
BCD Beam Search: considering suboptimal
partial solutions in Bad Clade Deletion
supertrees

Markus Fleischauer and Sebastian Böcker

Chair for Bioinformatics, Friedrich-Schiller-University, Jena, Germany

ABSTRACT
Supertree methods enable the reconstruction of large phylogenies. The supertree

problem can be formalized in different ways in order to cope with contradictory

information in the input. Some supertree methods are based on encoding the input

trees in a matrix; other methods try to find minimum cuts in some graph. Recently,

we introduced Bad Clade Deletion (BCD) supertrees which combines the graph-

based computation of minimum cuts with optimizing a global objective function on

the matrix representation of the input trees. The BCD supertree method has

guaranteed polynomial running time and is very swift in practice. The quality of

reconstructed supertrees was superior to matrix representation with parsimony

(MRP) and usually on par with SuperFine for simulated data; but particularly for

biological data, quality of BCD supertrees could not keep up with SuperFine

supertrees. Here, we present a beam search extension for the BCD algorithm that

keeps alive a constant number of partial solutions in each top-down iteration phase.

The guaranteed worst-case running time of the new algorithm is still polynomial in

the size of the input. We present an exact and a randomized subroutine to generate

suboptimal partial solutions. Both beam search approaches consistently improve

supertree quality on all evaluated datasets when keeping 25 suboptimal solutions

alive. Supertree quality of the BCD Beam Search algorithm is on par with MRP and

SuperFine even for biological data. This is the best performance of a polynomial-

time supertree algorithm reported so far.

Subjects Bioinformatics, Computational Biology, Evolutionary Studies, Taxonomy,

Computational Science

Keywords MRC, Matrix representation with parsimony, Split fit, Phylogeny, Phylogenetics,

Supermatrix, Supertree, Divide-and-conquer, Minimum cut

INTRODUCTION
Supertree methods assemble phylogenetic trees with non-identical but overlapping taxon

sets into a larger supertree that contains all taxa of each input tree. Constructing a

rooted supertree is easy if no contradictory information is encoded in the input trees (Aho

et al., 1981); the difficulty stems from resolving conflicts in a reasonable and swift way.

Many supertree methods have been proposed over the years; see Bininda-Emonds (2004)

for early methods, and Ross & Rodrigo (2004), Criscuolo et al. (2006), Chen et al. (2006),

Holland et al. (2007), Cotton &Wilkinson (2007), Steel & Rodrigo (2008), Scornavacca et al.

(2008), Ranwez, Criscuolo & Douzery (2010), Bansal et al. (2010), Snir & Rao (2010),

How to cite this article Fleischauer and Böcker (2018), BCD Beam Search: considering suboptimal partial solutions in Bad Clade Deletion

supertrees. PeerJ 6:e4987; DOI 10.7717/peerj.4987

Submitted 11 March 2018
Accepted 26 May 2018
Published 8 June 2018

Corresponding author
Markus Fleischauer,

markus.fleischauer@uni-jena.de

Academic editor
Jin-Kao Hao

Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peerj.4987

Copyright
2018 Fleischauer and Böcker

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.4987
mailto:markus.�fleischauer@�uni-jena.�de
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.4987
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/

McMorris & Wilkinson (2011), Swenson et al. (2012), Brinkmeyer, Griebel & Böcker (2013),

Berry, Bininda-Emonds & Semple (2013),Vachaspati & Warnow (2016), Markin &

Eulenstein (2016) and Fleischauer & Böcker (2017) for recent ones. Conflicts can be caused

by estimation errors during source tree computation, or by evolutionary processes (e.g.,

incomplete lineage sorting or horizontal gene transfer) resulting in conflicting gene trees.

The latter problem is known as Gene Tree Species Tree Reconciliation problem; for this

problem, methods were developed that incorporate evolutionary processes such as the

coalescent process (Liu et al., 2009; Larget et al., 2010; Liu, Yu & Edwards, 2010; Liu & Yu,

2011;Whidden, Zeh & Beiko, 2014;Mirarab et al., 2014; Allman, Degnan & Rhodes, 2016).

Reconciliation approaches model the evolutionary process more thoroughly than

standard supertree methods, but do not scale well with the number of taxa. Supertree

methods are complemented by supermatrix methods, which do not combine the trees but

rather the “raw” sequence data (von Haeseler, 2012).

To build large-scale phylogenies, a promising approach is to use supertree methods

as part of divide-and-conquer meta techniques, as pioneered by the disk-covering

method (Huson, Nettles & Warnow, 1999a;Huson, Vawter &Warnow, 1999b; Roshan et al.,

2004) which was further developed to DACTAL (Nelesen et al., 2012). We break down a

large phylogenetic problem into smaller and easier-to-solve subproblems. Conflicts

between subproblem solutions will mainly result from sampling errors, which qualifies

supertree methods to combine the sub-solutions. With the usage of fast (polynomial-

time) and accurate supertree methods, a divide-and-conquer strategy promises gains in

both accuracy and speed compared to a conventional phylogenetic analysis.

Matrix representation (MR) supertree methods encode inner nodes of all input trees as

partial binary characters in a matrix, which is then analyzed using an optimization or

agreement criterion to yield the supertree. Matrix representation with parsimony (MRP)

(Baum, 1992; Ragan, 1992) is still the most widely used supertree method today.

