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Abstract

Background: Diabetes mellitus, which causes dysregulation of blood glucose in humans, is a major public health challenge.
Patients with diabetes must monitor their glycemic levels to keep them in a healthy range. This task is made easier by using
continuous glucose monitoring (CGM) devices and relaying their output to smartphone apps, thus providing users with real-time
information on their glycemic fluctuations and possibly predicting future trends.

Objective: This study aims to discuss various challenges of predictive monitoring of glycemia and examines the accuracy and
blood glucose control effects of Diabits, a smartphone app that helps patients with diabetes monitor and manage their blood
glucose levels in real time.

Methods: Using data from CGM devices and user input, Diabits applies machine learning techniques to create personalized
patient models and predict blood glucose fluctuations up to 60 min in advance. These predictions give patients an opportunity to
take pre-emptive action to maintain their blood glucose values within the reference range. In this retrospective observational
cohort study, the predictive accuracy of Diabits and the correlation between daily use of the app and blood glucose control metrics
were examined based on real app users’ data. Moreover, the accuracy of predictions on the 2018 Ohio T1DM (type 1 diabetes
mellitus) data set was calculated and compared against other published results.

Results: On the basis of more than 6.8 million data points, 30-min Diabits predictions evaluated using Parkes Error Grid were
found to be 86.89% (5,963,930/6,864,130) clinically accurate (zone A) and 99.56% (6,833,625/6,864,130) clinically acceptable
(zones A and B), whereas 60-min predictions were 70.56% (4,843,605/6,864,130) clinically accurate and 97.49%
(6,692,165/6,864,130) clinically acceptable. By analyzing daily use statistics and CGM data for the 280 most long-standing users
of Diabits, it was established that under free-living conditions, many common blood glucose control metrics improved with
increased frequency of app use. For instance, the average blood glucose for the days these users did not interact with the app was
154.0 (SD 47.2) mg/dL, with 67.52% of the time spent in the healthy 70 to 180 mg/dL range. For days with 10 or more Diabits
sessions, the average blood glucose decreased to 141.6 (SD 42.0) mg/dL (P<.001), whereas the time in euglycemic range increased
to 74.28% (P<.001). On the Ohio T1DM data set of 6 patients with type 1 diabetes, 30-min predictions of the base Diabits model
had an average root mean square error of 18.68 (SD 2.19) mg/dL, which is an improvement over the published state-of-the-art
results for this data set.

Conclusions: Diabits accurately predicts future glycemic fluctuations, potentially making it easier for patients with diabetes to
maintain their blood glucose in the reference range. Furthermore, an improvement in glucose control was observed on days with
more frequent Diabits use.

(JMIR Diabetes 2020;5(3):e18660) doi: 10.2196/18660
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Introduction

Background
Diabetes mellitus is one of the biggest public health challenges
of our days. Globally, the number of adults living with the
disease has risen from 108 to 422 million between 1980 and
2014, constituting about 8.5% of the worldwide adult population
[1]. The complications of diabetes caused by increased blood
glucose levels (hyperglycemia) include both macrovascular
(ischemic heart disease, cerebrovascular disease, peripheral
vascular disease leading to lower extremity amputations) and
microvascular (eg, diabetic retinopathy and nephropathy)
diseases [2].

In healthy adults, the pancreas maintains blood glucose levels
between approximately 70 mg/dL and 180 mg/dL [3] (mostly
at the lower end of this range, except for short postprandial
increases) by balancing the levels of insulin and glucagon in
the bloodstream.

Owing to impaired pancreatic function and/or reduced insulin
sensitivity, patients with diabetes face the challenge of
maintaining their blood glucose levels within the reference range
via exogenous insulin administration, medications, and lifestyle
modifications (eg, changes in diet, exercise, sleep patterns).
These patients, especially those with type 1 diabetes (whose
pancreas produces no insulin at all), must constantly monitor
their glycemic state and use exogenous insulin to keep their
blood glucose from increasing beyond the healthy range into
hyperglycemia, while avoiding out-of-range low (hypoglycemic)
values, which can potentially lead to seizures, coma, and even
death [4].

