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Abstract
Host selection by female moths is fundamental to the survival of their larvae. Detecting and

perceiving the non-volatile chemicals of the plant surface involved in gustatory detection

determine the host preference. In many lepidopteran species, tarsal chemosensilla are sen-

sitive to non-volatile chemicals and responsible for taste detection. The tea geometrid

Ectropis obliqua is one devastating chewing pest selectively feeding on limited plants,

requiring the specialized sensors to forage certain host for oviposition. In present study, we

revealed the distribution of chemosensilla in the ventral side of female fifth tarsomere in E.
obliqua. To investigate its molecular mechanism of gustatory perception, we performed

HiSeq 2500 sequencing of the male- and female- legs transcriptome and identified 24 can-

didate odorant binding proteins (OBPs), 21 chemosensory proteins (CSPs), 2 sensory neu-

ron membrane proteins (SNMPs), 3 gustatory receptors (GRs) and 4 odorant receptors

(ORs). Several leg-specific or enriched chemosensory genes were screened by tissue

expression analysis, and clustered with functionally validated genes from other moths, sug-

gesting the potential involvement in taste sensation or other physiological processes. The

RPKM value analysis revealed that 9 EoblOBPs showed sex discrepancy in the leg expres-

sion, 8 being up-regulated in female and only 1 being over expressed in male. These

female-biased EoblOBPs indicated an ecological adaption related with host-seeking and

oviposition behaviors. Our work will provide basic knowledge for further studies on the

molecular mechanism of gustatory perception, and enlighten a host-selection-based control

strategy of insect pests.
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Introduction
Herbivorous insects must locate and identify host plants to meet their biological requirements
and the demand of reproduction, while the process of host selection for feeding and oviposition
involves foraging, landing, contact evaluation and final determination [1]. Olfaction and taste
perception play crucial roles in chemical detection and discrimination of the host. As many
lepidopteran species are designated to use a limited range of host plants, detecting and perceiv-
ing the semiochemicals from the host are particularly important. Generally, insects utilize their
sensitive and selective antennae to detect air borne odorant molecules and guide the location
from distance, while the subsequent contact evaluation of non-volatile chemicals involved in
gustatory detection determines the host preference. Typically, insect contact chemoreceptors,
derived from mechanosensory bristles and mainly scattered on the legs, the proboscis, the max-
illary and the labial palps, are sensitive to phagostimulants (e.g. sugars, oviposition stimulants
and amino acid) [2–5]. Many studies have confirmed the chemosensilla on legs play a principal
role in perceiving phytochemical compounds after the insects land on the leaves and start
drumming on the surface with the tarsi of prothoracic legs [6–9]. In Papilionidae (such as Papi-
lio xuthus, Heliconius melpomene and Papilio polytes), female butterflies perceive oviposition
stimulant by the chemosensilla located on the ventral side of their foreleg tarsus and further
determine the suitable feeding plant for larvae [10–12]. In other lepidopteran species (such as
Mnesampela privata,Helicoverpa armigera andHeliothis virescens) (Fig 1), tarsal chemosensilla
of the prothoracic legs are sensitive to some salts, sugars and amino acids, which indicates a
role in the assessment of food materials [13–15]. Legs of Drosphila, functioning as gustatory
organ and being responsible for tastant recognition, contain several taste sensilla and make the
initial contact with potential food resources [16].

Gustatory perception enables insects to efficiently detect the non-volatile chemosensory
information, guiding the feeding and oviposition behaviors of insects. Gustatory stimuli are
recognized by gustatory receptors (GRs), which share a common 7-transmembrane protein
and plus C-terminal domain with olfactory receptors (ORs) but are more diverse [17–19].
According to the ligand profiles, GRs are classified into sugar GR genes [20–22], bitter taste
receptors [23–25] and carbon dioxide receptors [26, 27]. Insect OBPs (odorant binding pro-
tein) are small, hydrophilic proteins, ferrying the hydrophobic semiochemicals across the sen-
silla lymph to olfactory receptors [28]. In Lepidoptera, two subfamilies of OBPs, general
odorant-binding proteins (GOBPs) and pheromone binding proteins (PBPs), are responsible

Fig 1. Scanning electronmicrographs of foreleg tarsus and chemosensilla of the fifth tarsomere of adult female E. obliqua. (A) Foreleg tarsus. (B)
Magnification of the fifth tarsomere by SEM. (C) Chemosensilla distributed in the ventral side of a female fifth tarsomere.

