facilitate malignant progression [60,76,79,80].

To support immune suppression, and thus evasion of

early immune surveillance, macrophages use both

direct and indirect mechanisms. Expression of immune

checkpoints such as PD-L1 inhibits T-cell function,

and release of suppressive cytokines, metabolites and

proteases has far-reaching effects on the immune com-

partment [81,82]. Pro-inflammatory cytokines such as

IL-12 are replaced with the secretion of IL-10 [82,83],

Indoleamine dioxygenase (IDO) [20,84] and TGF-b
[42,49,82,85,86], which together impair T-cell effector

activity [82,87,88] and promote induction of Treg phe-

notypes [47,89]. CCL22 recruits Tregs and along with

CCL5 and CCL17 can inhibit T-cell proliferation

[90,91]. Similarly, IL-10 and TGF-b inhibit DC matu-

ration, reducing antigen-presenting capacity and down-

stream T-cell responses.

Macrophages within the premalignant microenviron-

ment may also elicit tumour-promoting activities

beyond influencing immune cells, either via direct

effects on epithelial cells or by indirect effects on other

nonimmune stromal populations. There are several

direct epithelial mechanisms. First, factors such as

ROS and NOS also induce DNA damage contributing

to genomic instability and mutational burden

[74,75,92–94]. Second, the release of cytokines and

growth factors such as EGF stimulates epithelial pro-

liferation [95–98]. In both chronic inflammation and

Kras-driven models of pancreatic cancer, macrophages

were shown to drive metaplasia of acinar to ductal

cells. Pancreatic acinar cells with oncogenic

KRASG12D upregulated the expression of ICAM-1 to

recruit macrophages, which through matrix metallo-

proteinase-9 (MMP9) and TNF-a production induced

metaplasia, the earliest abnormal pancreatic lesions

[60]. Also in pancreatic cancer, reshaping of the pre-

malignant microenvironment to a PDAC phenotype

has been reported to require early recruitment of

macrophages through CCL9 and CCL2 [99]. Macro-

phage-derived Gas6 has also recently been described as

a critical regulator for the transition between premalig-

nant breast cancer and invasive breast cancer [100].

Signalling via Axl on premalignant epithelial cells,

having engaged with macrophage-derived Gas6,

induced downstream survival signals and concurrent

loss of E-cadherin.

Beyond their direct influence on epithelial cells, as

for any organ, an oxygen supply needs to be estab-

lished to support an expanding epithelial compartment

in hyperplastic lesions [101–103]. Here, macrophages,

including a subset expressing Tie2, contribute to the

angiogenic switch and function as potent inducers of

angiogenesis via production of diverse pro-angiogenic

factors VEGF, TNF-a, IL-8, MMP9 and FGF-2 [104–
109]. These features have been demonstrated in trans-

genic mouse models which recapitulate the very early

neoplastic lesions. In an inducible mouse model of pre-

neoplastic changes in the mammary epithelium, macro-

phage recruitment was necessary for epithelial

proliferation and induction of angiogenesis [110]. Simi-

larly, in mice null for CSF1, delayed progression from

premalignant to invasive lesions was due a failure to

induce angiogenesis by macrophages [78,111], a pro-

cess dependent on MMP9 [112]. This was true also for

intestinal tumorigenesis [113]. Moreover, macrophage-

derived MMP9 plays a pivotal role in tumour angio-

genesis, regulating the bioavailability of VEGF

[114,115].

Macrophages are also involved in remodelling of the

underlying tissues. The extracellular matrix (ECM), a

3D network composed of polysaccharides, proteins

including collagens and glycoproteins, provides
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biochemical and biomechanical cues critical for

tumour progression [116,117]. Macrophages are fre-

quently observed within collagen-rich areas of develop-

ing tumours [118] where they are implicated in the

deposition of matrix [86,119–124], fibril organisation

[119,125–127], cross-linking (stiffening the ECM) and

degradation to release growth factors and support cell

motility [120,128]. Here, they have been shown to

upregulate expression of the matricellular glycopro-

teins, osteopontin, osteoactivin, fibronectin, collagen

types I VI and XIV and secreted protein acidic and

rich in cysteine (SPARC) needed for the assembly and

organisation of collagenous matrix [119,129–131].
Macrophages produce enzymes to modify collagen

assembly such as prolyl 4-hydroxylase a-subunit iso-

form 1 (P4HA1) and procollagen-lysine 2-oxoglutarate

5-dioxygenase 1 and 3 (PLOD-1, PLOD-3) [119], and

modify secreted structure via expression of lysyl oxi-

dase (LOX) and lysyl oxidase-like (LOXL) proteins

[126], supporting matrix stiffening needed for changes

in epithelial morphology (discussed in detail later).

2.2.2. ILCs and NK cells

Within the early cancer setting, ILCs are extremely

efficient at eliminating malignant cells through the

expression of perforin and granzyme, as well as death

ligands, such as TNF-regulated apoptosis-inducing

ligand (TRAIL) and Fas ligand [132–134] ILCs com-

prise the cytotoxic NK cells, and the more recently dis-

covered ‘helper’ ILC subsets. NK cells are key

participants in immune surveillance of early lesions,

‘recognising’ malignant cells by the absence of MHC I

on cancer cells evading cytotoxic T cells [135], and

hence, their presence is associated with good progno-

sis. Evidence supporting this antitumour role came

from studies showing increased cancer incidence in

mice and humans lacking NK cells [136,137], and

increased cancer risk in patients with low NK activity

[138].

A fluctuating balance of activating and inhibitory

receptor–ligand interactions on NK cells controls their

activity. The most interesting of these, from a tumour

immunology perspective, has been the natural killer

group 2, member D (NKG2D) receptor, which can

recognise MHC class I-related proteins A and B

(MICA and MICB), ectopically expressed antigens

such as Rae1 or H60, as well as DNA damage-induced

cell surface ligands [139,140], facilitating tumour cell

elimination [140–142]. Cytokines including IFN-c, IL-
12, IL-18 and IL-15, and the cell surface adhesion

molecule LFA-1 within the TME also potently activate

NK cells [143,144]. Activated NK cells produce TNF,

IFN-c or CSF-2, modulating leucocyte function to

amplify antitumour activity, and also express chemoki-

nes, such as CCL5 and XCL1 to recruit DCs

[145,146]. As the TME establishes, however, NK cells

become much less effective at killing their targets,

exhibiting decreased cytotoxicity and inflammatory

cytokine production. To evade destruction by NK

cells, tumours employ both direct and indirect mecha-

nisms, including coating themselves in collagen and

platelets to shield themselves from NK detection

[147,148]. Cytokines also add to their newly acquired

suppressive phenotype, weakening cytotoxic capacity

and arresting T-cell proliferation [145,149–152].
The role of the other ILC populations is poorly

understood and varies depending on the local microen-

vironment, with both immune-protective and tumour-

promoting effects demonstrated in lung, skin and

colon cancer [153–155]. ILCs are largely tissue-resident

and divided into ILC1, ILC2 and ILC3 subsets func-

tionally corresponding to the TH1, TH2 and TH17

subsets of CD4+ T cells – however this is a consider-

able simplification, and the full nature of these subsets’

functions is still under investigation. Analogous to NK

cells, ILC1s and ILC3s are also activated by IL-15,

and contribute to immune surveillance through the

release of TNF, IL-8 and IL-2, promoting leucocyte

recruitment and proliferation [156,157]. During malig-

nant progression, however, within an increasingly

TGF-b-rich environment, NKs have been reported to

convert into ILC1-like cells with a reduced ability to

control tumour growth [145,149]. ILC3s have also

been shown to drive epithelial proliferation in a IL-22-

dependent manner [158].

Another T-cell population with innate-like proper-

ties are the natural killer T cells (NKTs). These are a

unique population of T cells that recognise lipid anti-

gens presented on the class I-like molecule C1d. ‘Type

I’ NKTs use a semi-invariant TCR made of a specific

alpha chain with a small number of beta chains and

respond in vitro to the lipid alpha Gal-Cer. Mice lack-

ing type I NKTs have generally been found to have

defects in tumour immune surveillance and there is

interest in using alpha Gal-Cer to stimulate antitu-

mour immunity, though results in patients have been

limited. However, in a transgenic model of intestinal

polyps (‘APC min’ mouse), type I NKTs were found

to promote polyp formation by recruitment of Tregs.

‘Type II’ NKTs (or ‘nonclassical’ NKTs) use diverse

alpha and beta TCR chains; in contrast to type I,

mouse experiments suggest they have an immune-regu-

latory, tumour-promoting function. Like the ILCs, the

importance of NKTs in early tumorigenesis is not

well-understood.
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2.2.3. Neutrophils

Neutrophils operate as vital first responders during

infection. Given this critical early role in infection, it

follows that neutrophils also contribute extensively to

early tumorigenesis, with anti- and pro-tumour activi-

ties reported. As for macrophages, this may in part be

a consequence of their functional plasticity. Indeed,

the phenotype of neutrophils in the TME depends on

tumour type and stage. In early tumorigenesis, neu-

trophils are recruited by epithelial- and stroma-derived

chemokines such as G-CSF, CXCL8, CXCL1,

CXCL2, CXCL3 and CXCL5 [159–161]. Here, they

elicit antitumour activity through the release of cyto-

toxic granules, production of TNF-a, NO, H2O2,

TRAIL and IFN-c and expression of costimulatory

molecules [162–164]. At this stage, skewed by IFN-b,
tumour-associated neutrophils (TANs) attract and pro-

mote activation of surveilling T cells [164–166].
However, directly contradicting this antitumour

activity, TANs have also been reported to contribute

to carcinogenesis from the point of tumour initiation.