The task of blood glucose monitoring, traditionally performed
using capillary blood sampling, has been made easier in recent
years with the introduction of continuous glucose monitoring
(CGM) devices [5], which measure glucose levels at a set
frequency, typically every 5 min, via interstitial fluid. Currently,
CGM devices are capable of providing an accurate picture of
recent and current blood glucose levels and alerting the users
of hypo- or hyperglycemic events. Some of the existing devices
have incorporated simple autoregression algorithms to predict
impending blood glucose fluctuations (usually no more than
15-20 min ahead of time) and issue a notification if a hypo- or
hyperglycemic event is expected. However, we believe that the
functionality of CGM devices can be significantly extended
with additional tools to improve their utility and, consequently,
the quality of life of their users.

Current Research on Blood Glucose Predictions
There are two common reasons for making blood glucose
predictions. The first is to be able to manage blood glucose
levels automatically via a closed-loop feedback system for a
continuous insulin pump [6,7]. The second, which is the way
in which predictions are used in Diabits, the diabetes
management app whose predictive approach and accuracy are
reviewed in this publication, is to give the results back to the
patient so that their insulin and food intake and other behaviors
can be corrected to avoid possible hypo- or hyperglycemia.

Owing to the potential benefits of anticipating blood glucose
changes ahead of time, there have been many studies (eg, [8-41])
dedicated to developing models capable of short-term (usually
in the range of 15-120 min into the future) glycemic predictions.
These studies generally fall into 2 categories: (1) physiological
approaches [8-12], wherein researchers try to model the
metabolic processes within the patient’s body using general
knowledge of human physiology, and (2) data-driven models
[13-41], which mostly rely on statistical and machine learning
techniques applied to the existing CGM data and other available
information (eg, meals, exogenous insulin, sleep, and physical
activity) to derive standard patterns of blood glucose behavior,
which are then used to predict future glycemic events.

The challenge of using physiological predictive models lies in
the fact that to be accurate, these models require a more detailed
description of the current state of the patient’s body than can
normally be achieved, and even in the presence of such data
(eg, in a clinical setting), the performance of physiological
models is limited because of the inherent complexity of the
human glucose-insulin dynamics, which makes identification
of model parameters a difficult task. Therefore, data-driven
models (or hybrid models that combine statistical methods with
physiological insights) are more viable in practice for short-term
blood glucose predictions, as evidenced by most studies cited
above.

The data-driven models reported in the literature use a variety
of traditional signal processing [14-23] and machine learning
[24-41] methods for making blood glucose predictions. These
models normally use recent CGM measurements as the primary
predictive input.

Among the methods that are not based on machine learning
techniques are those using autoregressive methods [14-18],
Kalman filters [19-21], and impulse response techniques [22,23]
to extrapolate the existing CGM behavior into the near future.
Machine learning methods include neural networks [24-36],
support vector machines (SVMs) [37,38], decision trees [39,40],
grammatical evolution [41], and other approaches. These
methods use supervised learning techniques in which the models
of blood glucose behavior created on the basis of past
measurements are used to anticipate future changes.

Evaluation of Prediction Accuracy
The accuracy of short-term blood glucose predictions reported
in different studies cannot be easily compared, partly because
there exists a great variety of metrics that are used by researchers
to evaluate predictive performance, such as the root mean square
error (RMSE), mean absolute relative difference [42], prediction
time lag and the J index [43], and different methods [44-47]
based on using error grids developed for blood glucose meter
evaluation, such as the Clarke Error Grid [48] and the Parkes
(Consensus) Error Grid [49,50]. More importantly, even with
the same metric, glycemic prediction models can exhibit
noticeable variation in accuracy when applied to different sets
of data owing to the nature of data (in silico or in vivo), the
amount of data available for each patient, physiological
differences between patients, behavioral changes for each
patient, and data quality issues. This variance can be partially
reduced by using larger data sets, but for many researchers, only
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limited data are available owing to the fact that blood glucose
readings, similar to all medical data, are usually not shared
freely because of patient privacy concerns. Although there have
been recent attempts to facilitate blood glucose research by
creating established sets of CGM data available to scientists,
such as the Ohio T1DM (type 1 diabetes mellitus) data set [51],
most studies published to date use private data sets for
evaluation, which makes it difficult to objectively evaluate the
quality of their results.

