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the curse of dimensionality has long been a hurdle in the analysis of complex data in areas such as 
computational biology, ecology and econometrics. in this work, we present a forecasting algorithm 
that exploits the dimensionality of data in a nonparametric autoregressive framework. the main idea is 
that the dynamics of a chaotic dynamical system consisting of multiple time-series can be reconstructed 
using a combination of different variables. This nonlinear autoregressive algorithm uses multivariate 
attractors reconstructed as the inputs of a neural network to predict the future. We show that our 
approach, attractor ranked radial basis function network (AR-RBfn) provides a better forecast than 
that obtained using other model-free approaches as well as univariate and multivariate autoregressive 
models using radial basis function networks. We demonstrate this for simulated ecosystem models and 
a mesocosm experiment. By taking advantage of dimensionality, we show that AR-RBfn overcomes 
the shortcomings of noisy and short time-series data.

In recent years, the availability of large time-course datasets in multiple disciplines, including biology, ecology 
and finance has brought forth the problem of handling such data for scientific analysis1–3. In many studies, gen-
eralized linear models and vector autoregressive models are used for structural estimation and inference, where 
such systems exhibit nonlinear dynamics with time-lags, reciprocal feedback loops and unpredictable surprises4,5. 
On the other hand, equation-based models such as difference and differential equations may be used to analyze 
the evolution of a dynamic system, but often require some degree of prior knowledge about the nature of inter-
actions among various system components6; even if the model structure is known, dimensionality poses a chal-
lenge on accurate parameter estimation of variables7. Furthermore, prior work has established that ecological and 
biological models are often ineffective in predicting the future due to the highly nonlinear nature of component 
interactions8,9.

An alternative equation-free approach suitable for non-equilibrium dynamics (including chaos) and non-
linearity is state space reconstruction (SSR) which is a model-free approach in the sense that there is no analytic 
formula assumption, thus allowing substantial flexibility in the nonlinearity of the system10,11. SSR uses lagged 
coordinate embeddings to reconstruct attractors that map the time-series evolution from time domain into state 
space trajectories. Reservoir computing is also another model-free approach for short-term prediction of chaotic 
dynamic systems from time-series data12–16.

In a notable theorem, Takens proved that the overall behavior of a chaotic dynamic system can be recon-
structed from lags of a single variable17. Takens’ theorem was later generalized and it was demonstrated that 
the information from a combination of multiple time-series (and their lags) can be used in an attractor recon-
struction to provide a more mechanistic model18,19. Nonetheless, since attractor reconstruction relies only on 
experimental data, the limitations of short or noisy time-series restricts the ability to infer system dynamics as a 
whole. Namely, SSR from short time-series provide a scarce view of a system’s mechanism, diminishing reliability 
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of inferences. In addition, when time-series data is corrupted with observational noise, data may become mean-
ingless and irrelevant in providing useful information for predictability. Ye et al. (2016) introduced an analytical 
approach, multiview embedding (MVE), which is based on simplex-projection’s search for nearest neighbors to 
perform forecasting20.

In this work, we treat prediction of the dynamical system as an inverse problem that involves interpolation 
and approximating an unknown function from a time-series data and introduce an attractor ranked radial basis 
function network (AR-RBFN)-based autoregressive model. Here, we use SSR to construct attractors from com-
binations of variables and their time-lags. Each manifold comprises information that provides unique predictive 
intelligence. We then assess the reconstructed manifolds’ prediction ability and rank them according to their 
forecast skill. By merging the top manifolds and the information contained in them, AR-RBFN is capable of 
recovering the dynamics of the system in a manner that outperforms model-free approaches such as MVE and 
nonlinear univariate and multivariate autoregressive models.

Methods
AR-RBFN utilizes radial basis function networks (RBFN) initially proposed to perform accurate interpolation of 
data points in a multidimensional space21. Suppose we are interested in forecasting variable y in a three-species 
food chain with components, x, y, and z. By constructing the attractors from a combination of variables of the 
three-species food chain, one can look into the forecast skill of each multivariate manifold (Fig. 1).