Local TGF-b pushes neutrophils towards a tumour-

promoting phenotype [166,167], inducing genetic insta-

bility [168] and MAPK-dependent proliferation of pre-

neoplastic cells [169,170] as well as releasing pro-

inflammatory cytokines [97]. In particular, neutrophil-

derived IL-6 and IL-11 have been shown to promote

cancer cell proliferation and inhibit apoptosis via

STAT3 [171]. Now, TANs preferentially recruit Tregs,

directly suppressing CD8 T cells via PD-L1 and indi-

rectly by IL-8-driven arginase production [172–175].
Once established, TANs contribute to shaping of the

microenvironment inducing angiogenesis, remodelling

of ECM through deposition of neutrophil elastase and

MMP release [176–179]. A further feature of neu-

trophils is the production of neutrophil extracellular

traps (NETs). These extracellular DNA structures are

decorated in cytotoxic granules, MMPs and neutrophil

elastase, and although a growing body of evidence

describing roles in tumour circulation [180], metastatic

colonisation [181] and tumour dormancy [182] exists,

their role in early stages of primary tumour develop-

ment remains sparse [183].

2.2.4. Dendritic cells

Dendritic cells are professional antigen-presenting cells

that bridge the innate and adaptive immune compart-

ments, stimulating T cells in an antigen-specific fash-

ion. In the still inflammatory early TME, proficient

DCs effectively present tumour antigen to T cells

alongside costimulatory molecules CD40, CD80 and

CD86, thereby playing a central role in immune

surveillance [67,184–186]. Here, their presence is asso-

ciated with good prognosis [146,184]. However, expo-

sure to suppressive modulators such as VEGF, IL-10,

TGF-b and prostaglandin E2 (PGE2) and microenvi-

ronmental cues such as accumulation of lipids and

decreased pH inhibits DC maturation, decreasing

expression of costimulatory modules and hence reduc-

ing antigen presentation capacity [82,187–190]. This

renders DCs less capable of priming T cells, while

more prone to promote TH2 and Treg responses [191–
193]. PD-L1 expression by DC directly suppresses infil-

trating CD8 T cells [186,194]. Cytokine-induced

changes in transcriptional and metabolic pathways fur-

ther promote a tolerogenic phenotype, stimulating

expression of factors such as IDO, Arg1, iNOS and

STAT3 [195–199]. To further complicate matters, with

reports of anti- and pro-tumour activities depending

on the site examined, our understanding of DCs may

be confounded by tissue specificities in addition to

stage of development [191,200].

Thus, although our knowledge is increasing, the role

of the immune infiltrate in premalignant tissues and

the balance of protection vs. progression remains

unclear (Fig. 1). With a large body of correlative data,

detailed phenotypic and functional analyses are

required. Furthermore, as discussed later in this

review, the choice of model to study the microenviron-

ment in carcinogenesis is critical. Of note, correlations

between inflammation and progression of premalignant

states to cancer are stronger along the gastrointestinal

tract than other sites. These include Barrett’s oesopha-

gus, Crohn’s disease and ulcerative colitis. This raises

the questions of whether different anatomical sites

exhibit different immune infiltration, whether tissue-

specific responses to inflammation exist, and how these

may contribute to progression of precancerous lesions

at different sites. The pro-tumour functions of the

innate immune system in established tumours have

been particularly well-studied, but this in part reflects

the technical challenges of mechanistic studies of very

early lesions.

The mechanisms underlying the transition from

early immune surveillance by innate immune cells to

tumour-promoting phenotypes of macrophages, NK

cells, neutrophils and DCs, later during tumorigenesis,

are poorly understood. This is in part due to the tech-

nical challenges of studying very early lesions in a

‘true’ epithelial setting, which requires transgenic

mouse models. Much of the evidence for early innate

immune surveillance comes from macroscopic observa-

tions of increased cancer rates in immune-suppressed

states, rather than direct observation of the
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premalignant epithelium. One could hypothesise two

key reasons for this shift. According to a cancer cell

centric view, premalignant lesions that acquire the

ability to co-opt pro-tumorigenic innate immunity can

grow into tumours [201,202]. Notably, cancer presents

a paradox to the standard alarm signal sensors of the

immune system: although tumours are genetically dif-

ferent and, thus, capable of promoting antigenic stimu-

lation of T cells, they also release endogenous danger

signals known as damage-associated molecular pat-

terns (DAMPs) to alert the innate immune system.

DAMPs tend to generate an innate response

Fig. 1. Functions of the early tumour microenvironment. Recruitment and activation of cytotoxic CD8 T cells, NK cells, neutrophils and

macrophages result in the elimination of mutated epithelial cells. However, these initial antitumour events driven by immune surveillance

give way to a suppressive environment with tumour-promoting functions. Extensive crosstalk between stromal populations and cancer cells

elicit and amplify pro-tumour functions. These include fibroblast activation and ECM remodelling; induction of the angiogenic switch; release

of growth factors and intermediates to support genomic instability and proliferation; immune exclusion; collaboration between immune cells

to prevent antitumour responses including impaired antigen presentation, reducing cytotoxic capacity; release of suppressive cytokines; and

T-cell deletion/induction of anergy. CD8, cytotoxic T cell; Treg, regulatory T cell; MP1, inflammatory macrophage; MP2, suppressive

macrophage; DC, dendritic cell; NP, neutrophil; NK, natural killer cell.
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compatible with immune regulation, T-cell suppression

and healing. The latter involves the secretion of epithe-

lial growth factors and angiogenic signals which both

support tumour growth. Indeed, tumours have been

famously likened to ‘wounds that do not heal’ [203].

From a wider point of view, this makes sense, as the

innate system has evolved to protect damaged epithe-

lial cells under normal circumstances. Importantly, the

inflammatory insult often precedes the premalignant

transformation. It is well known that chronically

inflamed nonmalignant pathologies such as ulcerative

colitis are at high risk of generating malignant lesions,

because the inflammatory microenvironment provides

an ideal context for premalignant lesions to ‘flourish’

into an invasive cancer [204].

3. Stroma in malignant
transformation: landscaping the
tumour microenvironment

While the interactions between malignant cells and the

immune system play a key role in establishing the

tumour microenvironment during malignant transition,

other components of the host tissue play a critical and

historically overlooked part. Indeed, the accumulation

of stromal components including fibroblasts and ves-

sels is also reported in premalignant lesions including

oesophageal, pancreatic and skin cancers [205–210].
Here, we will briefly discuss emerging roles and our

current understanding of these populations to carcino-

genesis (Fig. 2). Cancer-associated fibroblasts (CAFs)

are one of the most abundant stromal components in

the developing TME and are recognised by numerous

markers such as fibroblast-specific protein 1 (FSP1/

S100A4), vimentin, a-smooth-muscle actin (aSMA),

fibroblast activation protein (FAP), PDGF receptor-a
(PDGFR-a) and podoplanin. CAFs largely originate

as a result of the chronic wound-healing response pre-

sent in the early TME and display a genomic, epige-

nomic and secretomic profile distinct from

untransformed fibroblasts [211–213].
Cancer-associated fibroblasts exhibit diverse pro-tu-

mour functions including growth factor secretion,

angiogenesis, immunoregulation [214–217], ECM

remodelling [218,219] and promoting cancer stemness

[220], invasion [221–223] and chemoresistance

[216,224–227]. To enable such diversity, the CAF com-

partment is highly heterogeneous, composed of multi-

ple subpopulations displaying functional specialisation

from potentially different origins [228–231]. However,

observations of fibroblast accumulation and expansion

around premalignant lesions prior to malignant trans-

formation indicate that, at initial stages, fibroblasts are

predominantly tissue-resident [207,229]. Although the

majority of studies have cited pro-tumour effects of

CAFs, pancreatic cancer studies using the KPC model

have yielded more contradictory results, highlighting

specific roles of CAF subsets. Here, Feig et al. [216]

depleted CAFs based on expression of FAP, reducing

tumour burden. In contrast, studies ablating aSMA

CAFs resulted in poorly differentiated tumours and

shortened survival implying that aSMA-expressing

CAFs, at least in early pancreatic lesions, exhibit

tumour-suppressive activity mediated via immune acti-

vation and physical constraint [232,233]. Together,

with observations of CAF accumulation in early

lesions, these data indicate that the initial fibroblast

response to mutated cells can be tumour-suppressive,

before conversion to a tumour-promoting phenotype

[234,235]. That said, fibroblasts developing with pre-

malignant lesions can significantly influence adjacent

epithelial cells via paracrine signalling [210,220,236–
239]. Fibroblast-derived factors including HGF, IGF,

EGF, TGF-b, IL-6, LIF, oncostatin M, FGF and

metabolites elicit both transformative and proliferative

effects on their targets [236,240–242]. Early in vitro

and xenograft studies in prostate cancer showed that

tumour fibroblasts but not normal counterparts could

stimulate proliferation and transformation of epithelial

cells from benign prostate hyperplasia. Interestingly,

CAFs alone were unable to induce growth of normal

epithelium, providing early indications of a require-

ment for reciprocal communication between the two

compartments for malignant transformation to occur.

Indeed, epithelial cells in precancerous states have been

shown to use TGF-b, PDGF-D and FGF-2 to recruit,

activate and transform tissue-resident fibroblasts

towards a CAF phenotype [234,235]. And, while genet-

ically stable, epigenetic alterations and changes in

expression of noncoding RNA underpin many gene

expression changes following the development of CAF

traits [243–246]. For example, changes in miR-31,

miR-214 and miR-155 facilitate conversion of normal

fibroblasts into CAFs, whereas the upregulation of

miR-21 impacts TGF-b signalling to support acquisi-

tion of a CAF phenotype.

Increasing genomic stress can promote the produc-

tion of activin and TGF-b, supporting CAF activation

[247]. Similarly, the release of ‘danger’ signals such as

IL-1a or DAMPs by epithelial cells is sufficient to pro-

mote CAF activation and upregulation of pro-inflam-

matory genes, with IL-1b for example, released to

promote epithelial proliferation [248–250]. Physical

stresses created in a rapidly changing environment also

support formation and expansion CAFs [218]. For

example, responses to environmental stiffness via
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YAP-TAZ signalling and heat shock factor 1 have

been reported to reprogramme fibroblasts towards a

more tumour-promoting phenotype [251,252]. In

response to epithelial-derived factors, CAFs may pro-

liferate, become ‘activated’ or become senescent [253],

a process which itself can exert significant effects to

adjacent cells via the senescence-associated secretory

phenotype (SASP; reviewed extensively in Ref.