Furthermore, the prediction accuracy of different studies may
be significantly affected by varied availability of non-CGM
data, particularly information related to meal and insulin events.
If predictions are only made for periods when no such events
occur (which can only be done if the researcher has the data
indicating their occurrence), or if these events are taken into
account by the predictive model, the accuracy is likely to be
much higher than in case of making a prediction for an interval
during which unknown events affecting the patient’s blood
glucose may have taken place.

Feedback Delays and Implications for Predictions
It is important to point out that CGM devices do not measure
the actual blood glucose levels but measure the concentration
of glucose in interstitial fluid, which tends to follow blood
glucose with a patient- and condition-dependent time lag, usually
in the range of 5 to 20 min [52-55]. Although the postprocessing
of measured CGM data may partially account for this delay, to
avoid out-of-range blood glucose excursions, the predictions
need to be made in advance in order for the user (or an
automatically controlled insulin pump if the predicted values
are used by an artificial pancreas algorithm) to be able to make
a correction, while the true blood glucose concentration is still
within its reference range.

There are several other sources of delays when using predictions
for blood glucose control. Frequently, predictions themselves
may be lagging compared with the future interstitial glucose
levels because of the nature of the predictive algorithm. Next,
CGM devices only perform measurements using discrete time
intervals (usually between 3 and 15 min, with 5 min being the
most common in practice). Therefore, the last measured point
may not be quite up to date at the moment the user sees the
prediction. Additional delays are introduced by the CGM
filtering algorithms [53]. In addition, the corrective action by

the user may not have an immediate effect on blood glucose
(eg, even for rapid-acting insulin delivered subcutaneously, the
action is delayed by about 5-10 min [56]).

Owing to all these delays, in order for the predictions to be
maximally effective in preventing out-of-range blood glucose
excursions, it is preferable to anticipate glycemic changes for
at least 30 min in advance, especially in cases of hyperglycemic
events caused by the delayed action of insulin. For
hypoglycemia prediction, shorter time horizons may be
acceptable [23], although a longer accurate prediction would
still give the user more time to take preventive measures.

Goals
The aim of this paper is to describe how the challenges that
exist in blood glucose predictions are addressed in the Diabits
smartphone app and to evaluate the accuracy of its predictions
and the potential clinical effects of the app using data from the
app’s users and other existing data sets.

Methods

General Description of Diabits
Diabits is a smartphone app that is available both for iOS and
Android phones, which reads current blood glucose data either
from the app associated with a Dexcom CGM device (via
Dexcom Share) or from Nightscout, a cloud-based data
aggregator project that can collect, if configured by the user,
current data from a Dexcom or Medtronic CGM, and then
presents these data in real time to the user, along with
predictions of blood glucose behavior for the next 60 min and
statistical information and charts based on the patient’s past
blood glucose data.

The main parts of the user interface of the app are shown in
Figure 1. Graph panel (a) is the main screen of the app,
displaying the recent CGM data, predicted future blood glucose
values, and estimated values of insulin and carbohydrates on
board, that is, available for future use by the body. The meal
and insulin information, entered manually by each user of the
app based on their best knowledge, is displayed in the Journal
panel (b). The Analytics panel (c) shows several statistics based
on the recent history of the patient’s blood glucose. Some of
the graphic parts of the design may have experienced minor
changes throughout the study.

JMIR Diabetes 2020 | vol. 5 | iss. 3 | e18660 | p. 3http://diabetes.jmir.org/2020/3/e18660/
(page number not for citation purposes)

Kriventsov et alJMIR DIABETES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. The interface of Diabits, including (a) the Graph panel, showing recent CGM values and the predictions for the next hour; (b) the Journal
panel, where the users can enter relevant event information (food, insulin, etc), and see the past history of CGM data and events; (c) the Analytics panel,
showing various glycemic statistics and insights that may help the users control their blood glucose levels. CGM: continuous glucose monitoring.

The predictive models of Diabits were originally created on the
basis of the results of a clinical study conducted in collaboration
with the endocrinology unit of BC Children’s Hospital (located
in Vancouver, Canada) between April and October 2017 [57].
During this study, CGM data and heart rate and physical activity
information of 9 young patients with type 1 diabetes were
collected over a period of 2 months with the goal of creating
an accurate model for short-term blood glucose predictions. The
predictive models that were developed during this study were
subsequently refined [58] using data from a larger pool
(approximately 1200 people) of free-living users of the app with
approximately 1.6 million data points.