For example, the blue manifold in Fig. 1a is an embedding constructed from variables, Z, y, and variable X 
delayed by two time-lags. Each multivariate embedding in Fig. 1 is mapped using a Gaussian RBFN which 
approximates a nonlinear function that transforms the input space of past values in each manifold to the output 
space of future target values:
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Figure 1. Schematic showing forecast skill of multivariate embeddings in the three-species food chain model. 
(a) Multivariate embedding reconstructed from z t( ), y t( ) and x t( 2 )τ−  in 3-dimensional space provides the 
best prediction of variable y using Gaussian radial basis functions with centers { , , }p11 1µ µ… . (b) Multivariate 
embedding reconstructed from z t( )τ− , x t( ) and y t( 2 )τ−  in 3-dimensional space provides moderate 
prediction of variable y using Gaussian radial basis functions with centers µ µ…{ , , }p21 2 . (c) Multivariate 
embedding reconstructed from y t( 2 )τ− , y t( ) and τ−x t( 2 ) in 3-dimensional space provides the worst 
prediction of variable y using Gaussian radial basis functions with centers { , , }m mp1µ µ… .
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Y t M i m( ) ( ) , 1, 2, (1)i i i iτ Ψ α ε+ = + = …

M( )iΨ  is a data matrix of nonlinear Gaussian kernel functions with the inputs being points on the ith manifold Mi, 
and iα  is a vector of output weights that can be fixed such that the prediction error is minimized in the minimum 
mean squared error sense. m is the number of all possible manifold reconstructions from a combination of varia-
bles and their time-lags.

The black manifolds in Fig. 1 are reconstructed from the actual future observations of variable y and the red 
dots are the predicted values. One can rank constructed embeddings based on their prediction accuracy (mean 
absolute error or correlation between observations and predictions) from the best (Fig. 1a) to the worst (Fig. 1c).

Manifold reconstruction. Given N  variables and L time-lags for each variable, the possible number of 
manifold reconstructions in E-dimensional space grows combinatorially:

( )m NL
E

N L
E

( 1)
(2)

= −




− 



where, the first term is the number of manifolds formed by choosing E of the NL possible coordinates, and the 
second term is subtracted to account for the number of unacceptable manifolds where all E coordinates are 
lagged; an acceptable manifold is one with at least one unlagged coordinate at the current time t. For example, in 
Fig. 1 we have reconstructed manifolds in 3-dimensional space ( =E 3) with a time lag of τ τ0, , 2  (L 3= ), 
which results in 64 valid manifolds. Once all reconstructions are ordered based on their prediction skill in the 
in-sample portion of the data, one can identify the top k manifolds …M M, k1  in an E-dimensional space that 
will further be used in the AR-RBFN forecast. Figure 2a shows the AR-RBFN model where the top k manifolds in 
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Figure 2. Attractor ranked radial basis function network. (a) Three-layer neural network takes the best k 
predictive embeddings as its inputs. The nonlinear function f( · ) is estimated by fixing the α weights through 
linear optimization. (b) The in-sample forecast and future observations are shown by the red and black manifold 
(curve) in state space (time domain) respectively.
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the prediction of variable y are inputs to the three-layer neural network. Each unit in the hidden layer uses a 
Gaussian radial basis function with centers l k{ } , 1, ,l

p
1µ = …ρ ρ=  as a nonlinear activation function. The 

one-step forecast of y through attractor ranked RBFN, and the actual one-step observations of y are shown in 
Fig. 2b in the red and black curves respectively. Figure 2 shows an in-sample one-step ahead forecast of variable y
; our goal is to explore AR-RBFN’s predictive capability in an out-of-sample forecast scheme which we will explore 
later in this manuscript.

Attractor ranked radial basis function network. Given multivariate time-series of N  variables 
X x t x t x t t T{ ( ), ( ), ( )}; 1, ,N1 2= … = … , the nonlinear attractor ranked RBFN model maps the top k mani-
folds such that the likelihood of the nonlinear autoregressive model is maximized:

X t M j N( ) ( ) , 1, 2, (3)j j jτ Ψ α ε+ = + = …

where,

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
X

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Y

20 40 60 80 100
0.6

0.7

0.8

0.9

1
Z

20 40 60 80 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
X

20 40 60 80 100
0.8

0.85

0.9

0.95

1
Y

20 40 60 80 100
0.8

0.85

0.9

0.95

1
Z

20 40 60 80 100
0.6

0.7

0.8

0.9

1
Larvae

20 40 60 80 100
0.8

0.85

0.9

0.95

1
Pupae

20 40 60 80 100
0.6

0.7

0.8

0.9

1
Adults

Food Chain Model Three-Species Model Flour Beetle Model

a

b

c

d

e

g

h

if

Time Series Length

( noitalerro
C

ρ)