[238,254]).

Cancer-associated fibroblasts exhibit a capacity to

modulate lymphatic vessels, their presence correlating

with lymphatic vessel density and metastasis [255].

Fig. 2. Fibroblast adaptation in the early tumour microenvironment. Within a rapidly changing environment, local cues either biochemical or

biophysical support accumulation and further alterations to an already heterogeneous compartment. With few reports of antitumour activity,

most CAF traits reported across known subsets are pro-tumour. These include release of factors to support cancer cell proliferation and the

angiogenic switch, cytokines to modulate immune recruitment, polarisation, suppression and ECM remodelling. CAF-induced matrix

remodelling operates on multiple levels, binding and releasing cytokine sinks, excluding immune cells and altering functionality, supporting

cell migration and further activating CAFs in a feedforward loop.
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Here, CAF-secreted factors such as hyaluronan [256],

FGF, HGF and VEGF-C directly induce lymphangio-

genesis [257–259], while tumour-derived lysyl oxidase-

like protein 2 (LOXL2) and sonic hedgehog have been

reported to stimulate CAFs to upregulate VEGF-C

and SDF-1a to support lymphatic expansion [260,261].

CAF-derived ECM components such as hyaluronan,

fibronectin, collagen, laminin and osteopontin have

further been identified as lymphangiogenic drivers

[257,262], as have CAF-derived microvesicles which

are reported to exert pro-lymphangiogenic effects via

angiopoietin and Tie2 driving VEGFR3 expression on

lymphatics [263]. Whether similar communications are

established in the early TME to support malignant

transition remains to be determined.

3.1. Crosstalk of CAFs with immune cells

Cancer-associated fibroblasts are emerging as key

immune modulators in the tumour context, with

increasing evidence to suggest that crosstalk between

the nonimmune stroma and leukocytes is essential for

escape from early immune control and tumour pro-

gression [205,214,215,264–266]. CAFs contribute to

initial tumour growth via promotion of an initial local

inflammatory microenvironment through upregulation

of NF-jB-controlled pathways in response to IL-1b
produced by tissue-resident immune cells in the skin

[205]. This gene signature was observed in the preneo-

plastic ‘hyperplastic’ stage, suggesting that early CAF

transformation is critical for both the induction and

maintenance of tumour-promoting inflammation in the

skin. Intriguingly when CAFs from a similar time

point in cervical cancer were examined, no such gene

signature was found, hinting at the importance of the

tissue specificity of both the fibroblastic origin and the

resident immune microenvironment when driving

early-stage tumour progression.

Immune-modulatory fibroblasts within the develop-

ing tumour microenvironment can impact recruitment,

retention and polarisation of the innate immune com-

partment [183,205,249,266–269]. We have shown that

in early stages of cancer, immune-regulatory CAFs

recruit macrophages through a variety of signals

including complement C3, CSF and CXCL12 [269]

and others have shown similar to CXCL12 and

CXCL16, and via the CCL2–CCR2 axis [270–273].
Functioning as potent modulators of macrophage

behaviour [205,265,267,272], fibroblast-derived chiti-

nase-3-like protein 1 (Chi3L1) also drives macrophages

towards a suppressive phenotype in mammary lesions

[266] as does CXCL12 in prostate cancer [270]. Simi-

larly, pancreatic stellate cells (PSCs) isolated from

human pancreatic tumours, but not healthy tissue,

were able to induce an MDSC phenotype in peripheral

blood mononuclear cells (PBMCs) in an IL-6-depen-

dent manner [274]. CAFs also upregulate TLRs,

enabling them to respond to environmental triggers

such as DAMPs and release-soluble mediators that

support both tumour proliferation and immune sup-

pression during tumorigenesis [250,275,276]. This

impact, however, appears to be tissue- and TLR-speci-

fic, with TLR7 and TLR9 instead promoting effective

immune responses required for immune surveillance

[277–279].
Notably, mounting evidence supports a role for

CAFs in modulation of adaptive immune components,

shaping T-cell dysfunction associated with loss of

immune surveillance. The production of soluble factors

such as IL-10 and TGF-b, and metabolic mediators

prostaglandin E2 (PGE2), indoleamine 2,3-dioxygenase

(IDO) and arginase can impair activation and cytotox-

icity or push responses towards tumour-promoting

TH2 and TH17 responses [280–283]. FAP-expressing

CAFs can modulate T cells in an NO-dependent man-

ner, their depletion resulting in increased CD8 T-cell

tumour infiltration [215], and podoplanin expressing

CAFs cross-presented tumour antigen in MHC I to

directly induce antigen-specific antigen-dependent T-

cell deletion and anergy via PD-L2 and Fas interac-

tions [214]. Recently, a population expressing MHC II

and CD74 has also been identified implying a similar

capacity to modulate CD4 T cells [217]. However,

indicative that these suppressive behaviours develop as

the microenvironment becomes more established, and

CAFs may initially elicit T-cell stimulatory effects,

reports have also suggested a role for CAF-derived IL-

6-activating T-cell production of IFN-c and IL-17A

[281]. Moreover, CAF-driven recruitment and differen-

tiation of Tregs contribute to the onset of an immune-

suppressive environment [46]. In human breast and

ovarian cancers, subpopulations of CAF were able to

recruit Tregs via CXCL12, mediate retention by

OX40L, PD-L2 and JAM2 interactions and support

survival [284,285]. CAFs also exhibit the capacity to

disrupt NK function either by abolishing production

of cytotoxic granules, granzyme B and perforin by

PGE2 and IDO, or by secretion of MMPs to cleave

NKG2D ligands on target tumour cells [286–288].
While these studies were performed in metastatic

lesions, such behaviours may also apply to the loss of

antitumour activity contributing to immune evasion

during malignant transition.

As alluded to previously, a complex interplay exists

between CAFs and immune cells, the generation of the

tumour microenvironment relies on reciprocal signals.
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For example, while CAFs impact macrophages and

neutrophils, neutrophils also release ROS and NETs

to deliver pro-fibrotic signals [183,289]. Likewise,

CAFs drive macrophage recruitment and polarisation,

yet IL-4-polarised suppressive macrophages induce

expression of the collagen cross-linker enzyme lysyl

hydroxylase 2 in adjacent fibroblasts to promote stiff-

ening of the ECM [281,290].

3.2. CAFs and the extracellular matrix

Following tissue damage, fibroblasts of healthy tissues

rapidly synthesise and deposit ECM as part of the

wound-healing response. In cancer, however, these

mechanisms are perturbed to generate a fibrotic, per-

missive niche [117,123,291]. Here, fibroblasts serve as

the dominant source of ECM and remodelling

enzymes, producing amongst others, collagen family

members, laminins, tenascin C, fibronectin, versican,

hyaluronic acid, lysyl oxidase (LOX) family members

and MMPs [292–296]. The deposition of ECM, even

at very early stages of tumorigenesis, changes the

mechanics of a tissue, contributing to transition from

premalignant disease to cancer [206,297,298]. For

example, in breast cancer, a collagen-dense microenvi-

ronment frequently presenting as high mammographic

density represents a significant risk factor. This was

confirmed when fibroblasts derived from healthy

women with high mammographic density (but no

breast cancer) exhibited significantly higher desmoplas-

tic and pro-tumorigenic phenotypes compared with

counterparts isolated from women with low mammo-

graphic density [117,299,300]. Also in breast cancer,

tissue-resident fibroblasts exposed to local secretion of

granulin increase the expression of a variety of ECM

components [301], promoting the desmoplastic

response and malignant progression of otherwise indo-

lent tumours [302,303]. The increases in ECM reorgan-

isation are catalysed by CAF-derived MMPs and LOX

proteins, which cross-link collagens and mediate fibre

elongation and fibre realignment to promote a stiffer

medium conducive with malignant progression [304–
307]. Importantly, CAF-driven changes to the ECM in

the developing TME do not occur in isolation.

Instead, reciprocal, dynamic communication exists.

Upon remodelling the environment to create a dense,

more rigid matrix, fibroblasts sense the modified

mechanical cues, in turn stimulating production of

cross-linkers LOX to further stiffen the ECM, signal

proliferation, or promote acquisition of a CAF pheno-

type via the SRC-YAP-MYL9/MYL2 axis [218,308].

Thus, within the developing TME, CAFs evolve to

alter cellular, structural and chemical aspects of

tissues, but the physical changes they afford through

deposition and remodelling of the ECM themselves

also play a pivotal role in malignant transition.

3.3. Mechanical cues in the developing tumour

microenvironment

A gradual shift in the rigidity of the ECM from that

of normal tissue is implicated in malignant progression

due to its far-reaching impact on cell morphology,

migration, alignment, angiogenesis and immune

responses [116,123,309–312]. In addition to diverse

paracrine stimuli, epithelial cells respond to physical

stimuli to promote proliferation and morphological

adaptations conducive with acquisition of cancer traits.

The impact of increasing ECM stiffness alone on

epithelial behaviour was elegantly shown by Paszek

et al. in 2005 [309], a concept that was built upon

more recently using methacrylated hyaluronic acid

hydrogels [312]. Here, Ondeck et al dynamically tuned

gels from normal (< 150 Pascals) to malignant

(> 3000 Pascals) stiffness to demonstrate coincident

mechanical sensing and loss of mammary epithelial

morphology through TGF-b and YAP signalling.

Changes in stiffness together with increasingly aligned

fibres promote tumour cell migration, leveraging trac-

tion against remodelled matrix [294,310,313]. Indeed,

the mechanical coupling of ECM with epithelial cells

and CAF cytoskeleton is critical to cell motility in

transforming tissues, with benign and malignant cells

exhibiting very different mechanical properties

[309,314].