The app gives users an option to manually record, according to
their knowledge, food consumption (carbohydrate, protein, and
fat content and the glycemic index), insulin intake (the number
of units and the type of insulin), physical exercise (intensity
and duration), and other events that may affect their blood
glucose. This information is added to the CGM data as model
inputs to increase the prediction accuracy. The predictive models
of Diabits rely significantly on CGM inputs, as most users do
not provide enough food and insulin information required to
make a model that is primarily based on physiological principles.
However, all available physiological inputs are taken into
account when making a prediction. A schematic diagram of the
Diabits prediction approach is shown in Figure 2.
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Figure 2. A block diagram of the Diabits predictive module. Solid connections between blocks indicate mandatory data, whereas dashed connections
show optional inputs. The dashed line in the bottom block shows the 60-min prediction that was generated by the machine learning algorithm. CGM:
continuous glucose monitoring; ML: machine learning; SVM: support vector machine.

Details of Machine Learning Approach Used in Diabits
Glucose predictions are made via a supervised machine learning
framework, with personalized models trained using each
patient’s past data.

Glucose values are calculated for 4 time points: 15, 30, 45, and
60 min ahead, with a separate model trained for each point.
When plotting the data for users, the in-between points are filled
using cubic interpolation. Although it is possible to train models
for any number of minutes divisible by the CGM time step (eg,
for 5, 10, 15 min, if the CGM time step is 5 min), it is not
necessary in practice because the actual blood glucose behavior
of patients with insulin-dependent diabetes typically lacks a
noticeable high-frequency component [59] (even though
unfiltered CGM values may exhibit such fluctuations because
of random measurement errors).

To create inputs for the model, in addition to CGM data, recent
food and insulin records, if available, are used to estimate the
amount of carbohydrates and insulin currently present in the
body (this information is also displayed for the user to see) and
their rates of utilization. The calculations are performed using
physiological models similar to those reported in the literature,
(eg, [12,60]). As these physiological models have a number of
parameters that are specific to each patient, these calculations
can only be performed once a sufficient number of previous

points with food and insulin data have been collected so that
personalized parameters can be estimated from these. Until that
point (for newer app users and those who rarely provide such
data to the app), a simpler estimation approach for the current
amount of carbohydrates and insulin remaining is used based
on the food and insulin information reported by the patient, each
patient’s insulin-to-carbohydrate ratio and correction factor
provided to the app at sign-up, and the changes in blood glucose
levels since each food and/or insulin event.

Other data points, such as those related to the time of the day,
day of the week, and recent physical activity data, are also added
as separate model inputs to increase the accuracy of predictions.

The resulting inputs are used for training a model that combines
gradient boosted decision trees and SVM regression. Gradient
boosted decision trees [61] is an ensemble machine learning
technique that works by consecutively training new trees on the
differences between the ground truth labels and the combined
prediction of all preceding trees. SVM regression [62] operates
similar to linear regression, but with a maximum margin (hinge)
loss and a kernel mapping that allows to model nonlinear
systems. Diabits uses standard implementations of both of these
algorithms from open-source Python packages.

The exact mechanism by which these two methods are
implemented and combined are not addressed in this paper but
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may be disclosed in future publications. Generally, the decision
tree model is used to evaluate which of the several possible
physiological states the patient is currently in, and then an SVM
model trained exclusively on the data pertaining to this particular
state (as determined by the training algorithm) generates the
prediction.

For each Diabits user, the initial personalized (based solely on
this user’s data) model is built once 2000 CGM points (about
a week of continuous data) are available. Thereafter, the model
is retrained every 2 weeks to take advantage of the most recent
data.

Prediction Adjustments in Diabits
One of the issues that needs to be addressed when predictive
models are trained on past patient behavior is that in the absence
of detailed nutritional and insulin information for free-living
patients, training points may reflect unrecorded prior corrections
that the patients have made by either ingesting carbohydrates
or using insulin. This is particularly problematic when blood
glucose is near the edges of the target range (eg, just above 70
mg/dL or just below 180 mg/dL for the standard reference range
of glucose values). A model trained on such data will likely
predict similar corrections happening in the future, which may
result in the patient actually foregoing necessary corrections
owing to the fact that blood glucose is predicted to normalize
on its own.