Constructed supertrees are of comparatively high quality and, until recently, no supertree

method consistently outperformed MRP on datasets with 500+ taxa (Swenson et al., 2010,

2011; Brinkmeyer, Griebel & Böcker, 2011). MRP is NP-hard (Foulds & Graham, 1982),

so heuristic search strategies have to be employed. Swenson et al. (2012) introduced the

meta-method SuperFine which combines the greedy strict consensus merger (GSCM)

(Huson, Vawter &Warnow, 1999b) with MRP. SuperFine outperformed all other methods,

including MRP, on a variety of simulated and biological datasets. SuperFine using

supertree methods other than MRP, did not result in improved supertree quality

(Swenson et al., 2012; Nguyen, Mirarab & Warnow, 2012). MRP is complemented by

matrix representation with flipping (MRF) (Burleigh et al., 2004) and matrix

representation with compatibility (MRC) (Purvis, 1995; Rodrigo, 1996; Ross & Rodrigo,

2004; Creevey & Mcinerney, 2005). MRF seeks the minimum number of “flips” that make

the resulting matrix compatible. Brinkmeyer, Griebel & Böcker (2013) introduced the

FLIPCUT supertree method as a very swift polynomial-time heuristic for the MRF problem.

The accuracy of FLIPCUT was superior compared to other polynomial-time supertree

methods, but still worse and less robust than MRP. MRC searches for the maximal

subset or matrix columns that are pairwise compatible (maximum independent set).

Fleischauer and Böcker (2018), PeerJ, DOI 10.7717/peerj.4987 2/20

http://dx.doi.org/10.7717/peerj.4987
https://peerj.com/

Recently, Fleischauer & Böcker (2017) introduced Bad Clade Deletion (BCD) supertrees,

which adopts the FLIPCUT idea but uses a different objective function: namely, Minimum

Column Deletion (MCD) which minimizes the number of matrix columns that have

to be deleted to resolve all conflicts in the input matrix (minimum vertex cover). MRF,

MRC and MCD are again NP-complete (Böcker et al., 2011); MCD and MRC are

complementary problems, but differ with respect to approximability and parameterized

complexity. BCD performs on par with or even better than the established supertree

methods SuperFine and MRP. It inherits the guaranteed polynomial running time from

FLIPCUT and is even faster in practice. But the greedy search strategy performed by BCD

struggles to find a close-to-optimum solution on highly conflicting data when no or

unreliable meta information (e.g., bootstrap (BS) values or branch lengths (BLs)) is

available (Fleischauer & Böcker, 2017).

Here, we present a beam search approach for BCD, to consider not only the best but the

k best solutions in every phase of the top-down construction of the supertree. We

introduce and evaluate an exact and a randomized subroutine to calculate suboptimal

solutions. Both variants still have guaranteed polynomial running time, a highly desirable

property in the context of divide-and-conquer tree reconstruction. In our evaluation

on multiple simulated and biological datasets, we found that both beam search

approaches consistently outperform “classical” BCD supertrees. The randomized

approach performs only negligibly worse than the exact enumeration, but has only a linear

instead of a quadratic running time dependency on the number of suboptimal solutions.

PRELIMINARIES
In this paper, we deal with three types of graph-theoretical objects: namely, phylogenetic

trees, graphs that we search for cuts and vertex-cuts, and networks that we search for

cuts and flows. In contrast to a cut, a vertex-cut is the partition of a connected graph that

is induced by vertex deletions instead of edge deletions. For readability, vertices of a

tree will be called nodes, whereas directed edges of a network will be referred to as arcs.

Phylogenetic trees
Let n be the number of taxa in our study; for brevity, we assume that our set of taxa equals

{1, : : : , n}. In this paper, we assume all trees to be rooted phylogenetic trees. We call all

nodes with out-degree zero leaves, and all non-leaf nodes except the root internal nodes.

All leaves of the trees are (labeled with) taxa from {1, : : : , n}, no taxon appears twice in a

tree, and there exist no nodes with out-degree one. Given a set of input trees T1, : : : , Tl

with leaf set LðTiÞ � 1; . . . ; nf g, we assume
S

i LðTiÞ ¼ f1; . . . ; ng. We search for a

supertree T of these input trees, that is, a tree with leaf set LðTÞ ¼ f1; . . . ; ng. For
Y � LðTÞ, we define the Y-induced subtree T jY of T as the minimal induced subgraph of

T that connects Y, where we contract the outgoing edge of each internal node with out-

degree one. To contract an edge (v, c), we replace (v, c) and the incoming edge (p, v)

by (p, c), and remove v. Some tree T refines T ′ if T ′ can be reached from T by contracting

internal edges. We say that a supertree Tof T1, : : : , Tl is a parent tree if T jLðTiÞ refines Ti,

for all i = 1, : : : , l.

Fleischauer and Böcker (2018), PeerJ, DOI 10.7717/peerj.4987 3/20

http://dx.doi.org/10.7717/peerj.4987
https://peerj.com/

Matrix representation of phylogenetic trees
We can encode a tree T with taxon set {1, : : : , n} in the input trees in a matrixM(T) with

elements in {0, 1}: Each row of the matrix corresponds to one taxon. For simplicity we

assume that there is some natural ordering of the taxa and, hence, the rows. Each inner

node except the root is called a clade and encoded in one column of the matrix M(T):

Entry “1” indicates that the corresponding taxon is a leaf of the subtree rooted in the clade,

whereas all other taxa are encoded “0”. For trees T, T ′ with identical taxa, T refines T ′ if

and only ifM(T ′) can be obtained fromM(T) by column deletion (Brinkmeyer, Griebel &

Böcker, 2013). According to the classical perfect phylogeny model (Wilson, 1965), a binary

matrix M admits a perfect phylogeny if there is a rooted tree with n leaves corresponding

to the n taxa, such that there is a one-to-one correspondence between matrix columns

and clades of the tree: For column u there exists a node u ′ of the tree such thatM = 1 holds

if and only if taxon t is a leaf of the subtree below u ′ for all t, and vice versa. One important

characterization of a matrix to admit a perfect phylogeny, is that any two columns of

the matrix must be compatible: Let A be the set of all taxa with entry “1” in the first

column, and let B be the set of all taxa with entry “1” in the second column, then A � B

or A � B or A \ B ¼ ; must hold.