AR-RBFN
MVE

Figure 3. Comparison of forecast performance (correlation) of AR-RBFN and MVE using simulated ecological 
data with 10% added noise. (a–c) forecast skill (correlation between estimated forecast and one-step-ahead 
observation) versus time-series length of the data libraries for variables X, Y, and Z in three-species food chain 
model. (d–f) same as a to c but for the three-species coupled logistic model. (g–i) same as a to c but for variables 
larvae, pupae and adults in the flour beetle model. Solid lines show the averaged values for 100 randomly 
selected data libraries, and the dotted lines indicate the upper and lower quartiles.

https://doi.org/10.1038/s41598-020-60606-1


5Scientific RepoRtS |         (2020) 10:3780  | https://doi.org/10.1038/s41598-020-60606-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

X t x E x E x T( ) [ ( ) ( 2 ) ( )] (4)j j j j
Tτ τ τ+ = + + …

Ψ Ψ Ψ Ψ= …M M M M( ) [ ( ) ( ) ( )] (5)k1 2

[ ] (6)j j j jk
T

1 2α α α α= …

α α α α= … = …p l k[ (1) (2) ( )] , 1, 2, (7)jl jl jl jl
T

AR-RBFN
Univariate RBFN
Multivariate RBFN

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
X

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Y

20 40 60 80 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Z

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
X

20 40 60 80 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Y

20 40 60 80 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Z

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Larvae

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Pupae

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Adults

Food chain3 species coupled logistic Flour beetle

Time Series Length

d

e

f

a

b

c

g

h

i

(
noitalerro

C
ρ)

Figure 4. Forecast performance (correlation) vs. time-series length of libraries with 10% added noise. (a–c) 
Average correlation between predictions and observations for 100 randomly sampled libraries for variables X, 
Y , and Z vs. length of the libraries in the 3 species coupled logistic model. (d–f) Same as a to c but for the food 
chain model. (g–i) Same as a to c but for the variables larvae, pupae and adults in the flour beetle model. The 
solid black curves are the average correlations for the attractor ranked RBFN approach for the top k manifold 
reconstructions. The solid green curves are the average correlations for the univariate RBFN approach, and the 
solid pink curves are the average correlations using the multivariate model constructed by the variable 
combination with the best in-sample prediction skill in the RBFN autoregressive approach. The dotted lines are 
the upper and lower quartiles.
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Figure 5. Forecast performance (correlation) vs. time-series length of libraries for the five-species model with 
10% added noise. (a–e) Average correlation between predictions and observations for 100 randomly sampled 
libraries for variables Y1, Y2, Y3, Y4, Y5 vs. length of the libraries. The solid black curves are the average correlations 
for the attractor ranked RBFN approach for the top k manifold reconstructions. The solid green curves are the 
average correlations for the univariate RBFN approach, and the solid pink curves are the average correlations 
using the multivariate model constructed by the variable combination with the best in-sample prediction skill in 
the RBFN autoregressive approach. The dotted lines are the upper and lower quartiles. In figure panels c and e, 
the manifolds of the univariate and multivariate models with the best in-sample prediction coincide.
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N is the number of variables in the chaotic system. T is the time-series length and τ  is the time increment. The 
value of the jth variable at time t is denoted by x t( )j . Equation (3) is a nonlinear autoregressive model where Ψ M( ) 
is an activation function of the past values of variable xj that are reflected in the set of top k manifolds 
M M M, , k1 2 …  in Eq. (5). Learning radial basis function network requires the determination of RBF weights and 
centers. αj in Eq. (6) is the vector of weights between the target variable xj and Ψ M( ). Each reconstructed mani-
fold has a total of p centers; µ ρ ρ={ }l

p
1 is the set of p centers in the space of the l th manifold Ml of the top k manifold 

reconstructions. The centers are determined by a k-means clustering procedure. We can see in Eq. (8) that the 
columns of = …M l k, 1, ,l , that are E-dimensional points in the space of Ml, are vectors reconstructed from a 
combination of variables d e,  and b and time-lags τn0, 1  and τn2 . lσ  is the width or radius of the Gaussian radial 
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Figure 6. Forecast performance (mean absolute error) vs. noise for the 3 species coupled logistic model.  
(a–c) Average mean absolute error between predictions and observations for 100 randomly sampled libraries  
of length 25 for variables X, Y , and Z. (d–f) Same as a to c but for 100 randomly sampled libraries of length 50. 
(g–i) Same as a to c but for 100 randomly sampled libraries of length 100. The solid black curves are the average 
mean absolute errors for the attractor ranked RBFN approach for the top k manifold reconstructions. The solid 
green curves are the average mean absolute errors for the univariate RBFN approach, and the solid pink curves 
are the average mean absolute errors using the multivariate model constructed by the variable combination with 
the best in-sample prediction skill in the RBFN autoregressive approach. The dotted lines are the upper and 
lower quartiles.
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basis function in the space of Ml which is selected as the average of the Euclidean distances between each center 

lµ ρ
 and its nearest neighbor center lµ ρ′

22. The nonlinear functions in Eq. (9) are activation functions that calculate 
the kernels with respect to each of the p centers ( lµ ρ