doi:10.1371/journal.pone.0149591.g001
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for recognizing and transporting host odorants and pheromones, respectively [29, 30].
Although OBPs were identified originally in olfactory system, some OBPs appear in gustatory
sensilla [31–34]. Recent studies have reported an unexpected role of OBP involved in gustatory
perception. In Drosphila, OBP49a is indispensable for the suppression of sweet taste by bitter
chemicals, and the loss of OBP49a will impair the inhibition [35]; two OBPs encoded by
OBP57e and OBP57d are not only involved in taste perception but could also change the behav-
ioral response to the host odors, and the mutation in these OBPs could shift the host preference
[36]. CSPs (chemosensory protein) are also small soluble proteins enriched in the sensilla
lymph [37], unlike OBPs which are considered antennae-specific, CSPs are much smaller (10–
15 KDa) but widely expressed in many tissues, including antennae [38, 39], proboscises [40,
41], legs [42], wings [43], etc. In general, CSPs are believed to enhance the solubility of semio-
chemicals and deliver them to chemosensory receptors [44–47], however, the function remains
unclear. SNMPs (sensory neuron membrane proteins), transmembrane domain-containing
proteins, are expressed in pheromone-sensitive hair and proposed to participate in pheromone
and general odorant reception [48–50].

The tea geometrid, Ectropis obliqua Prout (Lepidoptera: Geometridae) is one devastating
chewing pest throughout the tea plantations in China. E. obliqua larvae, voracious worms that
feed exclusively on tea leaves and tender buds, produce 6–7 generations throughout the grow-
ing season of tea, and eat the entire leaves of tea plants in several infestations, causing severe
yield loss and deterioration in commercial tea quality [51]. As one member of Lepidoptera, the
ability to locate suitable host plants is fundamental to the survival of their offspring, because
the small larvae cannot easily forage for alternate hosts [52]. Field observation of the egg-laying
behavior in E. obliqua reveals the female adults actively forage for the conspecific larvae-
infested plants and preferentially oviposit on the splits of branches or the cracks between leaves
and branches, during which the phytochemical compounds in leaves are the dominant attrac-
tion for oviposition [53, 54]. Thus, a deep insight into the molecular mechanisms of gustatory
perception will largely contribute to the integrated management of E. obliqua.

Previous studies of gustatory system mainly focused on the electrophysiological recording
of gustatory sensilla and behavioral response, and were confined to the limited butterflies and
model species, such as Bombyx mori and Drosophila melanogaster, whose genomes were avail-
able. However, few studies were focused on agricultural pests and the underlying genetic mech-
anisms were poorly understood, primarily because of the difficulty in detecting the genes
involved in taste sensation. Here we performed Illumina HiSeq 2500 sequencing of the tran-
scriptome of adult male and female legs of this devastating economic pest, and reported the
identification of 24 candidate OBPs (including 4 PBPs), 21 CSPs, 2 SNMP, 3GRs and 4 ORs
genes. The transcripts analysis of RPKMmetric was performed to highlight the most abundant
genes and outline the comparative gene expression between samples. Through RT-PCR and
real-time quantitative-PCR, we analyzed expression profiles of the chemosensory genes and
their putative functions in chemoreception.

Materials and Methods

Insect material and RNA preparation
E. obliqua colony used in this study was originally collected from the experimental tea planta-
tion of the Tea Research Institute of the Chinese Academy of Agricultural Sciences (Hangzhou,
Zhejiang, China). Newly hatched larvae were transferred onto fresh tea shoots in enclosed
nylon mesh cages (70×70×70 cm) and kept in a climate-controlled room at 25±1°C and 70±5%
relative humidity under a photoperiod of 14:10 (light: dark). After pupation, male and female
pupae were separated based on the body size and morphological characters [55], and kept in
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darkness until eclosion. After emergence, adult moths were given a 10% honey solution. For
transcriptome sequencing, legs of unmated male and female individuals were collected 2–3
days after eclosion. For qPCR and RT-PCR, adult tissues were collected and divided into female
antennae, male antennae, male legs, female legs, heads (without antennae), thoraxes, abdomens
and wings. All tissues were immediately snap-frozen in liquid nitrogen, and stored at –80°C
until extraction. Total RNA was extracted using Trizol reagent (Invitrogen, Shanghai, China).
The integrity of RNA samples was detected by gel electrophoresis, and a NanoDrop 2000 spec-
trophotometer (NanoDrop, Wilmington, DE, USA) was used to determine RNA quantity.

Scanning electron microscopy (SEM)
Prothoracic tarsi of female moths were cut using a scalpel. The samples were first soaked in
70% ethanol for 3 h and then descaled in an ultrasonic bath for 10 s. After gradient elution in
an ethanol series (80%, 90%, 95% and 100%), the samples were dried at 25°C overnight. The
samples were mounted on stainless steel holders and coated with gold-palladium. Photomicro-
graphs were viewed with a Quauta 200 FEG Environmental scanning electron microscopy
(ESEM) (Feicompany, USA).

cDNA library construction and Illumina sequencing
cDNA library was constructed using 5 μg total RNA extracted from approximately 100 male or
female legs. Oligo (dT) linked beads were used to isolate the mRNA from the total RNA (Illu-
mina; San Diego, CA, USA). The isolated mRNA strands were digested into short fragments
with Fragmentation Buffer. The fragmented mRNAs were used as templates to construct the
cDNA libraries using a Truseq RNA Sample prep Kit (Illumina, San Diego, USA) following
the manufacturer's instruction. Briefly, random hexamer-primers were used for first-strand
cDNA, followed by second-strand cDNA synthesis using DNA Polymerase I and RNase H
(Invitrogen, Carlsbad, CA). After end-repairing and ligation of adaptors, the products were
amplified by PCR and purified with QIAquick PCR purification kit (Qiagen, Hilden, Germany)
to construct a cDNA library. Then the two libraries created from the legs of male and female
E. obliqua were sequenced on the Illumina HiSeq 2500 platform at Shanghai Majorbio Bio-
pharm Technology Co., Ltd, generating 100 bp paired-end raw reads.