To mitigate this effect, in situations where such errors are likely
to occur (ie, in situations with an impending hypo- or
hyperglycemic event that the user is likely to have avoided in
the past training data by taking food or insulin), Diabits uses
an additional algorithm to correct its predictions to generate the
most likely trajectory of blood glucose in the absence of future
external interventions. The user can then decide, based on their
own judgment, if any interventions are necessary. This
adjustment is only used when blood glucose is trending toward
the outside of the target range, there has been no recent change
in the direction of the trend indicating a possible unreported
meal or insulin event, and no meal or insulin events have been
reported in the last 40 min. The final prediction is generated as
a weighted average of the main model’s prediction and a
prediction that applies linear regression to the recent CGM data
and therefore is guaranteed to continue the current trend.

Note that this Diabits adjustment, which typically increases the
calculated prediction error (because we are no longer trying to
predict what will actually happen, but instead what will happen
if no action is taken) but, in our opinion, makes the predictions
more practically useful, was not used to ensure a fair comparison
in part III of the results of this paper, namely when comparing
the prediction accuracy of our model with published research
on the Ohio T1DM data set. The results for the actual in-app
predictions and glycemic control versus frequency of app use
(part I and part II), however, are based on a model that does
include this adjustment.

Study Format and Ethical Compliance
All parts of this research are based on retrospective observational
cohort studies. The first part (Accuracy of Past In-App
Predictions for Free-Living Users) and the second part

(Glycemic Control vs Frequency of App Use) analyzed the past
data of free-living Diabits users. The researchers, in accordance
with the Diabits’ privacy policy, had no access to personally
identifiable information of the users, relying instead on
anonymized randomly generated universally unique identifier
strings [63], and had no contact with any of the participants.
Thus, we believe that the participants did not fall under the
definition of human subjects [64]; hence, no institutional review
board review was necessary. Informed consent was received
from every Diabits user upon sign-up that their anonymized
data could be used for research purposes.

In the third part of the study (Accuracy of Predictions on the
2018 Ohio T1DM Data Set), a publicly available anonymized
2018 Ohio T1DM data set [51] was used. The data user
agreement for this data set allows the use of its data for research
purposes.

Part I: Accuracy of Past In-App Predictions for
Free-Living Users
The goal of this part of the study was to examine a large set of
past Diabits predictions made for the actual users of the app
and to determine the clinical safety of these predictions using
Clarke and Parkes Error Grid analysis. All of Diabits users with
type 1 diabetes (as reported by the patients themselves during
sign-up) were ranked by the number of blood glucose data points
they shared with the app in 2019, and the 500 patients with the
most points were chosen for analysis. The sex and age of each
specific subject was not known to the researchers; however, in
general, there are many Diabits users in all age categories, from
newborn to those older than 70 years, and of different sexes
(approximately evenly split between males and females). All
of the CGM devices used by the study participants were among
those compatible with the app (General Description of Diabits).
The investigators did not have any further information regarding
specific device models for each participant.

The distribution between the Clarke and Parkes Error Grid zones
of actual 15-, 30-, 45-, and 60-min predictions made by the app
in real time, as compared with the ground-truth data from future
CGM points, was calculated using all of the points for these
500 patients where the prediction was made and all of the
ground-truth labels were available (6,864,130 total points). The
results were examined to determine whether the predictions
provided could potentially have led to adverse patient outcomes.

Part II: Glycemic Control Versus Frequency of App Use
The goal of this part of the study was to determine whether there
is a correlation between how often the users look at the blood
glucose graph of Diabits during each day and their blood glucose
control. A total of 280 Diabits users who had at least 180 days
of CGM data recorded by the app in 2018 to 2019 were included.
The patients came from the same pool as in the first part of the
study (in fact, many are the same patients); however, their data
from 2 calendar years (2018 and 2019) were used for analysis.