Extracellular matrix tethers and immobilises many

soluble mediators, serving as a valuable reservoir for

pro-tumour, CAF-activating and immune-suppressive

factors such as EGF, FGF, PDGF and critically

TGF-b [119,296,315,316]. Many of these provide sub-

tle guidance cues when tethered, but are fully bioactive

once released from proteoglycans upon proteolytic

degradation. Moreover, matrix remodelling and result-

ing increases in stiffness occurring as desmoplasia pro-

gresses in developing tumours can support the

angiogenic switch. This may be a direct consequence

of mechanical compression of vessels driving a hypoxic

response [317–319], through mechanosensing proper-

ties of endothelial cells [320–322], or through MMP-

mediated remodelling via release of matrix-bound fac-

tors such as VEGF, periostin and tenascin C [323].

Disruption of matrix structure, for example inhibition

of modifying enzymes such as LOXL family members

and reduction in cross-linked collagenous ECM

matrix, has been reported to impair both tumorigene-

sis and angiogenesis [324].
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Remodelling of the ECM modulates immune cell

trafficking and functional status [325–327]. This may

occur via direct signals from components of the TME,

but also as a consequence of age. Most cancers arise

in individuals over the age of 60 [328], and in aged tis-

sues, both fibroblasts and immune populations

undergo significant alterations [329–331]. Altered secre-

tomes, and metabolic and ECM profiles have the

potential to combine, propagating pro-tumour dys-

functional states. An increasingly stiff matrix can

induce CAFs to produce chemoattractants such as

CCL2 and CSF-1, attracting innate immune cells,

which may deposit further collagen [119]. This ECM

also serves a source of DAMPs. Proteolytic cleavage

of matrix components such as fibrinogen, fibronectin

domains, versican and decorin creates fragments recog-

nised by TLR2 and TLR4 on immune cells [332–337].
Interactions can promote both differentiation and dys-

function; however, whether such interactions mediate

anti- vs. pro-tumour behaviour remains less clear.

Across melanoma, lung, colon and liver cancers, versi-

can has been reported to drive an immunosuppressive

DC phenotype via TLR2, but has also been reported

to direct DCs into an inflammatory phenotype, critical

for T-cell infiltration and antitumour immunity [338].

The physical properties of remodelled ECM exert

diverse effects on epithelial, stromal and immune cells

it surrounds [116,310,339–343]. The ECM can deter-

mine macrophage shape and polarisation [344], and

collagen-rich matrices bias towards pro-tumorigenic

phenotypes, whereas ECM rich in fibronectin pro-

motes antitumorigenic phenotypes [345–348]. Indeed,

increased deposition of type I collagen has been shown

to directly stimulate inhibitory receptors such as

LAIR-1 on immune cells [349]. Moreover, YAP activa-

tion in cells sensing tensional cues induces the expres-

sion of cytokines to recruit MDSCs and TAMs [350].

A modified ECM, rich in fibrillar collagen, further

contributes to immune suppression by acting as a

physical barrier. T cells are frequently more abundant

within ECM-rich areas surrounding epithelial cells,

and such physical exclusion is associated with poor

prognosis [216,325,351,352]. Stiffer substrates have

been associated with impaired effector function

[353,354]; within dense matrices, T cells are less motile

since migration, which is protease-independent, relies

on a rapid ability to deform and squeeze through

pores and along fibres [355,356]. And while impeded,

they may experience prolonged exposure to immune-

suppressive cytokines.

Beyond any direct effects on cell behaviour within

the developing TME, an accumulation of collagens,

increased cross-linking and stiffening, and rapidly

expanding blood vessels lead to a gradual increase in

interstitial fluid pressure [317,319]. This feature itself

can contribute to transformation of the local environ-

ment. Increases to the movement of fluid through a

tissue, called interstitial flow, are sufficient to drive

changes in fibroblast and collagen fibres towards a

more aligned orientation associated with increasing

stiffness [357,358]. Similarly, fluid movement stimulates

the production of TGF-b by fibroblasts [359] con-

tributing to the alterations in CAF activation status

and ongoing immunosuppressive activity. Interstitial

flow supports the formation of subtle transcellular che-

mokine gradients guiding cells out of physical contact

with the developing tumour and towards draining lym-

phatic vessels, which also sense fluid flux, upregulating

immune-homing chemokines and cell adhesion mole-

cules in the process [360–363]. Such cues are key for

efficient immune trafficking, particularly antigen-pre-

senting cells, to and from the local environment during

tumorigenesis.

A multiplicity of mechanisms exists for CAFs to

influence, and be influenced by, the developing TME.

With growing evidence and technical precision, this is

being ascribed to an increasing number of unique

CAF subpopulations, defined by tissue-specific mark-

ers. This overwhelming complexity can be distilled,

however, into the recurrent functional observations of

these CAFs performing either immune-modulatory,

ECM deposition or mechanical remodelling roles.

Whether these specialised subpopulations are present

from the outset of malignancy as tissue-resident fibrob-

lasts or whether they are plastic and interconvert with

developing cues in the TME remains an open question

in the field.

4. Outreach activities: systemic
effects of the tumour
microenvironment

This review has focussed on the reciprocal microenvi-

ronment changes that facilitate early tumour growth.

However, as practising oncologists are aware, cancer

manifests as a systemic illness. The molecular details

of how cancer ‘reaches out’ to influence whole-body

physiology are beginning to be understood [364,365].

Again, much of the focus has been on immunity. Sys-

temic immunity is impaired in patients with advanced

cancer, and this is clinically relevant with both success

of immunotherapy and mortality from intercurrent

infections [366,367]. Several recent mouse-based studies

have described widespread immune alterations present

in cancer [17,368]. The microenvironment of the

tumour draining lymph node changes in parallel to
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tumour development [269,369], which may impair

onset of immunity or facilitate metastasis. Immune

cytokines may also influence bone marrow function to

release immature myeloid cells which traffic to the

TME to become MDSCs. There has also been interest

in these effects as a prognostic or predictive marker, in

particular the neutrophil:lymphocyte ratio which is

associated with patient outcomes and may be a crude

measure of systemic immune dysfunction [370]. In

addition to the immunological effects, cancer induces

systemic metabolic changes that manifest as cachexia.

Intriguingly, this may be mediated by reciprocal sys-

temic stromal changes: Roberts et al. demonstrated

that the depletion of CAF-like fibroblast populations

from muscle and fat is responsible for loss of mass in

these organs in cancer [371]. There is also overlap

between immune and metabolic reprogramming: the

inflammatory mediators that induce cachexia in turn

elevate immune-suppressive factors such as cortisol,

which further impairs antitumour immunity [372]. It

will be fascinating to see how far these systemic

changes can be traced to early tumour development.

5. Capturing a changing tumour
microenvironment, from mice to
humans

Historical mouse models of cancer often use injectable

human cell lines in immunodeficient mice. While these

models have been key to the progress in developing

cancer treatments for the past half-century, they do

not model the early microenvironment or the adaptive

immune component of the TME. Immune-based treat-

ments are now central to the practice of oncology, and

so, it is essential to use immune-competent models that

reflect the whole TME. Advances over the last decade

in genetic engineering have increased the feasibility of

spontaneous tumour models, which have a neoantigen

profile and local immune infiltrate more representative

of human cases than injectable tumour models [373–
376]. However, 65 million years of evolution have

resulted in a number of significant mechanistic differ-

ences between mice and humans, for example Ly49 vs.

killer immunoglobulin receptor expression on NK cells

[377], differing antibody isotypes [378,379] and differ-

ing transcriptional programmes for B-cell and T-cell

development [378]. There are also genomic differences

between mice and humans that complicate developing

spontaneous models.

Concerted efforts are now being made to ‘humanise’

murine models as far as reasonably possible. Patient-

derived xenografts (PDX) in combination with an

immune system reconstituted from an autologous

haematopoietic stem cell are increasingly used in

tumour immunology, especially to predict patient

response to therapy [380]. However, the injection of

large numbers of late-stage cells to create a viable

xenograft limits their use for the study of the early

TME. Organoid technology meanwhile maintains

many of the advantages of PDX, including maintain-

ing heterogeneity [381] and tumour–stroma interac-

tions [382,383], while also allowing for high-

throughput investigation of the earliest stages of

tumour development. For example, it was shown that

extended TNF-a treatment of human ovarian surface

epithelial cell-derived organoids led to loss of normal

structural organisation and development of an early

cancer legion, thus suggesting a link between a pro-in-

flammatory microenvironment and the initiation of

tumorigenesis [384]. Similarly, a library of human

CRC organoids was created from a range of tumour

stages including normal epithelium up to metastatic

cancer. Sequencing of each organoid highlighted a

high dependency on culture ‘niche factors’ was present

in early organoids, and a subsequent mutational loss

of this requirement was a critical stage in development

into an adenocarcinoma. The authors then went on to

validate this suggestion that transition from early can-

cer to invasive cancer requires increased growth factor

autonomy, xenografting the organoids onto mice [385].

It is becoming increasingly clear therefore that

improved understanding of the early TME will require

utilisation and expansion of both the in vivo and

in vitro toolkit (Table 1).

6. Early detection and therapeutic
intervention

For many cancers, early detection and intervention sig-

nificantly improve survival. In oesophageal cancer, the

detection of the premalignant condition Barrett’s

oesophagus can dramatically increase dismal 5-year

survival rates of less than 20%. However, in the case

of Barrett’s, monitoring by endoscopic surveillance

represents a significant cost and disruption to patients’

lives. Thus, identifying the minority that will go on to

develop OAC is a priority. Examining the underlying

microenvironment may help to define and stratify

patients at greater risk. Indeed, molecular imaging has

been used to exploit changes in tissue glycosylation for

the identification of dysplastic tissues [386–388]. Early
detection of cancers also requires the discovery and

use of robust biomarkers to identify lesions likely to

progress. Thus, strategies to screen at-risk groups in a

minimally invasive fashion are increasingly focusing on

analysis of the premalignant lesion. Although currently
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focused on detecting early changes in the epithelial

compartment [389,390], our increasing understanding

of the complex interactions at play within tissues

undergoing malignant transformation presents the

opportunity to exploit changes within the surrounding

stroma for early detection and patient stratification

(Table 2). Changes in immune content and localisation

[18], ECM characteristics [391–393] and functional

gene signatures [145,394,395] all offer potential.