Transcriptome assembly and functional annotation
Clean-read datasets were obtained from the raw reads through the following procedures: first,
remove the low quality reads (the bases with sequencing error rates more than 1% are over half
in the read) and adaptor sequences; second, filter out the sequences with N (uncertain bases)
exceeding 10%. These treatments were performed through SeqPrep (https://github.com/
jstjohn/SeqPrep) and Sickle (https://github.com/najoshi/sickl). The Q20, Q30, GC-content and
sequence duplication level of the clean data were summarized simultaneously. Transcriptome
assembly was performed through Trinity (trinityrnaseq-r2013-02-25). The trinity outputs
made up two classes of unigenes: the consensus cluster sequences and singletons. To acquire
the functional annotation, transcripts larger than 150 bp were submitted to NCBI BlastX
homology search against a pooled database of non-redundant (nr) and SwissProt protein
sequences with an E-value�1.0E–5. We further imported the blast results into Blast2GO pipe-
line for Gene Ontology (GO) annotation. Then, the open reading frame (ORF) of genes was
predicted by ORF finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html), and the SignalP 4.1
server (http://www.cbs.dtu.dk/services/SignalP/) was used to predict the signal peptide sites in
the protein sequences. In order to explore the putative chemosensory receptors, the available
GRs and ORs sequences from B.mori, D.melanogaster and Tribolium castaneum were
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submitted as queries to run local homology search against the assembled transcripts using the
BioEdit Sequence Alignment Editor 7.1.3.0, in avoidance of inaccurate gene annotation.

RACE–PCR and sequence verification
The retrieved unigenes did not always represent full-length transcripts and some contained
only part. To confirm the reliability of output sequences and for better resolution of phyloge-
netic analysis, partial sequences of candidate chemosensory genes were extended using
RACE-PCR, and subsequently followed by full-length assembly and cloning. Total RNA
extracted from adult antennae or legs was used to synthesize 5’ and 3’ RACE cDNA templates
through SMART RACE cDNA Amplification kit (Clontech). Primers were designed manually
and listed in S1 Table. The RACE-PCR was operated in the means of touchdown following the
manual of Advantage 2 PCR kit (Clontech, CA, USA). The PCR products were subcloned into
pGEM-T (promega) and the inserts were sequenced using M13 primers. Afterwards, the 3’ and
5’ end sequences were aligned by BlastX against the GenBank to validate its correctness, and
were sequence-matched to obtain the full length. Open reading frames (ORFs) of genes were
predicted by ORF finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html). Then gene specific
primers were designed using the Primer 5.0 software, and ORF sequences were amplified and
verified by sequencing as mentioned before.

Phylogenetic analysis
Multiple alignments of the complete OBPs and CSPs amino acid sequences were performed by
ClustalX 2.0 and further edited by GeneDoc 2.7. The phylogenetic trees were constructed by
MEGA6.0 using the Neighbor-joining method with a p-distance model and a pairwise deletion
of gaps. Bootstrap support was assessed by a boot strap procedure based on 1000 replicates.
The data sets of OBPs and CSPs sequences which were chosen from other Lepidoptera species
were listed in S3 and S4 Tables separately.

Comparative analysis of transcript abundance
To compare the differential expression of chemosensory genes between samples, the transcript
expression abundances were calculated according to the metric RPKM (Reads per Kilobase per
million mapped Reads) method, based on the formula: RPKM (A) = (106×C×103)/(N×L),
where RPKM represents the expression of target gene A, C is the number of reads that are
uniquely mapped to gene A, N is the whole number of reads that are uniquely aligned to all
transcripts and L is the number of bases in gene A. RPKMmetric is capable of eliminating the
discrimination in gene lengths and sequencing discrepancies, which makes it possible to com-
pare gene expression between samples [56]. Differentially expressed genes (DEGs) were identi-
fied by EdgeR (http://www.bioconductor.org/packages/2.12/bioc/html/edgeR.html) according
to statistically significant differences with the threshold of false discovery rates (PDR)<0.05
and |log2Ratio�1| (refer to Benjamini (2001) for details) in the manner of male transcriptome
vs. female transcriptome. Subsequently, all DEGs were further annotated by GO and KEGG
pathway enrichment analyses.