We generalize the matrix encoding for a set of trees t¼ fT1; . . . ;Tlg with taxon sets

LðTiÞ � f1; . . . ; ng: We encode the input trees in a matrix M(t) with elements in {0, 1,

?}. Again, each row of the matrix corresponds to one taxon. Each non-trivial clade in each

input tree is encoded in one column of the matrix M(t): The entries for taxa t 2 LðTiÞ
are set to either “1” or “0” as defined above, whereas the state of taxa that are not part

of Ti is unknown, and represented by a question mark (“?”). We assume that the set of

matrix columns equals {1, : : : , m}, then clearly m � l(n-2). In detail, m is the total

number of non-trivial clades in T1, : : : , Tl. The matrix M(t) has size m � n and can be

computed in O(mn) time, using a tree traversal and lists of taxa. Now, a collection of

trees t has a parent tree if and only if M(t) is an incomplete (directed) perfect

phylogeny (Brinkmeyer, Griebel & Böcker, 2013; Pe’er et al., 2004).

The Bad Clade Deletion algorithm
To resolve incompatibilities among the input trees, the MCD model assumes that the

matrixM is perturbed. We search for a perfect phylogeny matrixM� such that the number

of matrix columns we have to delete is minimal. The following construction is due to

(Pe’er et al., 2004): For a subset S � f1; . . . ; ng of taxa and a subset D � f1; . . . ;mg of
clades, G(S, D) is a bipartite graph with the vertex sets S and D; there is an edge between

t ∈ S and c ∈ D if and only if M[t, c] = 1 holds. A clade vertex c ∈ D is semiuniversal (in S,

D) if M[t, c] ∈ {1, ?} holds for all t ∈ S. We remove all semiuniversal clade vertices from

the graph, as all “?”-entries can be resolved to “1” (Pe’er et al., 2004).

The BCD algorithm proceeds as follows: For S f1; . . . ; ng and D f1; . . . ;mg, we
construct the graph G(S, D) as defined above. If G(S, D) is disconnected, we recursively

repeat the above construction for each connected component S ′, D ′ with S0j j > 1. The

subsets S ′ of taxa computed during all recursion steps of the algorithm, form a hierarchy

that represents the BCD supertree. But if G(S, D) is connected at some stage, we

Fleischauer and Böcker (2018), PeerJ, DOI 10.7717/peerj.4987 4/20

http://dx.doi.org/10.7717/peerj.4987
https://peerj.com/

disconnect the set of taxa S by searching for a vertex-cut in G(S, D). Removing clade

vertices from G(S, D) is equivalent to deleting the corresponding matrix columns from

M. Formally, we assume that each clade vertex c has some weight w(c); the weight of a

vertex-cut is
P

c2U wðcÞ where U � D is the set of clade vertices that has to be removed

from D. We search for a vertex-cut of minimal weight.

To efficiently find a minimum vertex-cut of G(S, D), we transform G(S, D) into a

directed networkH(S, D ′) with the same taxon set S. For each clade vertex c ∈ D we create

two vertices c- ∈ D ′ and c+ ∈ D ′ plus an arc (c-, c+) in the network. For each edge (c, t) in

G, we insert two arcs (t, c-) and (c+, t) into the network. Arcs (c-, c+) have capacity w(c),

whereas all other arcs have infinite capacity. We fix one taxon vertex s, and for all other

taxa vertices t we search for a minimum s-t-cut. Among these cuts, the cut with

minimal weight is equivalent to a minimum vertex-cut in G(S, D) (Fleischauer & Böcker,

2017). A minimum vertex-cut can be computed in O(mn2) time (Brinkmeyer, Griebel &

Böcker, 2013).

The BCD algorithm proceeds in n-1 phases; in each phase, the clade S � f1; . . . ; ng is
added to the output, and a bipartition of S is computed. The algorithm proceeds greedily,

by choosing the best bipartition in every phase. We refer to (Fleischauer & Böcker, 2017;

Brinkmeyer, Griebel & Böcker, 2013) for details.

Lemma 1 (Brinkmeyer, Griebel & Böcker, 2013) Given an input matrix M over {0, 1, ?} for

n taxa and m clades, the BCD algorithm computes a supertree in O(mn3) time.

By weighting vertices in G(S, D), we can incorporate information about the “reliability

of clades” in the source trees: (Fleischauer & Böcker, 2017) introduced BS weighting and

BL weighting for this purpose, and found that these weightings significantly improve

supertree quality. We only have to use unit weights (UW) if no BS values or BLs are

available for the source trees.

BAD CLADE DELETION BEAM SEARCH
Recall that the BCD algorithm tries to minimize a global objective function: Namely, the

total weight of column deletions in the input matrix. Besides the theoretical amenity of

this feature, this allows us to compare solutions based on the objective function. But

in fact, we can extend this evaluation to partial solutions: At any point of the algorithm,

we know the quality of a partial solution, that is, the total weight of clade deletions

that were required up to this point. Clearly, this weight only increases during later steps of

the algorithm.