The blood glucose control metrics that were calculated included
the average blood glucose and its SD, time in euglycemic range
(TIR) [65], glucose management indicator (GMI) [66], and high
BGI (HBGI) and low BGI (LBGI) blood glucose risk indices
[67].
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All of the metrics were analyzed as functions of the frequency
of daily use, which was defined as the number of times a Diabits
user looked at the graph containing CGM values and future
blood glucose predictions during 1 calendar day. Diabits records
each user’s CGM data as long as the app is running on the
smartphone even if the user is not actively looking at the results,
so days with zero sessions were included.

The hypothesis of the study was that all of the blood glucose
control metrics would improve with more frequent use of the
app. All of the users’ days were categorized into 4 different
groups, namely those with 0 sessions, 1 to 5 sessions, 6 to 10
sessions, and more than 10 sessions. P values, calculated using
a one-sided t test, are reported for the difference of each metric
from that in the group with zero daily sessions (no active use
of the app; P0) and in the closest group with fewer sessions
(Pfewer). A value α=.01 was used for the alpha level of
significance in all cases, using the Bonferroni correction [68]
for multiple comparisons.

Part III: Accuracy of Predictions on the 2018 Ohio
T1DM Data Set
To facilitate the comparison of the predictive accuracy of Diabits
with existing research, the base Diabits prediction framework
was applied without any data set–specific adjustments to the
data from the Ohio T1DM data set [51] that was used in 2018
Blood Glucose Level Prediction (BGLP) challenge at the third
International Workshop on Knowledge Discovery in Healthcare
Data.

Using the training portion of the data in the 2018 Ohio T1DM
data set, personalized Diabits models were created for each of

the 6 patients in the data set. Next, 30-min predictions were
generated for all points in the test portion of the data except for
the first hour, and the prediction error (RMSE) was calculated
and compared against the published results of the challenge
[18,30-33,35,40,41].

The CGM data were used as is (no averaging or smoothing to
eliminate random errors), and only past and present data (CGM
glucose levels, basal and bolus insulin, meal, and exercise
information) were used for each point to make predictions. In
other words, the data were used in the same manner it is
normally used in Diabits, with the training data used to train
each patient’s personalized prediction models and the test data
to generate predictions and calculate their accuracy.

Results

Part I: Accuracy of Past In-App Predictions for
Free-Living Users
Actual 30-min Diabits predictions under free-living conditions
for the 500 most active patients in 2019 (approximately 6.8
million points) made using personalized models based on the
gradient boosted decision trees and the SVM regression
algorithm discussed above and evaluated using Parkes Error
Grid were found to be 86.89% (5,963,930/6,864,130) clinically
accurate (zone A) and 99.56% (6,833,625/6,864,130) clinically
acceptable (zones A and B). For the 60-min predictions, the
results were 70.56% (4,843,605/6,864,130) clinically accurate
and 97.49% (6,692,165/6,864,130) clinically acceptable (Table
1). A sample distribution of predicted values plotted against
actual values for both Clarke and Parkes Error Grids is shown
in Figure 3.

Figure 3. A sample scatter graph of blood glucose values predicted 30 min in advance by the Diabits model versus measured CGM values, plotted
against Clarke (left) and Parkes (right) Error Grids.
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Table 1. Results of error grid analysis of the prediction accuracy of Diabits based on 6,864,130 actual predictions made for 500 most active app users
in 2019.

E, n (%)aD, n (%)aC, n (%)aB, n (%)aA, n (%)aMinutes and error grid type

15

30 (0.00)19,981 (0.29)135 (0.00)278,954 (4.07)6,565,030 (95.64)Clarke

3 (0.00)71 (0.00)3968 (0.06)246,767 (3.60)6,613,321 (96.34)Parkes

30

530 (0.01)59,834 (0.87)3276 (0.05)964,979 (14.06)5,835,511 (85.01)Clarke

3 (0.00)915 (0.01)29,587 (0.43)869,695 (12.67)5,963,930 (86.89)Parkes

45

4735 (0.07)103,629 (1.51)21,510 (0.31)1,559,461 (22.72)5,174,795 (75.39)Clarke

5 (0.00)3931 (0.06)85,974 (1.25)1,414,438 (20.61)5,359,782 (78.08)Parkes

60

13,091 (0.19)144,512 (2.11)55,195 (0.80)2,024,709 (29.50)4,626,623 (67.40)Clarke

12 (0.00)9416 (0.14)162,537 (2.37)1,848,560 (26.93)4,843,605 (70.56)Parkes

aThe numbers show the percentage of prediction points in each zone of the Clarke and the Parkes Error Grid. For both grids, the zones are defined as
clinically accurate (A), clinically acceptable (B), and clinically inaccurate (C-E) [48-50].