Indeed, sequencing approaches have enabled large-

scale, single-cell resolution characterisation of the

immune landscape of over 30 different tumour types

[396].

Developing our comprehension of how immune and

fibroblastic components contribute to the transition

from premalignant to cancer affords a range of clinical

approaches for early intervention. Understanding

kinetics of the host responses in malignant transition,

such as loss of immune surveillance, may provide a

unique therapeutic window. Preclinical models have

explored strategies to prevent or reverse the switch in

innate cells to maintain or reinstate an antitumour

phenotype. However, while attractive, many pathways

disrupted during immune suppression are key to main-

tain immune tolerance and protection against autoim-

munity, thus global approaches to inhibit the innate

immune system in early cancer may be counterproduc-

tive. Instead, due to their diverse array of functions,

targeting the fibroblasts may provide an alternative

method to stall malignant transition. While eradication

strategies have been investigated, such an approach

may in practice be hampered by the lack of specific

markers and complexities stemming from heteroge-

neous pro- vs. antitumour subsets [214,216,232,233].

Reprogramming or ‘normalisation’ methods are prov-

ing more attractive. Off the back of studies identifying

novel stromal targets, methods to interfere with CAF

activation status and improve traits such as mechanical

properties via inhibition of factors including FGFR,

hedgehog, NOX, TGF-b, LOX, hyaluronic acid and

all-trans retinoic acid (ATRA) pathways have pro-

gressed from preclinical models to clinical trial. Utili-

sation of re-normalising the TME for enhancement of

existing therapy is well-demonstrated by a recent

report in murine breast cancer. By modifying an

angiotensin blocker to be pH-dependent, the drug was

Table 1. Advantages and limitations of mouse models in the early TME.

Model system Advantages Limitations

Subcutaneous xenograft

(cell line or patient-

derived)

Rapid turnaround of experiments, high

throughput

Human cancer cells

Tractable: genetic manipulation of cell

lines to study pathways accessible

Does not capture organ-specific or early TME

Requires immunocompromised mice

Replacement of stroma by host

Subcutaneous mouse cell

lines

Rapid turnaround of experiments, high

throughput

Tractable: genetic manipulation of cell

lines to study pathways accessible

Intact immune system

Does not capture organ-specific or early TME

Species differences in immunity

Highly transformed cells not representative of early stages or

heterogeneity

Orthotopic injection models Models the organ-specific tumour

microenvironment

If mouse cells used, intact immunity

Injection of highly transformed cells, large numbers, does not model

early TME

Genetically engineered

mouse models

Models full development of lesions,

including premalignant stages

Intact immune system

Accurate modelling of organ-specific

and early microenvironment

Expensive and time-consuming

Specialised techniques needed for tumour monitoring

‘Clean’ – defined oncogenic drivers decrease mutational spectrum

Mouse genomic differences mean mutating homologs of human

oncogenes does not necessarily produce the same organ cancer

Mouse immune differences may be significant

Timescales of months still do not match the many years of

tumorigenesis in humans

Not available for all cancers yet

Humanised Mouse models Allows study of human cancer-

immune interactions in an animal

system

May overcome species differences in

immunity

Expensive and time-consuming

Transplantation of transformed tissue, which may not reflect early

lesions

Stromal elements are mouse-derived

Marrow transplantation may produce off-target graft vs. host effects
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Table 2. Pro- and antitumour hallmarks of the early TME. SHH, sonic hedgehog; TKI, tyrosine kinase inhibitors.

Function Stromal mechanism Therapeutic strategies

Antitumour early functions

Immune surveillance of

nascently transformed

epithelial cells

T cells – cytokines: TNFs, IFN-c, granzyme B, receptors:

FasL, cell contact: perforin, granzyme B.

NKs – cytokines: TNFs, IFN-c, CSF-2, granzyme B,

receptors: NKG2D, KIRs, KKp44, cell contact: perforin.

ILCs – cytokines: TNFs, IL-2, IL-8.

Neutrophils – cytokines: IFNs TNF-⍺, NO, H2O2, receptors:

TRAIL, costimulatory molecules

� ICPI (PD-1/PD-L1, CTLA-4, TIM3, LAG3)
� Vaccines that prevent initial transformation

(HPV)

� CAR T and NK cells
� Microbiome modification

Recruitment of tumour

neoantigen-specific T cells

CAFs – cytokines: TNF-⍺, IL-1b, chemokines: CXCL9,

CXCL10, CXCL11, DAMPs, matrix remodelling.

T cells – cytokines: IFN-g, TNFs.

Macrophages – chemokines: CXCL9, CXCL10, CXCL11,

DAMPs, matrix remodelling.

DCs – chemokines: CCL2, CCL3, CCL17, CCL21, XCL1,

receptors: costimulatory receptors, MHC

� ICPI
� Chemokine modulators (e.g. CXCR4/

CXCL12 axis)

� Engineered DC-based vaccines (Sipuleucel-T)

Promotion of ‘M1’

macrophages

CAFs – cytokines: VEGF, receptors: ICAM-1, chemokines

– CCL2, CCL9, DAMPs.

T cells – cytokines: TNF-⍺, IFN-c, chemokines: NO, ROS,

IL-2, DAMPs.

Macrophages – cytokines: IFN-c, DAMPs.

Neutrophils – cytokines: MIPs, IFN-c, DAMPs

� Myeloid-modulating therapies (TKI/ anti-

VEGF, CD47/SIRPA axis)

� Depletion/repolarisation of M2 macrophages
� Radiotherapy (release DAMPs to promote

innate response)

Pro-tumour early functions: impact on cancer cells

Sustained proliferative

signalling and

transformation

CAFs – cytokines: TGF-b, IL-1b, IL-6, growth factors: HGF,

IGF, EGF, LIF, oncostatin M, FGF, exosomes, MMPs.

ECM – growth factors: following matrix degradation,

increases in stiffness. mutagens: ROS, NOS.

TAMs – growth factors: TGF-b, EGFs, VEGF, PDGF,

MMPs.

TANs – cytokines: TGF-b, MMPs

ILCs – cytokines: IL-22

� Growth factor inhibitors (e.g. anti-EGFR:

cetuximab)

� TKI (axitinib,regorafenib, lenvatinib)
� ECM modulation – PEGPH20, losartan, sim-

tuzumab, MMP inhibitors, cytokine/ chemo-

kine blocking

Resisting cell death CAFs – cytokines: TGF-b, IL-6, IL-10, IL-11, receptors: PD-

L1, FasL, matrix deposition.

T cells – receptors: reduced TRAIL, FasL.

TAMs – cytokines: IL-6, IL-11, TNF-⍺, matrix deposition.

TANs – cytokines: IL-6, IL-11.

ILCs – receptors: reduced TRAIL, FasL

� ICPI
� Pro-apoptotic activators
� Anti-apoptotic inhibitors

Pro-tumour early functions: impact on stromal cells

Metabolic support of

growing tumour

CAFs – cytokines: TGF-b metabolites: alanine, glutamine,

lactate.

Endothelial cells – angiogenic switch.

TAMs – metabolites: IDO, Arg1, lactate, angiogenic switch

� Metabolite inhibitors
� Vascular ‘normalisation’ (avastin)
� Fibroblast ‘normalisation’
� Reprogramming of TAM

Recruitment of immune-

suppressive cells

CAFs – cytokines: C3, CSF, IL-6, IL-10, TGF-b, GDF-15,

chemokines: CXCL12 and CXCL16.

Endothelial cells – receptors: CLEVER-1.

T cells – conversion to Tregs.

TAMs – conversion to MDSCs, cytokines: IL-6, IL-10 and

TGF-b, chemokines: CCL5, CCL17, CCL22, metabolites:

IDO, arginase.

ILCs – conversion to ILC2 and ILC3

� ICPI
� Neutralising antibodies
� Application of decoy receptors or chemotraps

Impairing T-cell activity CAFs – cytokines: TGF-b and IL-6, metabolites: PGE2 and

IDO, receptors: PD-L1, PD-L2 and FasL, inducing fibrosis.

T cells – cytokines: TGF-b, reduced pro-inflammatory

cytokines, receptors: PD-L1, CTLA-4, Fas, LAG3, TIGIT,

conversion to Tregs.

� ICPI
� Tumour vaccines
� Adoptive transfer: TIL therapy, TCR engi-

neered cells and CAR T cells
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active in the more acidic microenvironment of a devel-

oping tumour but not in normal neutral pH tissue.

Therefore, only CAFs in the TME were reprogrammed

to a normalised state, and not activated fibroblasts in

adjacent tissue. This normalisation enhanced the effi-

cacy of ICPI. Likewise, the repurposing of existing

agents shown to have effects on stroma and wider

TME is under trial [397–400]. For example, in PDAC,

the drug ATRA (which is widely used to treat acute

promyelocytic leukaemia) was shown to restore pan-

creatic stellate cells to a quiescent state only seen in

the very early stages of tumour initiation, and these

treated cells displayed significantly decreased pro-tu-

mour functions. However, the ability of mouse models

to predict therapeutic effect is not straightforward.

Preclinical models suggest that hedgehog inhibitors

may be useful for the treatment of pancreatic cancer

by restricting stromal growth and improving drug pen-

etration [401]. However, subsequent clinical trials have

been disappointing [402]. Further preclinical studies

have shown that while hedgehog inhibition reduces

desmoplasia, it can also enhance epithelial growth.

The unpredictable balance of these factors in humans

may then determine whether the treatment has a posi-

tive or negative effect [403].