Recall that the BCD algorithm proceeds in n-1 phases. An alternative view of the

algorithm will be helpful in the following: BCD computes the supertree by iteratively

refining a partial phylogenetic tree, which is a phylogenetic tree where several taxa can be

mapped to the same leaf. Initially, we have a partial phylogenetic tree with a single

node and all taxa attached to it. In each phase, the partial tree is refined by finding a

bipartition of the taxa attached to one of the leaves. For the moment, we ignore the case

that taxa are partitioned into q > 2 sets, corresponding to polytomies in the supertree,

see below. Before phase p, the partial tree has p leaves, partitioning the taxa into p sets.

Fleischauer and Böcker (2018), PeerJ, DOI 10.7717/peerj.4987 5/20

http://dx.doi.org/10.7717/peerj.4987
https://peerj.com/

We will now extend the greedy BCD algorithm by keeping more than one partial

solution “alive” in each phase, resulting in a beam search algorithm. The parameter k � 1

determines the number of partial solutions that are considered simultaneously; for k = 1

this is equivalent to the original BCD algorithm. Formally, a partial solution P = (ℳ, T,

cost) of order p consists of

1. a set ℳ = {(S1, D1), : : : ,(Sp, Dp)} such that S1, : : : , Sp is a partition of the taxa S =

{1, : : : , n}, and D1, : : : , Dp is a partition of the clade vertices D({1, : : : , m});

2. a partial phylogenetic tree T with p leaves, labeled by S1, : : : , Sp; and

3. a real number cost, the cost for matrix modifications up to this point.

Before phase p of the beam search, we have a setp of |p| = k partial solutions of order

p. We transform this into a set p′ of |p′| = k partial solutions of order p + 1. In the first

step of the algorithm, we start with a single partial solution with cost zero.

Now, we describe how to transform a partial solution P = (ℳ, T, cost) of order p, into k

new partial solutions of order p + 1. For each of the p graphs G(Si, Di) for i = 1, : : : , p, we

compute the k best bipartitions. Out of the resulting pk cuts, we extract the best k cuts

in any of the graphs. We iterate over these cuts: Assume that the cut happens in the graph

G(S, D) for (S,D) ∈ ℳ. By this cut, both the taxon set S and the clade vertex set D are

bipartitioned into sets S ′, S″ := S\S ′, and D ′, D″ :=D\D ′. We build a new partial

solution P0 ¼ ðM;T 0; cost 0Þ as follows:

1. SetM0 :¼Mn fðS;DÞg [fðS0;D0Þ; ðS00;D00Þg;
2. resolve the node in T labeled S by two nodes S ′, S ″ in T ′;

3. compute the new costs cost ′ := cost + cut where cut are the costs of the cut in G(S, D).

We now evaluate the partial solutions that belong to the same phase p, based on the

costs generated so far: In each phase, we do our computations for each of the k partial

solutions P ∈ p. For each partial solution P, we compute k cuts instead of a single one,

resulting in k2 partial solutions. We then keep only the best k partial solutions in phase

p + 1, each of which is used for computation of cuts in the next phase of the algorithm.

See Algorithm 1 for a pseudo code of the algorithm described up to this point.

There is another pitfall we have to consider: In the original algorithm, the order in

which we processed the leaves of a partial solution was of no importance, as we eventually

had to resolve each leaf. For the beam search, this is no longer the case, as we search for the

k best partial solutions. To this end, the algorithm described above computes, for each

partial solution in phase p, k cuts in each of the p graphs G(Si, Di) for i = 1, : : : , p.

This would result in an additional O(n) factor in the total running time. But this is in fact

not a problem: In each phase, we record all k cuts for each of the p graphs G(Si, Di).

For each new partial solution of order p + 1, only one cut in some graph G(S,D) is chosen,

whereas all other graphs will reappear unchanged in the next phase. Hence, in the next

phase, only two graphs have to be searched for k best cuts: namely, the graphs G(S ′, D ′)

and G(S ′, D ′). For all other graphs, we already know the k best cuts from the previous

phase.

Fleischauer and Böcker (2018), PeerJ, DOI 10.7717/peerj.4987 6/20

http://dx.doi.org/10.7717/peerj.4987
https://peerj.com/

Finally, let us consider the case that a minimum cut results in more than two connected

components. This simply means that the resulting partial solution is of higher order than

p + 1. When the algorithm is in phase p it will ignore all partial solutions of order

above p; in fact, if there exist k ′ partial solution s of order above p then we only have to

Algorithm 1 BCD Beam Search

1: function BCDBEAMSEARCH (G(S, D), k)

2: #Taxa) |S|

3: p) INITPARTIALSOLUTIONS (G(S, D))

4: while ∃(ℳ, T, cost) ∈ p:|ℳ | � # Taxa do

5: p ′) {}

6: for all (ℳ, T, cost) ∈ p do

7: for all (S, D) ∈ ℳ do

8: Cuts) CALCUATECUTS (G(S, D), k) ▹ Cuts may already have been calculated in a previous iteration.