qRT-PCR analysis and RT-PCR confirmation
The tissue expression profiles of chemosensory genes in different tissues (male antennae,
female antennae, male legs, female legs, heads without antennae, thoraxes, abdomens and
wings) were measured by real-time qRT-PCR. After the digestion of residual genomic DNA
from total RNA with DNase I (Promega), cDNAs were synthesized using 1 μg total RNA from
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various tissues by the Fast Quant RT kit (TIANGEN, Beijing, China) following the instruction
manual. qRT-PCR was conducted on an Bio-Rad CFX96 Touch Real-Time PCR Detection Sys-
tem. Specific primer pairs were designed by the Primer3 web program (http://primer3.ut.ee/)
and listed in S2 Table. The reference gene β-actin (GenBank accession number KT860051) was
used for normalization. To make sure that the amplification efficiencies of target genes and ref-
erence gene are approximately equal, the efficiency of each primer pair was analyzed by con-
structing a standard curve with three-fold cDNA dilution series. The qRT-PCR reaction
contained 10 μl SuperReal PreMix Plus (TianGen, Beijing, China), 0.6 μl primer on each
(10 μM), 2 μl sample cDNA (200 ng) and sterile H2O up to 20 μl. The qPCR procedure was
95°C for 15 min, followed by 40 cycles of 95°C for 10 s and 60°C for 30 s, melt curves stages at
95°C for 15 s, 60°C for 1 min, and 95°C for 15 s. A blank without template cDNA was included
in each experiment serving as a negative control. To check reproducibility, each reaction
included three biological replicates and was performed in triplicate (technical replicates). Rela-
tive transcript level in each tissue was calculated using the comparative 2–ΔΔCT method [57].
Data were first normalized to the endogenous β-actin levels from the same tissue, then the low-
est-expression tissue was selected as the calibrator, and the relative expression level among dif-
ferent tissues was assessed by comparing the expression level of each target gene in other parts
to that in the lowest one.

RT-PCR was implemented to verify the expression profiles of chemosensory genes. Specific
primers were designed by Beacon Designer 7.7 (Premier Biosoft, Palo Alto, CA, USA) and
listed in S2 Table. Each PCR reaction contained 200 ng cDNA template, performed by Taq
Master Mix (CWBIO, Beijing, China) under general 3-step amplification by 34–36 cycles of
94°C for 20s, 58°C for 30s, 72°C for 40s. PCR products were checked by electrophoresis and
further confirmed by sequencing. The β-actin gene served as an endogenous control. Each
amplification was performed three times with different biological samples.

Statistical analysis
Data of relative expression levels in various tissue were subjected to one-way analysis of vari-
ance (ANOVA), followed by a least significant difference test (LSD) for mean comparison. Dif-
ferences were considered significant at p<0.05. Data were analyzed using SAS 9.20 (SAS
Institute, Cary, North Carolina, USA).

Results

Transcriptome overview
The transcriptome reads data were generated on an Illumina HiSeq 2500 platform using the
paired end protocol. A total of 61.9 and 48.1 million raw reads were obtained from the E. obli-
qua female and male-leg libraries. After filtering the low quality and adaptor sequences,
59729104 and 46908620 clean reads were obtained, respectively, and assembled together into
83311 transcripts with an average length of 1402 bp. Of the clean reads, the Q20 percentage
(proportion of sequences with a sequencing error rate less than 1%) for both libraries exceeded
98%. The clean reads obtained in this study are available at the NCBI/SRA database under the
accession number SRX1502449. The length distribution of transcripts and unigenes was listed
in S1 Fig.

The functional annotations of transcripts were performed using the sequence similarity
searches against the Nr, SwissProt, KEGG, GO and COG databases with an E-value threshold
of 10−5. A percentage of 41.3%, 26.1% and 17.9% transcripts hit in Nr, SwissProt, and KEGG
database, respectively. Among the annotated transcripts, 17390 (50.6%) of Nr-hit transcripts
had a best match to B.mori, followed by 9282 (27.0%) to Danaus plexippus and 4924 (14.3%)

Chemosensory Genes Related to Host Selection

PLOS ONE | DOI:10.1371/journal.pone.0149591 March 1, 2016 6 / 25

http://primer3.ut.ee/


to P. Xuthus (Fig 2A). GO gene functional classification offers a strictly defined concept to
depict the properties of genes and their products. Of the total transcripts, only 83311 (19.8%)
could be annotated based on sequence homology, and the assembled transcripts were divided
into 3 distinct subsets (Fig 2B). In the term of molecular function, the annotations were mostly
enriched in binding (8539 transcripts accounting for 51.7% of the annotated) and catalytic

Fig 2. Summary for the annotation of E. obliqua legs transcripts. (A) Species distribution of the best Blastx hits. (B) Gene Ontology (GO) classifications
of legs transcripts annotated at GO level 2 according to the involvement in biological processes, cellular component and molecular function.

doi:10.1371/journal.pone.0149591.g002
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activity (7600 transcripts accounting for 46.0%). In biological process category, metabolic and
cellular processes occurred most frequently; while the cell, cell part and organelle were most
abundant in the category of cellular component.