) in the Ml manifold. ( )jlα ρ  is the weight corresponding to the 
kernel function ψρ M( )l

g . As seen in Eq. (10), the type of the radial basis function ψρ M( )l
g is taken as Gaussian ker-

nels whose inputs are E-dimensional vectors of a combination of variables and time-lags. Here, we use E 3=  and 
thus reconstruct 3-dimensional manifolds with time lags of τ τ0, , 2  with τ = 1.

α vectors are weights that are fixed such that the prediction error is minimized, and ε denotes Gaussian white 
noise independent of the time-series. In general, one can use least squares estimation method to adjust the α 
weights in the minimum mean squared error sense. Once the α vectors are estimated via least squares using the 
library data (training time interval) that is selected randomly from the in-sample portion of the data, they are 
tested on the out-of-sample test set to calculate the out-of-sample forecast.

out-of-sample forecasting. In order to quantitatively evaluate the one-step-ahead forecast skill of the 
AR-RBFN, we performed an out of sample forecast scheme on the simulated ecosystem data. We generated 3000 
samples for all variables in the simulated ecosystem models and discarded the first 500 samples to exclude the 
transient behavior of the time-series. The last 500 samples [2501 to 3000] are kept as the out of sample test set. The 
data in the [2001, 2500] interval is not considered in the forecasting scheme to emphasize the robustness of 
AR-RBFN; we need not have knowledge of the most recent events in a chaotic system to predict the future (see 
Fig. S1). Radial basis function based autoregressive model is performed on each of the m manifold reconstruc-
tions to rank them based on their forecast skill (correlation coefficient between the observations and predictions) 
in the in-sample portion of the data. For the simulated time-series data, 100 libraries are randomly chosen in the 
in-sample portion of the data [501 to 2000]; the starting point of each library (training time interval on the 
in-sample portion of data) is chosen from a uniform distribution distributed in the [501 to 2000] interval. The top 
k manifold reconstructions are selected to perform AR-RBFN forecasting (as shown in Fig. 2). The forecast skill 
is then calculated by averaging the mean absolute errors and correlation coefficients between the actual future 
observations and one-step forecasts for the 100 randomly sampled libraries. The libraries are selected in various 
lengths of 25, 50, 75 and 100 samples.

Due to the limited length of the mesocosm data, we used a pseudo out-of-sample forecast scheme to evaluate 
the forecast performance of the AR-RBFN and MVE approaches; the first 3/4 of the time-series was used as the 
training set, and the last 1/4 portion of the data was used as the test set. This forecast scheme is also known as the 
method of time-series cross-validation for one-step ahead forecasting. In the pseudo-out-of-sample strategy, the 
one-step-ahead forecast at time τ+t  is estimated using the actual data through time t, then moving forward to 
time τ+t  and repeating until all test data samples are covered in the recursive estimation. In this work, we used 
an increasing data window in the recursive forecast of samples in the test set.

See Supplementary Information’s materials and methods section for details on simulated data from ecosystem 
models and real data from mesocosm experiments.

Results and Discussion
To assess the performance of the AR-RBFN approach, we compare the forecast performance between the 
out-of-sample forecast estimates and the one-step-ahead observations using our proposed AR-RBFN autore-
gressive model with that of a model-free approach based on nearest neighbors, MVE, proposed by Ye et al.20. 
Figure 3 depicts the forecast skill (correlation) of the AR-RBFN and the MVE approaches for simulated ecological 

Figure 7. Comparison of forecast performance (correlation) of AR-RBFN and MVE for the long-term 
mesocosm experiment. Correlation between the predictions and observations for plankton communities of 
calanoids, rotifers, nanoflagellates and picocyanobacteria.
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systems with 10% added noise for a three-species food chain23, a three-species coupled logistic and a three-stage 
flour beetle model24 (for details on MVE method see Supplementary Information). In almost all cases, AR-RBFN 
provides better forecast skills with higher correlations. As expected, the forecast performance improves as the 
length of time-series increases.