9: for all ((S ′, D ′), cutCost) ∈ Cuts do

10: S″) S\S ′, D″) D\D ′

11: ℳ ′) ℳ \{(S, D)} ∪ {(S ′, D ′), (S″, D″)}

12: T ′) T where S is resolved by two nodes S ′, S″

13: cost ′) cost + cutCost

14: p ′) p ′ ∪ {(ℳ ′, T ′, cost ′)}

15: end for

16: end for

17: end for

18: p) p ′ reduced to the best k partial solutions

19: end while

20: return T1, : : : , Tk from p

21: end function

1: function INITPARTIALSOLUTIONS (G(S, D))

2: ℳ) {(S, D)}

3: T) tree with a single root S

4: return {({(S, D)}, T, 0)}

5: end function

1: function CALCUATECUTS (G(S, D), k)

2: if G(S, D) is disconnected then

3: return {((S ′, D ′), 0)}

4: else

5: return fððS01;D01Þ; c1Þ; ððS02;D02Þ; c2Þ; . . . ; ððS0k ;D0kÞ; ckÞg ▹ If cuts do not exist, calculate them with cut enumeration (Sec. 4.1

Enumeration) or cut sampling (Sec. 4.2).

6: end if

7: end function

Fleischauer and Böcker (2018), PeerJ, DOI 10.7717/peerj.4987 7/20

http://dx.doi.org/10.7717/peerj.4987
https://peerj.com/

compute k-k ′ instead of k cuts. The same holds true if G(S, D) does not require cutting,

because it already consists of two or more connected components.

It is understood that BCD Beam Search can be applied for any type of vertex weighting

in G(S, D), including BS weights, BL weights, and UWs.

SEARCHING FOR SUBOPTIMAL VERTEX-CUTS IN G(S, D)
For the beam search algorithm described above, we have to compute k different vertex-

cuts instead of a single minimum vertex-cut in the given graph G(S, D). This is achieved

by computing suboptimal cuts in the network graph H(S, D ′). In the following, we

present two strategies for doing so; namely, suboptimal cut enumeration (Enum) and

random cut sampling (CS).

Cut enumeration
Vazirani & Yannakakis (1992) introduced an algorithm to enumerate the cuts of a network

in the order of non-decreasing weights, using O(|V|) maximum flow computations

between two successive outputs. (A non-decreasing order allows that multiple solutions of

identical weight can occur in the output.) Let H(S, D ′) be the bipartite network with n =

|S| taxon vertices, m = |D ′| clade vertices and n � m. Clearly, the network contains n + m

vertices and O(nm) arcs. A maximum flow of H(S, D ′) can be calculated in O(n2m)

time by using the bipush variant of the preflow algorithmwith dynamic trees, as described

in Ahuja et al. (1994). Since we are only interested in enumerating cuts that separate

the taxon set S, we only need n instead of n + mmax flow computations, which leads to a

running time of O(n3m) per minimum cut. We have to calculate at most k2 cuts in each

of the O(n) partitions steps of BCD the algorithm, which leads us to the following lemma:

Lemma 2 Given an input matrix M over {0,1,?} for n taxa and m clades and an integer k� 1,

the BCD Beam Search algorithm using cut enumeration computes a supertree in O(k2mn4)

time.

Hence, running time of this algorithm is still polynomial. The additional O(k2n) factor

in the running time, compared to the original BCD algorithm, stems from using the

Vazirani–Yannakakis algorithm. Running time may be reduced to O(k2mn3) if findings by

Hao & Orlin (1994) for bipartite graphs can be adopted to the improved cut enumeration

algorithm of Yeh, Wang & Su (2010).

As an algorithm engineering trick, we note that in practice, we usually have to compute

much fewer cuts than the k2 mentioned above: We start by computing k cuts for the best

partial solution; this gives us an upper bound for the k-th best cost in the active phase.

Now, when we consider the second-best partial solution, we can stop as soon as the

computed cost exceeds the upper bound; and we can update the upper bound in case we

find partial solutions that belong to the top k.

Cut sampling
The CS algorithm is inspired by the randomized algorithm of (Karger & Stein, 1996)

for finding all minimum cuts in an undirected graph U(S, E) with a certain probability.

The algorithm recursively contracts edges of the graph and merges the connected vertices

Fleischauer and Böcker (2018), PeerJ, DOI 10.7717/peerj.4987 8/20

http://dx.doi.org/10.7717/peerj.4987
https://peerj.com/

into sets, until only two vertex sets are left. Edges are randomly drawn with probability

proportional to their edge weight. This contraction algorithm runs in O(|S|2) time and has

� 1= Sj j2
� �

probability of outputting a minimum cut. The algorithm requires O(|S|2log|S|)

iterations to find a minimum cut in one of the trials with high probability (probability

converging to 1). Karger and Stein further presented a recursive contraction algorithm,

where the trials share their work, so that each of the trials can be executed in O(1) time.

The recursive contraction algorithm runs in O(|S|2log|S|) time, and outputs a minimum

cut with probability �(1/log|S|). After O(log2|S|) iterations, the probability to find a

minimum cut converges to 1, which results in an total running time of O(|S|2log3|S|).

Each of the trials returns a (potentially suboptimal) cut, and cuts with lower costs are

sampled with higher probability than cuts with higher costs. To this end, the algorithm

can also be used to generate a large number of suboptimal cuts without additional

overhead: In detail, we can calculate O(|S|2log2|S|) cuts in O(|S|2log3|S|) time.

To apply the contraction idea here, we transform the bipartite graph G(S, D) into a

simple undirected graph U = (S, E) with vertex set S. We insert edges to E so that for each

c ∈ D, all t ∈ S adjacent to c form a clique in U. Let be the set of edges of the clique induced

by c. Given the graph U, we choose the edge e ∈ E to contract in a two-step approach.