Identification of putative chemosensory genes
Sequence annotation facilitated the identification of candidate chemosensory genes, generating
a total of 24 OBPs (including 4 PBPs), 21 CSPs, 2 SNMP, 3GRs and 4 ORs genes (Table 1).
Sequence predication revealed that 20 OBPs included the full-length open reading frame
(ORF) with a predicted signal peptide, and the five incomplete OBPs were extended in either 5
or 3 directions by RACE-PCR. The ORF sequences of 24 EoblOBPs were verified by cloning
and sequencing and further submitted to GenBank (Table 1). After acquiring the full length
sequence, the 24 putative EoblOBPs shared a relative high similarity (34%-92%) to the known
lepidopteran OBPs, among which EoblOBP20, EoblPBP1 and EoblPBP2 were matched to the
orthologous gene from the Geometridae relative Ascotis selenaria. Based on the number and
location of the conserved cysteines, 24 EoblOBPs can be divided into three subsets. EoblOBP8,
EoblOBP16 and EoblOBP20 are classified as the Minus-C OBP family, which lack the conserved
cysteines C2 and C5 (Fig 3A); while EoblOBP7 and EoblOBP10 belong to the Plus-C OBP fam-
ily, which have extra 2 cysteines located behind the conserved C6. Moreover, the conserved C2
and C3 of these two Plus-C OBPs are separated by 4 amino acid residues rather than typical 3
in classic OBP, and the conserved C5 and C6 of EoblOBP7 are separated by 7 amino acid resi-
dues rather than usual 8 as in the Plus-C OBP (Fig 3A). The 19 EoblOBPs left are classic OBPs
with the typical character of six conserved cysteines. The 24 EoblOBPs along with 153 OBPs
from 7 other species (including B.mori,H. armigera, Agrotis ipsilon, Spodoptera exigua, Spo-
doptera litura, etc.) were chosen to construct a phylogenetic tree based on the amino acid
sequences. The tree could be classified into several distinct branches: the PBP family, the
GOBP family, the Plus-C OBP family and the Minus-C OBP family (Fig 4). On the whole, the
identified EoblOBPs were clustered with different orthologous sequences in other species,
except that EoblOBP3, EoblOBP6, EoblOBP18 and EoblOBP22made up a homologous cluster.
Besides, nine EoblOBPs were coupled with corresponding homologous OBPs from B.mori in
one branch.

By homology analysis, we identified 21 transcripts encoding candidate CSPs in E. obliqua,
among which 20 of the 21 EoblCSP genes had intact ORF with a signal peptide and four con-
served cysteine residues, which represented the typical character of insect CSPs (Fig 3B).
Sequence analysis revealed, relative to EoblOBPs, the 21 EoblCSPs were relatively conserved,
the average identify of which was 64.8%. In phylogenetic analysis of CSPs from Lepidoptera
species, EoblCSPs were spread across branches where they generally formed separate clusters
with others. Only EoblCSP2 and EoblCSP13 formed one subgroup (Fig 5).

Two SNMPs were identified from our transcriptome and acquired the full length by
RACE-PCR. Both EoblSNMP1 and EoblSNMP2 shared more than 60% (65% and 69%) identity
with the corresponding SNMPs in S. exigua. The transcripts encoding chemosensory receptors
were initially identified by the keyword search of functional annotation, and further confirmed
by the local homology search. Four ORs and three GRs were easily identified with 7 transmem-
brane domains. From the annotation, EoblGR2 shared 75.2% identity withHarmGR9 which
had been identified as a sugar receptor [58, 59].

Expression profiles of chemosensory genes
The expression profiles of chemosensory genes (OBPs, CSPs, SNMPs, ORs and GRs) were first
examined by qRT-PCR and further confirmed by RT-PCR, illustrating that the majority of
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EoblOBPs were abundant in antennae (Fig 6). 16 of 24 total EoblOBPs (OBP8-16, OBP18-19,
OBP21 and PBP1-4) were uniquely or primarily expressed in the male and female antennae;
while three EoblOBPs (OBP3-4 and OBP17) were highly expressed in legs; EoblOBP7 were

Fig 3. Alignment of amino acid sequences of candidate OBPs and CSPs from E. obliqua. (A) Amino acid alignment of the candidate OBPs. (B) Amino
acid alignment of the candidate CSPs. Green boxes show the conserved cysteine residues. Accession numbers of the E. obliquaOBPs and CSPs are listed
in Table 1.

doi:10.1371/journal.pone.0149591.g003

Fig 4. Neighbor-joining tree of candidate OBP proteins from Lepidoptera species. The protein names and sequences of the 178 OBPs used in this
analysis are listed in S3 Table. Eobl, E. obliqua; Slit, S. litura; Sexi, S. exigua; Bmor, B.mori; Aips, A. ipsilon; Harm,H. armigera.

doi:10.1371/journal.pone.0149591.g004
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primarily detected in the abdomen. However, the remaining 5 OBPs were distributed in vary-
ing tissues, among which EoblOBP5, EoblOBP6 and EoblOBP22 were primarily enriched in
antennae and legs.