Beyond the design of novel therapeutic targets, a

thorough understanding of the composition and roles

of stroma of the early tumour microenvironment may

inform patient prognosis or predict response to treat-

ment [404–406]. For example, a stromal gene signature

has been shown to predict poor survival and metasta-

sis in high-grade serous ovarian cancer. In summary,

although the early stroma offers many opportunities

for intervention for patient benefit, key barriers to

advancing this are the early detection of these lesions,

and a more thorough understanding of the relationship

between animal models and different human tumours

at early stages of development.

7. Perspectives and conclusions

Tissues surrounding mutated cells play a pivotal role in

carcinogenesis, from initial elimination responses

through to supporting growth and development of a per-

missive niche. Recent technological advances have dra-

matically increased our appreciation of the complex

networks at play, the duality of our immune system, the

increasing diversity and functional specialisation of

fibroblasts, and the impact of changing tissue mechanics.

Even so, outstanding challenges remain. We know rela-

tively little about the plasticity, heterogeneity and inter-

dependencies that define the evolving stromal landscape.

Nevertheless, it is likely that these complex tumour–
stroma interactions compliment the well-documented

tumour heterogeneity and cumulatively contribute to

increased robustness of early tumours [407], and we now

face the challenge of dissecting these roles, addressing

impact of tissue specificities and previously overlooked

traits such as the ageing microenvironment. A better

understanding facilitated by the development mouse

models that more faithfully recapitulate early stages of

cancer, the installation of extensive patient sample

repositories and inclusion of stromal parameters in trials

will help to unravel underpinning mechanisms in real

time, and most importantly stand to inform new

approaches to better identify and treat patients early.
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Table 2. (Continued).

Function Stromal mechanism Therapeutic strategies

Macrophages – cytokines: IL-10, chemokines: CCL22,

metabolites: IDO, Arg1, lactate, receptors: PD-L1, inducing

fibrosis.

DCs – cytokines: TGF-b, IL-10, metabolites: IDO, Arg1

receptors: PD-L1, PD-L2, reduced costimulation.

ILCs – cytokines: IL-12, IL-22, receptors: NKp46

� Immune-stimulatory treatments (STING

pathway)

Fibroblast function Fibroblasts – cytokines: TGF-b, IL-1a, growth factors:

PDGF-2,FGF-2, microRNA

ECM – increases in stiffness, signalling: YAP-TAZ, HSF-1

T cells – cytokines: IL-1, IL-6 and TNF.

TAMs – cytokines: TGF-b, IL-6, growth factors: PDGFs,

FGF2, mutagen: ROS

� Prevent CAF activation (SHH inhibitor sari-

degib, galunisertib)

� CAF action (AMD3100)
� CAF ‘normalisation’ (ATRA, paricalcitol)
� Destabilisation of ECM
� Reprogramming of TAM
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Damotte D, Le Fr�ere-Belda MA, Donnadieu E &

Peranzoni E (2015) Real-time imaging of resident T

cells in human lung and ovarian carcinomas reveals

how different tumor microenvironments control T

lymphocyte migration. Front Immunol 6, 500.

356 Wolf K, te Lindert M, Krause M, Alexander S, te

Riet J, Willis AL, Hoffman RM, Figdor CG, Weiss SJ

& Friedl P (2013) Physical limits of cell migration:

control by ECM space and nuclear deformation and

tuning by proteolysis and traction force. J Cell Biol

201, 1069–1084.
357 Ng CP & Swartz MA (2003) Fibroblast alignment

under interstitial fluid flow using a novel 3-D tissue

culture model. Am J Physiol Heart Circ Physiol 284,

H1771–H1777.

358 Ng CP, Hinz B & Swartz MA (2005) Interstitial fluid

flow induces myofibroblast differentiation and collagen

alignment in vitro. J Cell Sci 118, 4731–4739.
359 Shieh AC, Rozansky HA, Hinz B & Swartz MA

(2011) Tumor cell invasion is promoted by interstitial

flow-induced matrix priming by stromal fibroblasts.

Cancer Res 71, 790–800.
360 Helm CLE, Fleury ME, Zisch AH, Boschetti F &

Swartz MA (2005) Synergy between interstitial flow

and VEGF directs capillary morphogenesis in vitro

through a gradient amplification mechanism. Proc

Natl Acad Sci USA 102, 15779–15784.
361 Shields JD, Fleury ME, Yong C, Tomei AA,

Randolph GJ & Swartz MA (2007) Autologous

chemotaxis as a mechanism of tumor cell homing to

lymphatics via interstitial flow and autocrine CCR7

signaling. Cancer Cell 11, 526–538.
362 Polacheck WJ, Charest JL & Kamm RD (2011)

Interstitial flow influences direction of tumor cell

migration through competing mechanisms. Proc Natl

Acad Sci USA 108, 11115–11120.
363 Miteva DO, Rutkowski JM, Dixon JB, Kilarski W,

Shields JD & Swartz MA (2010) Transmural flow

modulates cell and fluid transport functions of

lymphatic endothelium. Circ Res 106, 920–931.
364 McAllister SS & Weinberg RA (2014) The tumour-

induced systemic environment as a critical regulator of

2631Molecular Oncology 15 (2021) 2600–2633 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

J. O. Jones et al. Role of the microenvironment in tumorigenesis



cancer progression and metastasis. Nat Cell Biol 16,

717–727.
365 Laplane L, Duluc D, Larmonier N, Pradeu T &

Bikfalvi A (2018) The multiple layers of the tumor

environment. Trends Cancer 4, 802–809.
366 Klastersky J & Aoun M (2004) Opportunistic

infections in patients with cancer. Ann Oncol 15,

iv329–iv335.
367 Baluch A & Pasikhova Y (2013) Influenza vaccination

in oncology patients. Curr Infect Dis Rep 15, 486–490.
368 Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS,

Madhireddy D, Martins MM, Gherardini PF,

Prestwood TR, Chabon J, Bendall SC et al. (2017)

Systemic immunity is required for effective cancer

immunotherapy. Cell 168, 487–502.e15.
369 RiedelA, ShorthouseD,HaasL,Hall BA&Shields J

(2016)Tumor-induced stromal reprogrammingdrives

lymphnode transformation.Nat Immunol17, 1118–1127.
370 Templeton AJ, McNamara MG, �Seruga B, Vera-

Badillo FE, Aneja P, Oca~na A, Leibowitz-Amit R,

Sonpavde G, Knox JJ, Tran B et al. (2014) Prognostic

role of neutrophil-to-lymphocyte ratio in solid tumors:

a systematic review and meta-analysis. J Natl Cancer

Inst 106, dju124.

371 Roberts EW, Deonarine A, Jones JO, Denton AE,

Feig C, Lyons SK, Espeli M, Kraman M, McKenna

B, Wells RJB et al. (2013) Depletion of stromal cells

expressing fibroblast activation protein-a from skeletal

muscle and bone marrow results in cachexia and

anemia. J Exp Med 210, 1137–1151.
372 Flint TR, Janowitz T, Connell CM, Roberts EW,

Denton AE, Coll AP, Jodrell DI & Fearon DT (2016)

Tumor-induced IL-6 reprograms host metabolism to

suppress anti-tumor immunity. Cell Metab 24, 672–684.
373 Yarchoan M, Johnson BA, Lutz ER, Laheru DA &

Jaffee EM (2017) Targeting neoantigens to augment

antitumour immunity. Nat Rev Cancer 17, 209–222.
374 Olson B, Li Y, Lin Y, Liu ET & Patnaik A (2018)

Mouse models for cancer immunotherapy research.

Cancer Discov 8, 1358–1365.
375 Ben-David U, Ha G, Tseng YY, Greenwald NF, Oh

C, Shih J, McFarland JM, Wong B, Boehm JS,

Beroukhim R et al. (2017) Patient-derived xenografts

undergo mouse-specific tumor evolution. Nat Genet 49,

1567–1575.
376 Kim J, Rhee H, Kim J & Lee S (2020) Validity of

patient-derived xenograft mouse models for lung

cancer based on exome sequencing data. Genomics

Inform 18, e3.

377 Kelley J, Walter L & Trowsdale J (2005) Comparative

genomics of natural killer cell receptor gene clusters.

PLoS Genet 1, 0129–0139.
378 Mestas J & Hughes CCW (2004) Of mice and not

men: differences between mouse and human

immunology. J Immunol 172, 2731–2738.

379 Stavnezer J & Schrader CE (2014) IgH chain class

switch recombination: mechanism and regulation. J

Immunol 193, 5370–5378.
380 Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S,

Pitts TM, Arcaroli JJ, Messersmith WA & Eckhardt

SG (2012) Patient-derived tumour xenografts as

models for oncology drug development. Nat Rev Clin

Oncol 9, 338–350.
381 Li S, Shen D, Shao J, Crowder R, Liu W, Prat A, He

X, Liu S, Hoog J, Lu C et al. (2013) Endocrine-

therapy-resistant ESR1 variants revealed by genomic

characterization of breast-cancer-derived xenografts.

Cell Rep 4, 1116–1130.
382 Wang S, Gao D & Chen Y (2017) The potential of

organoids in urological cancer research. Nat Rev Urol

14, 401–414.
383 Fan H, Demirci U & Chen P (2019) Emerging

organoid models: leaping forward in cancer research. J

Hematol Oncol 12, 142.