First, we randomly pick a clade vertex c ∈ D with probability proportional to its weight.

Second, we draw an edge e ∈ E(c) equally distributed, which is then contracted as

described by Karger & Stein (1996). We contract edges until only two sets of vertices are

left. These two vertex sets are a bipartition S ′, S″ of our taxon set S, and the edges e ∈ E

connecting S ′ and S″ correspond to the clade vertices we need to delete in G(S, D) to

induce this bipartition of S. See Fig. 1 for an exemplary workflow of the algorithm.

The above algorithm allows us to sample low-weight cuts with higher probability than

high-weight cuts. When selecting the edges as described above, there exists for each cut

in U(S, E) a vertex-cut in G(S, D) with the same partition and identical weight. With

our modified edge selection process, we ensure that the probability of a clade vertex to be

chosen in each contraction step is proportional to its weight. But clade vertices with

higher degree are more likely to be deleted than clade vertices with lower degree and same

weight. Therefore, the above algorithm has no guarantee to find a minimum cut with a

certain probability, and we cannot guarantee that a minimum cut will be part of the

output. But we can calculate a minimum cut in O(|D| |S|2) time using the maximum flow

approach, and add it to the list of cuts.

The two-step approach needs O(|D|·|S|) time to choose and contract an edge, and

O(|S|) contractions are needed to produce a cut. Using the recursive contraction

algorithm, we need O(|D||S|2 log3|S|) time to calculate O(|S|2log2|S|) cuts. If we assume

k ∈ O(|S|2log2|S|), which is realistic in practice, this leads us to the following lemma:

Lemma 3 Given an input matrix M over {0,1,?} for n taxa and m clades and an integer k� 1

with k ∈ O(n2 log2 n), the BCD Beam Search algorithm using CS computes a supertree in O

(kmn3log3n) time.

Again, we can do some algorithm engineering to improve running times in practice: We

start by sampling cuts for the best partial solution; this again gives us an upper bound

Fleischauer and Böcker (2018), PeerJ, DOI 10.7717/peerj.4987 9/20

http://dx.doi.org/10.7717/peerj.4987
https://peerj.com/

for the k-th best cost in the active phase. Now, we check if the score of the second-best

partial solution plus the weight of an optimal cut (computed using the max flow

approach) exceeds the upper bound; in this case, no sampling is required for this partial

solution. We note that running time improvements by this trick are presumably

smaller than for cut enumeration, as we have to run the full sampling process if the

optimal cut does not result in a violation of the upper bound.

EXPERIMENTAL SETUP
We evaluate the performance of the BCD Beam Search algorithm against the original BCD

algorithm, MRP (Baum, 1992; Ragan, 1992), and SuperFine (Swenson et al., 2012). We

concentrate on these methods as they have consistently outperformed other available

supertree methods with respect to supertree accuracy, see (Swenson et al., 2010; Kupczok,

Schmidt & von Haeseler, 2010; Swenson et al., 2011, 2012; Brinkmeyer, Griebel & Böcker,

2011, 2013; Fleischauer & Böcker, 2017) for evaluations. To allow for a fair comparison, we

report results for several datasets (both simulated and biological) which have previously

been used to access the performance of supertree methods. Evaluation on simulated

data has the advantage that the true tree (also called model tree) is known and can be

compared against; this is not the case for biological datasets. However, simulated data

often have the disadvantage that the signal is “too strong,” and almost any method returns

high quality results. Therefore, we have to ensure that findings made for simulated

data are also supported for biological data.

Our evaluation closely follows that of the original BCD method; see (Fleischauer &

Böcker, 2017) for details. MRP trees are computed using PAUP� (Swofford, 2002) and we

report the majority consensus tree of all optimal trees. For SuperFine we use the

implementation given by Swenson et al. (2012). BCD Beam Search also returns multiple

trees; in such cases, we return the tree with the best BCD score. If multiple trees with

Figure 1 Workflow of the cut sampling algorithm (Section Cut Enumeration) including the

transformation from G(S, D) to U(S, E) and the two-step edge selection process we use in the

recursive contraction algorithm. Edges E(c) 4 E are those edges with color (clade-vertex) c.

Full-size DOI: 10.7717/peerj.4987/fig-1

Fleischauer and Böcker (2018), PeerJ, DOI 10.7717/peerj.4987 10/20

http://dx.doi.org/10.7717/peerj.4987/fig-1
http://dx.doi.org/10.7717/peerj.4987
https://peerj.com/

identical score exist, we return the majority consensus of these trees. If no BS values

are available for a dataset, BCD and BCD Beam Search are executed with UWs; if BS values

are available, we additionally use BS weights. BCD and BCD Beam Search use the GSCM

preprocessing described in Fleischauer & Böcker (2017).

Computations were executed on a single CPU core at 2.4 GHz and with 128 GB of

memory.

Simulated data
We use the simulated SMIDGenOG datasets with 500 and 1,000 taxa (Swenson et al., 2010;

Fleischauer & Böcker, 2016). Each replicate consists of multiple clade-based source trees

using a densely sampled subset of taxa from one clade of the model tree, plus a single

scaffold source tree which uses a sparsely-sampled subset of taxa of the complete model

tree. The scaffold tree contains 25%, 50%, 75% or 100% of the taxa in the model tree

(scaffold factor). A total of 30 replicate model trees is generated. For each replicate and

each scaffold factor, we generate 15 (for 500 taxa) or 30 (for 1,000 taxa) clade-based source

trees, plus a single scaffold tree with the desired scaffold factor. For further details, we refer

the reader to Swenson et al. (2010) and Fleischauer & Böcker (2016, 2017).