Fig 5. Neighbor-joining tree of candidate CSP proteins from Lepidoptera species. The protein names and sequences of the 101 CSPs that were used
in this analysis are listed in S4 Table. Eobl, E. obliqua; Tcas, T. castaneum; Sexi, S. exigua; Bmor, B.mori; Aips, A. ipsilon; Harm,H. armigera. p10 is one
CSP reported in the cockroach Periplaneta Americana (Kitabayashi et al., 1998).

doi:10.1371/journal.pone.0149591.g005
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The expression pattern of 21 EoblCSPs showed diverse and wide expression (Fig 7). Six
EoblCSPs (CSP7, CSP8, CSP11, CSP15, CSP18 and CSP21) were dominantly expressed in legs,
among which EoblCSP11 and EoblCSP15 were highly enriched in male legs. EoblCSP2,
EoblCSP10 and EoblCSP16 were mostly distributed in abdomen, while EoblCSP6 were uniquely
expressed in antennae. The other EoblCSPs were ubiquitous in most tissues. In addition,
EoblCSP1, EoblCSP3, EoblCSP4, EoblCSP9, EoblCSP12, EoblCSP13, EoblCSP14, EoblCSP17,
EoblCSP19 and EoblCSP20 were abundant in legs at a relatively high level.

We also characterized the expression levels of ORs, GRs and SNMP in different tissues (Fig
8). The results indicated that the EoblSNMP1 and EoblSNMP2 were expressed significantly
higher in antennae than in other tissues of both sexes. Four ORs were mainly expressed in the
moth antennae. In addition, the transcript level of EoblORco exceeded 15000 fold changes

Fig 6. Tissue- and sex- specific expression profiles of E. obliquaOBP genes by qRT-PCR analysis and RT-PCR confirmation. FA: female antennae,
MA: male antennae, FL: female legs, ML: male legs, H: heads, T: thoraxes, A: abdomens, L: legs, W: wings. In qPCR data were first normalized to
endogenous β-actin levels from the same tissue, and the lowest-expression tissue was selected as the calibrator. The standard error is represented by the
error bar, and the different letters above each bar represent significant differences (p<0.05). EoblOBPs expression of the former six tissues were confirmed
by RT-PCR and arranged in the same order as that of qRT-PCR. β-actin was used as an internal reference gene to test the integrity of each cDNA template.

doi:10.1371/journal.pone.0149591.g006
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relative to the lowest expression in thoraxes. Among the three EoblGRs identified, EoblGR1
were enriched in abdomen and EoblGR2 had antennae-enriched expression, while EoblGR3
were detected in both legs and wings.

Abundant analysis of chemosensory genes
RPKMmetric was calculated to evaluate the comparative expression abundance in male and
female legs. Of the 24 EoblOBPs, EoblOBP6 showed the highest expression (7846.6 RPKM in
male transcriptome), followed by EoblOBP8 and EoblOBP10. Among the 21 EoblCSPs,

Fig 7. Tissue- and sex- specific expression profiles of E. obliquaCSPs genesc by qRT-PCR analysis and RT-PCR confirmation. The details were
same as mentioned in Fig 6.

doi:10.1371/journal.pone.0149591.g007
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EoblCSP20 was the most abundant (40399.5 RPKM in female transcriptome), followed by
EoblCSP3, EoblCSP4, EoblCSP17 and EoblCSP6 (Fig 9). Overall, the levels of expression of
EoblOBPs in leg transcriptome were extremely variable, with RPKM values ranging from 1 to
7846; while the EoblCSP expressions were more diverse, from less than 10 to 40399. For che-
mosensory receptors, both ORs and GRs remained low expression in legs (<10 RPKM), of
which EoblGR2 had the highest expression in both sexes (3.81 RPKM in female and 5.07
RPKM in male). In addition, relative to other transmembrane proteins, EoblSNMP2 showed an
unexpectedly high expression (92.38 RPKM in female and 530.35 RPKM in male).

After summarizing the gene comparative expression between samples, a total of 1933 and
1985 up- and down-regulated unigenes, respectively, showed significantly altered expression
(FDR�0.05 and |log2Ratio|�1), as compared to the male transcriptome. The majority of the
unigenes (91.6%), however, were expressed within a two-fold difference (Fig 10). For transport-
ers, 9 EoblOBPs showed sex discrepancy in their levels of legs expression, 8 (OBP3, OBP5,
OBP11, OBP13, OBP14, OBP15, OBP17 and OBP21) being over expressed in female and only 1
(OBP9) over expressed in male; while 8 EoblCSPs presented sex differences in their expres-
sions, 5 (CSP3, CSP8, CSP13, CSP16 and CSP18) being more expressed in female and only 3
(CSP9, CSP11 and CSP 15) up-regulated in male (Fig 9). Unexpectedly, relative to other chemo-
sensory receptors, EoblSNMP2 showed an abundant expression level and was 4.7-fold greater
expressed in male legs. Go classification of the significantly regulated genes was implemented
to identify the functional processes involved in sex differences (Fig 11). Overall, these regulated
genes were mainly concentrated on cellular process, metabolic process, single-organism pro-
cess, binding and catalytic activity. Besides, several subcategories were only involved in one-
sex-regulation, such as reproduction, growth, multi-organism process and etc.