Part II: Glycemic Control Versus Frequency of App
Use
To evaluate the correlation between the daily frequency of
Diabits use and the quality of blood glucose control, several
commonly used blood glucose control metrics were calculated
for 280 users who had at least 180 days of CGM data recorded
by the app in 2018 to 2019 (86,973 days combined for all users)
as a function of daily number of sessions (ie, the times the user
opened the app to look at the blood glucose graph) with Diabits
(Table 2).

As can be seen from Table 2, all of the metrics except LBGI
were better for days with more frequent Diabits use (in almost
all cases, P/2<α/36=.00027, the latter value being the
significance level calculated using the Bonferroni correction
formula for multiple comparisons, thus indicating a statistically
significant positive correlation). In the case of LBGI, there was
a very slight statistically significant increase in hypoglycemic
risk when using the app more frequently (as could be expected
owing to tighter glucose control); however, all of the values
were well within the minimal risk region of LBGI<1.1 [69].

Table 2. Various metrics of blood glucose control as a function of frequency of daily Diabits use.

>106-101-50Daily sessionsa

141.6; P0<.001; Pfewer<.001145.6; P0<.001; Pfewer<.001150.7; P0<.001;bPfewer<.001154.0Average blood glucose (mg/dL)

41.5; P0<.001; Pfewer=.0742.1; P0<.001; Pfewer<.00145.3; P0<.001; Pfewer<.00147.6Standard deviation (mg/dL)

74.28%; P0<.001; Pfewer=.00473.05%; P0<.001; Pfewer<.00169.39%; P0<.001; Pfewer<.00167.52Time in euglycemic range, as % of all
data

6.70%; P0<.001; Pfewer<.0016.79%; P0<.001; Pfewer<.0016.91%; P0<.001; Pfewer<.0016.99GMIc (%)

3.13; P0<.001; Pfewer<.0013.62; P0<.001; Pfewer<.0014.20; P0<.001; Pfewer<.0014.63HBGId (<4.5: low risk; 4.5-9.0: moderate
risk; >9.0: high risk) [67]

0.59; P0<.001; Pfewer<.0010.46; P0=.007; Pfewer=.320.45; P0<.001; Pfewer<.0010.42LBGIe (<1.1: minimal risk; 1.1-2.5: low
risk; 2.5-5.0: moderate risk; >5.0: high
risk) [69]

aDaily sessions refers to the number of times a Diabits user looks at the CGM values and predictions during 1 calendar day. Diabits records each user’s
CGM data as long as the application is running on the smartphone even if the user is not actively looking at the results, so days with 0 sessions are
included.
bAll P values <.001 are reported as P<.001. P0 and Pfewer are defined in the methods section of this paper.
cGMI: glucose management indicator.
dHBGI: high blood glucose risk index.
eLBGI: low blood glucose risk index.
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Part III: Accuracy of Predictions on the 2018 Ohio
T1DM Data Set
The calculated RMSE values for Diabits predictions on the test
portion of the 2018 Ohio T1DM data set [51] are presented in

Table 3.

Of note, the mean prediction error of the Diabits base model
(18.68 mg/dL) is lower than that of all other published results.

Table 3. Root mean square error (mg/dL) of 30-min prediction accuracy of the base Diabits model for 6 patients in the 2018 Ohio type 1 diabetes
mellitus data set compared with the best of the published results of 2018 Blood Glucose Level Prediction Challenge [51] on the same data.