Furthermore, we use the simulated SuperTriplets dataset (Ranwez, Criscuolo & Douzery,

2010). This dataset has only 100 taxa plus one outgroup. Here, the number of source trees

varies between 10 and 50. Each set of source tree is available with 25%, 50% or 75% taxa

deletion. For each configuration there exist 100 replicates.

Evaluation metrics for simulated data
To evaluate the quality of a reconstructed supertree on simulated data, it is common

practice to evaluate splits (bipartitions on the set of taxa) that distinguish supertree and

model tree. Despite our trees being rooted, we stick with this common practice. True

positive (TP) splits are present in both the supertree and the model tree; false negative

(FN) splits are not in the supertree but in the model tree; finally, false positive (FP) splits

are in the supertree but not in the model tree. To evaluate supertree quality by a single

number, we use the well-known F1 score, which is the harmonic mean of precision and

recall:

F1 ¼
2

1=precisionþ 1=recall
¼ 2TP

2TPþ FPþ FN

Biological data
We also evaluated the supertree methods using five biological supertree datasets, namely

seabirds (121 taxa, seven source trees, see Kennedy & Page, 2002), temperate herbaceous

tribes (THPL, 586 taxa, 22 source trees), seeWojciechowski et al. (2000), primates (85 taxa,

46 source trees, see Purvis, 1995), a mammalian phylogenomics case study (OMM, 33

taxa, 12,958 source trees, see Ranwez, Criscuolo & Douzery, 2010) and bats (916 taxa,

16 source trees), see Jones et al. (2002). See Table 1 for detailed information about the

biological datasets. Note, the OMM and the bats dataset can be seen as extreme cases.

The OMM dataset contains an enormous number of input trees compared to the number

Fleischauer and Böcker (2018), PeerJ, DOI 10.7717/peerj.4987 11/20

http://dx.doi.org/10.7717/peerj.4987
https://peerj.com/

of taxa and is highly contradictory (96% conflicting splits). In contrast, the bats dataset

contains no conflicts and thus allows for a perfect phylogeny.

Evaluation metrics for biological data
For the biological datasets, the true tree is unknown but we can evaluate the supertree

against the source trees. We measure the sum of false negatives (SFN) and sum of false

positives (SFP) rate of a supertree T ′ compared to the set source trees t,

SFN rate ¼
P

T2T SðTÞ n SðT 0jLðTÞÞ
���

���
P

T2T SðTÞj j and SFP rate ¼
P

T2T SðT 0jLðTÞÞ n SðTÞ
���

���
P

T2T SðT 0Þj j ;

where T ′|ℒ(T) is the subtree of T ′ induced by the taxon set of tree T and S(T) is the set
of splits induced by tree T. The optimal values of SFN rate and SFP and depend on the

source trees; for conflicting source trees, no supertree can satisfy SFN rate = 0 and SFP

rate = 0 simultaneously. For further information about this criterion see Fleischauer &

Böcker (2017).

RESULTS
We now describe results for different BCD Beam Search variants in comparison to BCD,

MRP and SuperFine on simulated and biological data.

SMIDGenOG
The SMIDGenOG dataset contains BS values; to this end, we can evaluate BCD and BCD

Beam Search using the BS weighting. On this dataset, BCD with UWs is already on par

with MRP and SuperFine; BCD with BS weights outperforms MRP and SuperFine.

We ran BCD Beam Search with k = 25 partial solutions. We find that BCD Beam Search

with BS weights consistently outperforms any other evaluated methods with respect to

F1 (see Figs. 2A and 2B); this is true for both the 500 and 1,000 taxa dataset. On the

500 taxa dataset with 120 instances, BCD Beam Search with cut enumeration outperforms

BCD on 83 instance (19 ties), SuperFine on 111 instances (1 tie) and MRP on 113

instances (1 tie). When using CS it outperforms BCD on 68 instances (32 ties), SuperFine

on 111 instances (1 tie) and MRP on 113 instances. On the 1,000 taxa dataset with

Table 1 Overview of the biological datasets used in our evaluation.

Name #Taxa Input trees

Min Max Mean Median Conflicts (%) BS Root

Primates 85 48 9 67 21.62 19.5 48.82 ✓ ✓

Seabirds 129 7 15 90 32.14 22 23.71 ✗ ✓

THPL 587 20 10 140 45.9 41.5 29.46 ✗ ✗

OMM 33 12,958 6 33 27.8 29 96.25 ✗ ✓

Bats 936 16 5 209 58.5 52.5 0 ✗ ✓

Note:
Here, “#” is the number of input trees and BS indicated whether the input trees contain bootstrap values or not.
Conflicts are the number of clades in the source trees that conflict with least one other clade from the source trees.

Fleischauer and Böcker (2018), PeerJ, DOI 10.7717/peerj.4987 12/20

http://dx.doi.org/10.7717/peerj.4987
https://peerj.com/

BA

C D

Figure 2 F1 score (A and B) and running times (C and D) of SuperFine, MRP, BCD, and BCD Beam Search variants on the simulated

SMIDGenOG dataset. Results for the 500 taxa dataset (A and C) and the 1,000 taxa dataset (B and D). The x-axis shows different scaffold

factors in percent, see Swenson et al. (2010) and Fleischauer & Böcker (2016, 2017) for details. Full-size DOI: 10.7717/peerj.4987/fig-2

Fleischauer and Böcker (2018), PeerJ, DOI 10.7717/peerj.4987 13/20

http://dx.doi.org/10.7717/peerj.4987/fig-2
http://dx.doi.org/10.7717/peerj.4987
https://peerj.com/

120 instances, BCD Beam Search outperforms BCD on 100 instance (seven ties) when

using cut enumeration and on 94 instances (17 ties) when using CS. Both BCD Beam

Search variants outperform MRP on 119 and SuperFine on all 120 instances.