Discussion
Host plant selection by herbivorous insects is particularly important for reproduction, involved
in searching, landing, contact evaluation, and final determination for oviposition [1]. Generally
female adults avoid laying eggs on non-host plants in order to maximize the survival chances
of their progenies. Monophagous herbivorous pests, such as E. obliqua, selectively utilize a
limit of host plants, therefore requiring the specialized sensors to explore certain host for

Fig 8. Tissue- and sex- specific expression profiles of E. obliqua chemoreceptor genes by qRT-PCR analysis and RT-PCR confirmation. The details
were same as mentioned in Fig 6.

doi:10.1371/journal.pone.0149591.g008
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oviposition. Olfaction and taste of insects are crucial in detecting and discriminating the chem-
ical compounds from host. In spite that olfaction plays a primary role in perceiving plant vola-
tile odorants from distance, taste is indispensable for non-volatile chemicals recognition after
landing on the plant [4]. To ascertain host-plant identity, female butterflies and moths usually
contact their forelegs on the leaves of host, which is the first perception of phytochemical com-
pounds when landing on the surface. This initial contact presumably permits insects to taste
phytochemical compounds [53]. Consistent with this action, butterflies including P. xuthus, H.
melpomene and P. polytes possess groups of trichoid sensilla along with pairs of cuticular spines
in female foretarsi, which get involved in the recognition of oviposition stimulants [12, 60, 61];
while 14 gustatory trichoid chemosensilla sensitive to either sugars or amino acids are found in
prothoracic legs of mothH. armigera,M. privata and L. botrana [13, 15, 62]. In lepidopteran
species, the tarsus is further divided into five tarsomeres, the fifth of which is the most distal
part of the tarsus and bears more chemosensory sensilla than the other four tarsomeres. The
arrangement of the gustatory sensilla in proximity to prominent tarsal spines is unique and
could represent an adaptation which enables them to penetrate the wax layer and contact with
metabolites present closer to the leaf surface [13]. Our microscopy of E. obliqua revealed the

Fig 9. Transcript abundant analysis of chemosensory genes. In single-end RNA-Seq, the transcript expression abundance was calculated with FPKM
value. Differentially expressed genes were identified with the threshold of false discovery rates (PDR)<0.05 and |log2Ratio�1|. The significant difference
between female and male legs samples was indicated by symbol “*”.

doi:10.1371/journal.pone.0149591.g009
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distribution of chemosensilla in the ventral side of a female fifth tarsomere (Fig 1), suggesting
that the leg tarsi of E. obliqua were also responsible for taste detection.

Outside the limited butterfly species and model species whose genomes are available, rare
studies are focused on gustatory system of other insect species. In fact, the remarkable selectiv-
ity and sensitivity of the chemosensory systems depend primarily on the performance of che-
mosensory neurons, which in turn rely ultimately on odorant receptors, gustatory receptors
and selective transporters. So there is a special need to explore the candidate chemosensory
genes. From our transcriptome analysis of E. obliqua legs, 24 OBPs (including 4 PBPs), 21
CSPs, 4 PBPs, 2 SNMP, 3 GRs and 4 ORs genes were identified.

Due to the low expression level of GR [17, 18], only three GR-encoding transcripts were
identified from the legs transcriptome. Two of three EoblGRs were highly expressed in abdo-
men, among which EoblGR2 shared 75.3% homology with HarmGR4 that had been identified
as a sugar receptor concentrated in larval foregut, female antennae and proleg tarsi ofH. armi-
gera [58, 59]. Thus, we can reasonably assume that EoblGR2 is also a sugar receptor and could
participate in the sugar detection and consumption. The abundance of EoblGR2 in legs (the
highest RPKM value among chemosensory receptors) is of great physiological significance, as
most adult lepidopteran insects feed on floral nectar and honeydew, which contributes to
female reproductive success [63]. Most ORs in insects are extensively distributed in antennae
[64]. The tissue expression profiles of 4 EoblORs demonstrate the obviously antennal-abun-
dance, however, these ORs are also distributed in other organs. The distribution of ORs in
non-olfactory tissues suggests that they may participate in other physiological processes besides
olfaction. For example, ORco expressed in the testes is involved in mediating activation of sper-
matozoa in Anopheles gambiae [65].