Mean (SD)bPatient numberPredictive model (RMSEa, mg/dL)

591588575570563559

18.68 (2.19)20.6417.5322.2215.4418.2917.94 cDiabits base model

18.87 (1.79)20.2918.5421.6815.9617.9618.77Martinsson, 2019 (LSTM RNNd) [35]

19.04 (2.42)21.3417.7322.8315.4618.1218.78Chen, 2018 (DRNNe) [31]

19.33 (2.24)21.1217.8422.8615.8819.4318.83Bertachi, 2018 (feed-forward NNf) [33]

19.53 (2.99)22.1217.4924.6115.6719.1218.19Xie, 2018 (SVMg) [18]

19.59 (2.60)21.9918.2523.9016.0319.0218.36Xie, 2018 (ARX linear regression) [18]

20.07 (2.44)22.0019.2024.2016.5019.0019.50Martinsson, 2018 (LSTM RNN) [30]

20.38 (2.21)22.4919.2424.1718.1418.4219.81Midroni, 2018 (XGBoost) [40]

21.19 (1.77)22.2820.4524.4919.5519.3620.98Contreras, 2018 (Grammatical evolution) [41]

21.73 (2.30)24.2221.4224.8018.0320.1721.72Zhu, 2018 (WaveNet convolutional NN) [32]

aRMSE: root mean square error.
bThe mean column is calculated by averaging the 6 previous columns (mean root mean square error over all patients).
cThe best result for each patient is highlighted in italics.
dRNN: recurrent neural network.
eDRNN: dilated recurrent neural network.
fNN: neural network.
gSVM: support vector machine.

Discussion

Principal Findings
This paper has studied the predictive accuracy of Diabits, a
smartphone app that performs blood glucose monitoring based
on CGM data, presents a statistical analysis of past data, and
generates short-term (up to 60 min) predictions of future glucose
behavior. In addition, the correlation between daily use of
Diabits and blood glucose control metrics of its users was
examined.

A large number of actual predictions made by Diabits for its
users were evaluated using the Clarke and Parkes Error Grid,
and the resulting values were found to be in the clinically
acceptable range 97.49% of the time (6,692,165/6,864,130) for
60-min predictions and 99.56% of the time
(6,833,625/6,864,130) for 30-min predictions on the Parkes
Grid (with similar results for the Clarke Grid), which showed
that the vast majority of predictions were accurate enough to
not adversely affect the patients.

By analyzing the results of actual app use, it was statistically
established that more frequent daily use of Diabits was
correlated with improvement in many blood glucose control
metrics, including average blood glucose and its SD, TIR, GMI,
and HBGI. This is consistent with the goal of the app to help

patients better manage their blood glucose and pre-emptively
avoid hyper- or hypoglycemia.

Finally, the accuracy of Diabits was directly compared with
that of existing research using predictions on the 2018 Ohio
T1DM data set, with the resulting RMSE being lower than that
in the studies published by other researchers
[18,30-33,35,40,41].

All of these results show the viability of Diabits as an effective
tool for blood glucose control in CGM users. They also support
the quality of the model underlying Diabits to make informative
blood glucose predictions based on personalized machine
learning models.

Strengths, Limitations, and Possible Future
Developments
In part I, the accuracy of the actual glycemic predictions of
Diabits was calculated using more than 6.8 million data points.
This provided a solid statistical basis for the calculations and
ensured the validity of the results.

The combination of gradient boosting decision trees and SVM
regression in the Diabits models may have provided an
additional ensembling [70] benefit that enhanced the prediction
accuracy. In addition, we believe that one of the reasons why
Diabits personalized models based on these techniques work
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particularly well for most patients compared with, for example,
neural network models, is the somewhat limited amount of
training data available for each patient, which favors the
traditional machine learning techniques. However, the downside
is that the current personalized approach fails to take advantage
of the global pool of data available through the app. One
possible future research direction is to use combined data from
a large number of patients to train a deep neural network model
(which may achieve better accuracy with a large amount of
data), and then fine-tune this model for each patient.

In part II, the discovered correlation between the daily use of
Diabits and the improvement in blood glucose control metrics

was based on more than 86,000 days of app use, once again
giving the results statistical significance. However, the
observational nature of the study and the lack of knowledge of
which, if any, corrections were made by the users based on the
app output does not allow us to establish causality or estimate
the level of importance of each feature of Diabits, which may
be a topic of future research.

In part III, the predictions of Diabits on the 2018 Ohio T1DM
data set showed an improved average RMSE for 30-min
predictions over other published approaches, demonstrating
Diabits’ high predictive accuracy when compared with other
leading models on the same data set.
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