Furthermore, as shown in Figs. 4 and 5, AR-RBFN yields better forecast performance than that from a uni-
variate radial basis function network and a radial basis function network using the multivariate model (con-
structed by the variable combination with the best in-sample prediction skill) for the three-species models and a 
five-species model25 (see Supplementary Information for details on univariate and multivariate RBFN as well as 
Figs. S2 and S3).

The strength of AR-RBFN in providing better forecast skill is especially obvious when time-series are short. As 
the length of time-series increases, the performances of the univariate and multivariate RBFN improve and reach 
that of AR-RBFN. To further study the modeling framework of AR-RBFN, we investigate the effect of observa-
tional noise in the time-series data. For instance, Fig. 6 shows the effect of observational noise in the three-species 
coupled logistic model for libraries of length 25, 50 and 100 samples (also see Supplementary Figs. S4 to S8). 
Unsurprisingly, our results indicate that as more noise is added to the data, the forecast error increases. As seen 
in Fig. 6, when dealing with noisy data, AR-RBFN provides better forecast than the univariate and multivariate 
RBFN-based autoregressive models.

To further evaluate the forecast skill of AR-RBF on real world data, we extend this analysis to time-series 
data from a long-term mesocosm experiment on a four-species marine plankton community obtained from the 
Baltic Sea26. The mesocosm data consists of the plankton population of Nanoflagellates and Picocyanobacteria 
that fall prey to two predators, Rotifers and Calanoid Copepods. Coupling of predator-prey oscillations where 
preys have a causal effect on the predators exhibit chaotic patterns. Figure 7 shows the comparison of the forecast 
performances of AR-RBFN and MVE for the long-term plankton community data; for all four species, AR-RBFN 
outperforms MVE in forecasting. Using the MAE metric provides similar results when comparing MVE and 
AR-RBFN (see Supplementary Figs. S9 and S10).

We found that for attractor ranked radial basis function network (AR-RBFN), the best number of top k recon-
structions to incorporate into AR-RBFN is k N= , where N  is the number of variables in the interconnected 
dynamic system. If k is too large, we will have too many hidden units in the hidden layer of the radial basis func-
tion network. Particularly in cases where the time-series is noisy, too many hidden units in the hidden layer of the 
neural network leads to overfitting of the training samples and poor generalization27. Here, we choose τ = 1 and 
E 3=  for the ecosystem simulated data and mesocosm experiment data.

In this work, we designed a nonparametric forecasting algorithm based on state space reconstruction that can 
be generalized to any problem where the model structure is unknown. The incentive for developing this algorithm 
originates from the biological sciences, however it is possible to apply AR-RBFN to dynamic systems in the field 
of computer networks that arise from transmission control protocol (TCP)28,29, weather prediction30, or other 
applications.

We project the lagged observations from multiple components to state space trajectories and construct mani-
fold attractors. The attractors’ prediction skill is then assessed, and the top manifolds are used for forecasting in a 
radial basis function network where a nonlinear function is estimated. This function maps the past events of the 
dynamic system into future values. This algorithm exploits the dimensionality of data in a nonparametric autore-
gressive framework, improving the ability to forecast the dynamical behavior of chaotic systems. Our method, 
AR-RBFN, computes the distance-weighted average of all points in the top k manifolds (Fig. 2a). The Gaussian 
radial basis functions (activation functions) in the hidden layer produce higher values when the distance between 
the data points in the input manifolds and their corresponding prototypes (centers) are small; the activation val-
ues fall off exponentially as the distance between data points and prototypes increases31. As seen in Figs. 3 and 7, 
the estimated nonlinear function f(·) in AR-RBFN, which is a smooth map, produces better forecast performance 
than MVE which is a piece-wise constant function approximator.

When components of a complex dynamic system have cause-and-effect relationships with one another, relying 
on univariate information towards prediction of the system dynamics does not yield good predictions (Figs. 4, 5 
and Supplementary Figs. S2 and S3). Our findings indicate that the information contained in pooled data 
enhances the prediction skill. AR-RBFN outperforms nonlinear univariate and multivariate autoregressive-based 
forecasting models since it exploits the pooled information contained in the top k manifold reconstructions. The 
advantage of an attractor ranked prediction scheme is particularly evident when the time-series are short and 
noisy (Fig. 6 and Supplementary Figs. S4 to S8), a feature very common in biological and ecological data sets.

Data availability
Mesocosm experiment data is available in the appendix of Benica et al.26. Simulated data are available in 
Supplementary Table S1.
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