384 Kwong J, Franky LC, Wong KK, Birrer MJ,

Archibald KM, Balkwill FR, Berkowitz RS & Mok

SC (2009) Inflammatory cytokine tumor necrosis

factor a confers precancerous phenotype in an

organoid model of normal human ovarian surface

epithelial cells. Neoplasia 11, 529–541.
385 Fujii M, Shimokawa M, Date S, Takano A, Matano

M, Nanki K, Ohta Y, Toshimitsu K, Nakazato Y,

Kawasaki K et al. (2016) A Colorectal tumor

organoid library demonstrates progressive loss of niche

factor requirements during tumorigenesis. Cell Stem

Cell 18, 827–838.
386 Bird-Lieberman EL, Neves AA, Lao-Sirieix P,

O’Donovan M, Novelli M, Lovat LB, Eng WS, Mahal

LK, Brindle KM & Fitzgerald RC (2012) Molecular

imaging using fluorescent lectins permits rapid

endoscopic identification of dysplasia in Barrett’s

esophagus. Nat Med 18, 315–321.
387 Neves AA, Di Pietro M, O’Donovan M, Waterhouse

DJ, Bohndiek SE, Brindle KM & Fitzgerald RC (2018)

Detection of early neoplasia in Barrett’s esophagus

using lectin-based near-infrared imaging: an ex vivo

study on human tissue. Endoscopy 50, 618–625.
388 Yoon J, Joseph J, Waterhouse DJ, Luthman AS,

Gordon GSD, di Pietro M, Januszewicz W, Fitzgerald

RC & Bohndiek SE (2019) A clinically translatable

hyperspectral endoscopy (HySE) system for imaging

the gastrointestinal tract. Nat Commun 10, 1902.

389 Frankell AM, Jammula SG, Li X, Contino G,

Killcoyne S, Abbas S, Perner J, Bower L, Devonshire

G, Ococks E et al. (2019) The landscape of selection in

551 esophageal adenocarcinomas defines genomic

biomarkers for the clinic. Nat Genet 51, 506–516.
390 Ross-Innes CS, Debiram-Beecham I, O’Donovan M,

Walker E, Varghese S, Lao-Sirieix P, Lovat L, Griffin

M, Ragunath K, Haidry R et al. (2015) Evaluation of

2632 Molecular Oncology 15 (2021) 2600–2633 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Role of the microenvironment in tumorigenesis J. O. Jones et al.



a minimally invasive cell sampling device coupled with

assessment of trefoil factor 3 expression for diagnosing

Barrett’s esophagus: a multi-center case-control study.

PLoS Medicine 12, 1–19.
391 Sand JM, Larsen L, Hogaboam C, Martinez F, Han

ML, Larsen MR, Nawrocki A, Zheng Q, Karsdal MA

& Leeming DJ (2013) MMP mediated degradation of

type IV collagen alpha 1 and alpha 3 chains reflects

basement membrane remodeling in experimental and

clinical fibrosis – validation of two novel biomarker

assays. PLoS One 8, e84934.

392 Resovi A, Bani MR, Porcu L, Anastasia A, Minoli L,

Allavena P, Cappello P, Novelli F, Scarpa A, Morandi

E et al. (2018) Soluble stroma-related biomarkers of

pancreatic cancer. EMBO Mol Med 10, e8741.

393 Tarney CM, Wang G, Bateman NW, Conrads KA,

Zhou M, Hood BL, Loffredo J, Tian C, Darcy KM,

Hamilton CA et al. (2019) Biomarker panel for early

detection of endometrial cancer in the prostate, lung,

colorectal, and ovarian cancer screening trial. Am J

Obstet Gynecol 472.e1–472.e10.
394 Gentles AJ, Bratman SV, Lee LJ, Harris JP, Feng W,

Nair RV, Shultz DB, Nair VS, Hoang CD, West RB

et al. (2015) Integrating tumor and stromal gene

expression signatures with clinical indices for survival

stratification of early-stage non-small cell lung cancer.

J Natl Cancer Inst 107, djv211.

395 Calon A, Lonardo E, Berenguer-Llergo A, Espinet E,

Hernando-Momblona X, Iglesias M, Sevillano M,

Palomo-Ponce S, Tauriello DVF, Byrom D et al.

(2015) Stromal gene expression defines poor-prognosis

subtypes in colorectal cancer. Nat Genet 47, 320–329.
396 Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone

DS, Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier

CL, Eddy JA et al. (2018) The Immune landscape of

cancer. Immunity 48, 812–830.
397 Chronopoulos A, Robinson B, Sarper M, Cortes E,

Auernheimer V, Lachowski D, Attwood S, Garci�a R,

Ghassemi S, Fabry B et al. (2016) ATRA

mechanically reprograms pancreatic stellate cells to

suppress matrix remodelling and inhibit cancer cell

invasion. Nat Commun 7, 12630.

398 Kim MG, Shon Y, Kim J & Oh YK (2017) Selective

activation of anticancer chemotherapy by cancer-

associated fibroblasts in the tumor microenvironment.

J Natl Cancer Inst 109, djw186.

399 Chauhan VP, Chen IX, Tong R, Ng MR, Martin JD,

Naxerova K, Wu MW, Huang P, Boucher Y, Kohane

DS et al. (2019) Reprogramming the

microenvironment with tumorselective angiotensin

blockers enhances cancer immunotherapy. Proc Natl

Acad Sci USA 166, 10674–10680.
400 Hingorani SR, Bullock AJ, Seery TE, Zheng L, Sigal

D, Ritch PS, Braiteh FS, Zalupski M, Bahary N,

Harris WP et al. (2017) Randomized phase II study of

PEGPH20 plus nab-paclitaxel/gemcitabine (PAG) vs

AG in patients (Pts) with untreated, metastatic

pancreatic ductal adenocarcinoma (mPDA). J Clin

Oncol 35, 4008.

401 Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A,

McIntyre D, Honess D, Madhu B, Goldgraben MA,

Caldwell ME, Allard D et al. (2009) Inhibition of

Hedgehog signaling enhances delivery of

chemotherapy in a mouse model of pancreatic cancer.

Science 324, 1457–1461.
402 Catenacci DVT, Junttila MR, Karrison T, Bahary N,

Horiba MN, Nattam SR, Marsh R, Wallace J,

Kozloff M, Rajdev L et al. (2015) Randomized phase

Ib/II study of gemcitabine plus placebo or vismodegib,

a hedgehog pathway inhibitor, in patients with

metastatic pancreatic cancer. J Clin Oncol 33, 4284–
4292.

403 Lee MJ, Hatton BA, Villavicencio EH, Khanna PC,

Friedman SD, Ditzler S, Pullar B, Robison K, White

KF, Tunkey C et al. (2012) Hedgehog pathway

inhibitor saridegib (IPI-926) increases lifespan in a

mouse medulloblastoma model. Proc Natl Acad Sci

USA 109, 7859–7864.
404 Garc�ıa-Pravia C, Galv�an JA, Guti�errez-Corral N,

Solar-Garc�ıa L, Garc�ıa-P�erez E, Garc�ıa-Oca~na M, Del

Amo-Iribarren J, Men�endez-Rodr�ıguez P, Garc�ıa-

Garc�ıa J, de los Toyos JR et al. (2013) Overexpression

of COL11A1 by cancer-associated fibroblasts: clinical

relevance of a stromal marker in pancreatic cancer.

PLoS One 8, e78327.

405 Cheon DJ, Tong Y, Sim MS, Dering J, Berel D, Cui

X, Lester J, Beach JA, Tighiouart M, Walts AE et al.

(2014) A collagen-remodeling gene signature regulated

by TGF-b signaling is associated with metastasis and

poor survival in serous ovarian cancer. Clin Cancer

Res 20, 711–723.
406 Maniati E, Berlato C, Gopinathan G, Heath O,

Kotantaki P, Lakhani A, McDermott J, Pegrum C,

Delaine-Smith RM, Pearce OMT et al. (2020) Mouse

ovarian cancer models recapitulate the human tumor

microenvironment and patient response to treatment.

Cell Rep 30, 525–540.e7.
407 Kitano H (2004) Cancer as a robust system:

implications for anticancer therapy. Nat Rev Cancer 4,

227–235.

2633Molecular Oncology 15 (2021) 2600–2633 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