The majority of EoblOBPs (16 in total 24 OBPs) show relatively high expression in antenna,
which corresponds to the commonly accepted concept that OBPs function as carriers of hydro-
phobic ligands to olfactory receptors in antenna [28], however, six EoblOBPs remain highly

Fig 10. Analysis of differentially expressed genes exhibited in (A) Scatter plot and (B) Volcano plot. Genes are divided into three distinct subsets: blue genes
represent the up-regulated ones in the female legs transcriptome vs. the male legs transcriptome, red genes are the down-regulated class compared in the
same way, and black part represents the non-differentially expressed transcripts. Differentially expressed genes are identified according to statistically
significant differences with the threshold of false discovery rates (PDR)<0.05 and |log2Ratio�1|.

doi:10.1371/journal.pone.0149591.g010
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Fig 11. Gene Ontology (GO) enrichment analysis of all the differentially expressed genes. Horizontal axis in the top displays the percentage of
significant genes in each column, while axis in the bottom is the number of significant genes. Vertical axis displays the detailed GO annotation corresponding
to each functional type. Differentially expressed genes are compared in the manner of the female legs transcriptome vs. the male legs transcriptome.

doi:10.1371/journal.pone.0149591.g011
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expressed or relative high in legs. A correlation of some OBPs reported (OBP49a, OBP57e and
OBP57d) to host selection [35, 36, 66] and their unexpected distribution in taste organs, such
as labellum, wing margins, tarsi, labial palps and etc. [67], raises the possibility that OBPs also
participate in taste perception. In fact, non-volatile metabolites in plants are comparable to
odorant in the way that they are both small poorly-water-soluble molecules, such as alkaloids
and parts of terpenoids [68]. Previous studies have reported the binding of bitter compounds
(berberine, denatonium and quinine) to OBP49a [35]. Consequently, it is reasonable to con-
clude that OBPs may act as transporters of hydrophobic compounds to gustatory receptors,
which is similar to their performance in olfaction. RPKMmetric facilitates the comparative
study of expression between samples in mRNA-seq. Our comparative study revealed that 9
EoblOBPs showed sex differences in expression, 8 being up-regulated in female and only 1
being over expressed in male. Previous studies have reported the profound differences in the
expression of OBP between sexes [69–71]. Considering that the adult history of male and
female moths is quite similar in regard to the aim to fuel their body and the need to mate, the
only difference is that females have to identify suitable host for oviposition. This sex difference
may have ecological significance as females have to evaluate oviposition sites, so it stands to
reason that OBPs with female-biased expression may participate in host selection, and that the
female oviposition behavior drives the diversity of OBP expression between sexes.

The phylogenetic analysis reveals most EoblOBPs are clustered with different orthologous
sequences from other species, suggesting that the Lepidoptera OBPs have differentiated into
several different groups after a long time evolution. However, EoblOBP3, EoblOBP6,
EoblOBP18 and EoblOBP22 share a high identity and are clustered in one branch, indicating
recent gene duplication events. Besides, EoblOBP21 shares 37.6% identity and similar expres-
sion profile with HarmOBP10, which was previously reported to bind one insect repellent
1-dodecene [72].

CSPs are soluble proteins and believed to play a role which is similar to that of OBPs in the
perception of odorants [44–47]. The relative expression patterns of 21 EoblCSPs are diverse
and widely distributed. Apart from EoblCSP5 specially expressed in antenna, three CSPs
(EoblCSP2, EoblCSP10 and EoblCSP16) are primarily present in abdomen, where they might
transport semiochemicals in reproductive organs or sex glands, assisting their release into the
environment [44, 73, 74]. Fortunately,HarmCSP6, sharing 45.2% homology and closely clus-
tered with EoblCSP16, was reported to be highly transcribed in pheromone glands and display
high binding affinity for pheromone components [75]. In addition, six EoblCSPs are domi-
nantly expressed in legs, besides, 10 EoblCSPs are abundant in legs at the relatively high level.
Among them, EoblCSP21 shared 59.4% identity with HarmCSP4 which was detected to be
exclusively present in proboscis and could help solubilizing terpenoids present in flower nectar
[76]; EoblCSP4 is exceptionally abundant in legs (9274 RPKM in male legs and 12169 RPKM
in female legs), sharing 41.7% homology and closely clustered with Pamep10 which seemed to
be involved in limb regeneration [77]. To our surprise, these functions mentioned above are
completely unrelated to chemical communication. Actually, the compact structure of CSPs,
their soluble nature and flexible polypeptide folding, permit this protein to bind a variety of
ligands and therefore could undertake several tasks in the biological process [78].

In summary, a large number of chemosensory genes were identified in E. obliqua, and tissue
distribution profiles were investigated. Several leg-specific or enriched genes were screened,
and clustered with functionally validated genes from other moths, suggesting potential involve-
ment in taste sensation or other physiological processes. The female-biased EoblOBPs indi-
cated an ecological adaption related with host-seeking and oviposition behaviors. Our studies
will provide the basic knowledge for further research on the molecular mechanism of gustatory
perception, and enlighten a host-selection-based control strategy of insect pests.
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