J. O. Jones et al. Role of the microenvironment in tumorigenesis


	Outline placeholder
	mol212773-aff-0001
	mol212773-aff-0002
	mol212773-fig-0001
	mol212773-fig-0002
	mol212773-tbl-0001
	mol212773-tbl-0002
	mol212773-bib-0001
	mol212773-bib-0002
	mol212773-bib-0003
	mol212773-bib-0004
	mol212773-bib-0005
	mol212773-bib-0006
	mol212773-bib-0007
	mol212773-bib-0008
	mol212773-bib-0009
	mol212773-bib-0010
	mol212773-bib-0011
	mol212773-bib-0012
	mol212773-bib-0013
	mol212773-bib-0014
	mol212773-bib-0015
	mol212773-bib-0016
	mol212773-bib-0017
	mol212773-bib-0018
	mol212773-bib-0019
	mol212773-bib-0020
	mol212773-bib-0021
	mol212773-bib-0022
	mol212773-bib-0023
	mol212773-bib-0024
	mol212773-bib-0025
	mol212773-bib-0026
	mol212773-bib-0027
	mol212773-bib-0028
	mol212773-bib-0029
	mol212773-bib-0030
	mol212773-bib-0031
	mol212773-bib-0032
	mol212773-bib-0033
	mol212773-bib-0034
	mol212773-bib-0035
	mol212773-bib-0036
	mol212773-bib-0037
	mol212773-bib-0038
	mol212773-bib-0039
	mol212773-bib-0040
	mol212773-bib-0041
	mol212773-bib-0042
	mol212773-bib-0043
	mol212773-bib-0044
	mol212773-bib-0045
	mol212773-bib-0046
	mol212773-bib-0047
	mol212773-bib-0048
	mol212773-bib-0049
	mol212773-bib-0050
	mol212773-bib-0051
	mol212773-bib-0052
	mol212773-bib-0053
	mol212773-bib-0054
	mol212773-bib-0055
	mol212773-bib-0056
	mol212773-bib-0057
	mol212773-bib-0058
	mol212773-bib-0059
	mol212773-bib-0060
	mol212773-bib-0061
	mol212773-bib-0062
	mol212773-bib-0063
	mol212773-bib-0064
	mol212773-bib-0065
	mol212773-bib-0066
	mol212773-bib-0067
	mol212773-bib-0068
	mol212773-bib-0069
	mol212773-bib-0070
	mol212773-bib-0071
	mol212773-bib-0072
	mol212773-bib-0073
	mol212773-bib-0074
	mol212773-bib-0075
	mol212773-bib-0076
	mol212773-bib-0077
	mol212773-bib-0078
	mol212773-bib-0079
	mol212773-bib-0080
	mol212773-bib-0081
	mol212773-bib-0082
	mol212773-bib-0083
	mol212773-bib-0084
	mol212773-bib-0085
	mol212773-bib-0086
	mol212773-bib-0087
	mol212773-bib-0088
	mol212773-bib-0089
	mol212773-bib-0090
	mol212773-bib-0091
	mol212773-bib-0092
	mol212773-bib-0093
	mol212773-bib-0094
	mol212773-bib-0095
	mol212773-bib-0096
	mol212773-bib-0097
	mol212773-bib-0098
	mol212773-bib-0099
	mol212773-bib-0100
	mol212773-bib-0101
	mol212773-bib-0102
	mol212773-bib-0103
	mol212773-bib-0104
	mol212773-bib-0105
	mol212773-bib-0106
	mol212773-bib-0107
	mol212773-bib-0108
	mol212773-bib-0109
	mol212773-bib-0110
	mol212773-bib-0111
	mol212773-bib-0112
	mol212773-bib-0113
	mol212773-bib-0114
	mol212773-bib-0115
	mol212773-bib-0116
	mol212773-bib-0117
	mol212773-bib-0118
	mol212773-bib-0119
	mol212773-bib-0120
	mol212773-bib-0121
	mol212773-bib-0122
	mol212773-bib-0123
	mol212773-bib-0124
	mol212773-bib-0125
	mol212773-bib-0126
	mol212773-bib-0127
	mol212773-bib-0128
	mol212773-bib-0129
	mol212773-bib-0130
	mol212773-bib-0131
	mol212773-bib-0132
	mol212773-bib-0133
	mol212773-bib-0134
	mol212773-bib-0135
	mol212773-bib-0136
	mol212773-bib-0137
	mol212773-bib-0138
	mol212773-bib-0139
	mol212773-bib-0140
	mol212773-bib-0141
	mol212773-bib-0142
	mol212773-bib-0143
	mol212773-bib-0144
	mol212773-bib-0145
	mol212773-bib-0146
	mol212773-bib-0147
	mol212773-bib-0148
	mol212773-bib-0149
	mol212773-bib-0150
	mol212773-bib-0151
	mol212773-bib-0152
	mol212773-bib-0153
	mol212773-bib-0154
	mol212773-bib-0155
	mol212773-bib-0156
	mol212773-bib-0157
	mol212773-bib-0158
	mol212773-bib-0159
	mol212773-bib-0160
	mol212773-bib-0161
	mol212773-bib-0162
	mol212773-bib-0163
	mol212773-bib-0164
	mol212773-bib-0165
	mol212773-bib-0166
	mol212773-bib-0167
	mol212773-bib-0168
	mol212773-bib-0169
	mol212773-bib-0170
	mol212773-bib-0171
	mol212773-bib-0172
	mol212773-bib-0173
	mol212773-bib-0174
	mol212773-bib-0175
	mol212773-bib-0176
	mol212773-bib-0177
	mol212773-bib-0178
	mol212773-bib-0179
	mol212773-bib-0180
	mol212773-bib-0181
	mol212773-bib-0182
	mol212773-bib-0183
	mol212773-bib-0184
	mol212773-bib-0185
	mol212773-bib-0186
	mol212773-bib-0187
	mol212773-bib-0188
	mol212773-bib-0189
	mol212773-bib-0190
	mol212773-bib-0191
	mol212773-bib-0192
	mol212773-bib-0193
	mol212773-bib-0194
	mol212773-bib-0195
	mol212773-bib-0196
	mol212773-bib-0197
	mol212773-bib-0198
	mol212773-bib-0199
	mol212773-bib-0200
	mol212773-bib-0201
	mol212773-bib-0202
	mol212773-bib-0203
	mol212773-bib-0204
	mol212773-bib-0205
	mol212773-bib-0206
	mol212773-bib-0207
	mol212773-bib-0208
	mol212773-bib-0209
	mol212773-bib-0210
	mol212773-bib-0211
	mol212773-bib-0212
	mol212773-bib-0213
	mol212773-bib-0214
	mol212773-bib-0215
	mol212773-bib-0216
	mol212773-bib-0217
	mol212773-bib-0218
	mol212773-bib-0219
	mol212773-bib-0220
	mol212773-bib-0221
	mol212773-bib-0222
	mol212773-bib-0223
	mol212773-bib-0224
	mol212773-bib-0225
	mol212773-bib-0226
	mol212773-bib-0227
	mol212773-bib-0228
	mol212773-bib-0229
	mol212773-bib-0230
	mol212773-bib-0231
	mol212773-bib-0232
	mol212773-bib-0233
	mol212773-bib-0234
	mol212773-bib-0235
	mol212773-bib-0236
	mol212773-bib-0237
	mol212773-bib-0238
	mol212773-bib-0239
	mol212773-bib-0240
	mol212773-bib-0241
	mol212773-bib-0242
	mol212773-bib-0243
	mol212773-bib-0244
	mol212773-bib-0245
	mol212773-bib-0246
	mol212773-bib-0247
	mol212773-bib-0248
	mol212773-bib-0249
	mol212773-bib-0250
	mol212773-bib-0251
	mol212773-bib-0252
	mol212773-bib-0253
	mol212773-bib-0254
	mol212773-bib-0255
	mol212773-bib-0256
	mol212773-bib-0257
	mol212773-bib-0258
	mol212773-bib-0259
	mol212773-bib-0260
	mol212773-bib-0261
	mol212773-bib-0262
	mol212773-bib-0263
	mol212773-bib-0264
	mol212773-bib-0265
	mol212773-bib-0266
	mol212773-bib-0267
	mol212773-bib-0268
	mol212773-bib-0269
	mol212773-bib-0270
	mol212773-bib-0271
	mol212773-bib-0272
	mol212773-bib-0273
	mol212773-bib-0274
	mol212773-bib-0275
	mol212773-bib-0276
	mol212773-bib-0277
	mol212773-bib-0278
	mol212773-bib-0279
	mol212773-bib-0280
	mol212773-bib-0281
	mol212773-bib-0282
	mol212773-bib-0283
	mol212773-bib-0284
	mol212773-bib-0285
	mol212773-bib-0286
	mol212773-bib-0287
	mol212773-bib-0288
	mol212773-bib-0289
	mol212773-bib-0290
	mol212773-bib-0291
	mol212773-bib-0292
	mol212773-bib-0293
	mol212773-bib-0294
	mol212773-bib-0295
	mol212773-bib-0296
	mol212773-bib-0297
	mol212773-bib-0298
	mol212773-bib-0299
	mol212773-bib-0300
	mol212773-bib-0301
	mol212773-bib-0302
	mol212773-bib-0303
	mol212773-bib-0304
	mol212773-bib-0305
	mol212773-bib-0306
	mol212773-bib-0307
	mol212773-bib-0308
	mol212773-bib-0309
	mol212773-bib-0310
	mol212773-bib-0311
	mol212773-bib-0312
	mol212773-bib-0313
	mol212773-bib-0314
	mol212773-bib-0315
	mol212773-bib-0316
	mol212773-bib-0317
	mol212773-bib-0318
	mol212773-bib-0319
	mol212773-bib-0320
	mol212773-bib-0321
	mol212773-bib-0322
	mol212773-bib-0323
	mol212773-bib-0324
	mol212773-bib-0325
	mol212773-bib-0326
	mol212773-bib-0327
	mol212773-bib-0328
	mol212773-bib-0329
	mol212773-bib-0330
	mol212773-bib-0331
	mol212773-bib-0332
	mol212773-bib-0333
	mol212773-bib-0334
	mol212773-bib-0335
	mol212773-bib-0336
	mol212773-bib-0337
	mol212773-bib-0338
	mol212773-bib-0339
	mol212773-bib-0340
	mol212773-bib-0341
	mol212773-bib-0342
	mol212773-bib-0343
	mol212773-bib-0344
	mol212773-bib-0345
	mol212773-bib-0346
	mol212773-bib-0347
	mol212773-bib-0348
	mol212773-bib-0349
	mol212773-bib-0350
	mol212773-bib-0351
	mol212773-bib-0352
	mol212773-bib-0353
	mol212773-bib-0354
	mol212773-bib-0355
	mol212773-bib-0356
	mol212773-bib-0357
	mol212773-bib-0358
	mol212773-bib-0359
	mol212773-bib-0360
	mol212773-bib-0361
	mol212773-bib-0362
	mol212773-bib-0363
	mol212773-bib-0364
	mol212773-bib-0365
	mol212773-bib-0366
	mol212773-bib-0367
	mol212773-bib-0368
	mol212773-bib-0369
	mol212773-bib-0370
	mol212773-bib-0371
	mol212773-bib-0372
	mol212773-bib-0373
	mol212773-bib-0374
	mol212773-bib-0375
	mol212773-bib-0376
	mol212773-bib-0377
	mol212773-bib-0378
	mol212773-bib-0379
	mol212773-bib-0380
	mol212773-bib-0381
	mol212773-bib-0382
	mol212773-bib-0383
	mol212773-bib-0384
	mol212773-bib-0385
	mol212773-bib-0386
	mol212773-bib-0387
	mol212773-bib-0388
	mol212773-bib-0389
	mol212773-bib-0390
	mol212773-bib-0391
	mol212773-bib-0392
	mol212773-bib-0393
	mol212773-bib-0394
	mol212773-bib-0395
	mol212773-bib-0396
	mol212773-bib-0397
	mol212773-bib-0398
	mol212773-bib-0399
	mol212773-bib-0400
	mol212773-bib-0401
	mol212773-bib-0402
	mol212773-bib-0403
	mol212773-bib-0404
	mol212773-bib-0405
	mol212773-bib-0406
	mol212773-bib-0407