We report running times for the SMIDGenOG dataset in Figs. 2C and 2D. We see that

BCD Beam Search with cut enumeration is about two- (500 taxa) to three-fold

(1,000 taxa) slower than SuperFine. Whereas BCD Beam Search with CS is slightly

slower than SuperFine on the 500 taxa dataset, it is already slightly faster on the

1,000 taxa dataset. As expected, the beam search is slower than the regular BCD

algorithm; namely up to 20-fold slower for cut enumeration and fivefold slower for CS.

But notably, it is on average 10-/15-fold faster than MRP (500/1,000 taxa) for cut

enumeration and 15-/46-fold faster than MRP (500/1,000 taxa) for CS. For the

1,000 taxa dataset, the average running time of BCD is less than 6 s. BCD Beam Search

with cut enumeration needs less than 2 min; BCD Beam Search with CS and SuperFine

need less than 1 min; and MRP needs about 27 min.

The number of suboptimal solutions (k) shows a quadratic impact on the running

time for the beam search with cut enumeration, whereas the running time increases only

linear for beam search with CS (see Fig. 3). Further, we found that even for k = 100

the beam search with CS is still less than twofold slower than SuperFine and still clearly

faster than MRP. With k = 100 the beam search with cut enumeration is always faster

than MRP.

BA

Figure 3 Running times of BCD Beam Search with different numbers of suboptimal solutions (k = 1, k = 25, k = 50, k = 75, and k = 100) on the

simulated SMIDGenOG dataset. Results for the 500 taxa dataset (A) and the 1,000 taxa dataset (B) The x-axis shows different scaffold factors in

percent. Full-size DOI: 10.7717/peerj.4987/fig-3

Fleischauer and Böcker (2018), PeerJ, DOI 10.7717/peerj.4987 14/20

http://dx.doi.org/10.7717/peerj.4987/fig-3
http://dx.doi.org/10.7717/peerj.4987
https://peerj.com/

SuperTriplets Benchmark
This dataset does not contain BS values or BLs; to this end, BCD has to be run with UWs

and, hence, often showed worse accuracy than MRP and SuperFine in previous

evaluations (Fleischauer & Böcker, 2017). We ran BCD Beam Search with k = 25 and k = 50

partial solutions (see Fig. 4). It is still the case that BCD supertrees are generally of lower

quality than MRP and SuperFine supertrees: For 10 input trees, BCD Beam Search

performs on par with MRP for deletion rate 25%; for 50 input trees, it is on par with MRP

for deletion rates 25% and 50%. For the remaining configuration it performs worse

than MRP; this is particularly the case for 50 input trees and 75% taxa deletion. But we

observe that BCD Beam Search reaches a significantly higher F1 than BCD, for all numbers

of input trees and taxa deletion rates. In contrast, we do not observe a significant

increase of F1 when considering k = 50 instead of k = 25 partial solutions.

Bad Clade Deletion Beam Search with cut enumeration and k = 25 partial solutions

produced a supertree with higher F1 than BCD without beam search for 1,212 of 1,500

replicates; of the remaining, 144 are ties. This is very similar for BCD Beam Search

with CS, with 1,191 wins and 146 ties. We stress that many replicates resulted in supertrees

with identical BCD Score, indicating the combinatorial complexity of this dataset.

Biological data
Bad Clade Deletion Beam Search supertrees show significantly better (lower) SFN

rates and SFN rates on all biological datasets than the original BCD, see Table 2: We

BA

Figure 4 Score of SuperFine, MRP, BCD, and BCD Beam Search variants on the simulated SuperTriplets Benchmark. Results for 10 input trees

(A) and 50 input trees (B). The x-axis shows different data deletion rates within each source tree, see Ranwez, Criscuolo & Douzery (2010) and

Fleischauer & Böcker (2017) for details. Full-size DOI: 10.7717/peerj.4987/fig-4

Fleischauer and Böcker (2018), PeerJ, DOI 10.7717/peerj.4987 15/20

http://dx.doi.org/10.7717/peerj.4987/fig-4
http://dx.doi.org/10.7717/peerj.4987
https://peerj.com/

find that best SFN rates/SFP rates are distributed between MRP, SuperFine, and BCD

Beam Search, but no method constantly outperforms the others over all datasets. This is

remarkable, as none of the datasets but the primates data contain BS values or BLs, and BCD

Beam Searchwith UWs had to be applied. Recall, the bats data allow for a perfect phylogeny.

The results for this data show that BCD always finds a perfect phylogeny if one exists

whereas MRP may not. Due to the stochastic nature of the CS procedure, we see that BCD

Beam Search results differ between cut enumeration and CS; the cut enumeration approach

tends to be more robust, as expected.

CONCLUSION
We presented a beam search algorithm that allows the BCD algorithm to consider the k

best partial solutions instead of only the optimal one, when partitioning the taxon set in

a top-down manner. BCD Beam Search has still guaranteed polynomial running time.

We introduced an algorithm to enumerate suboptimal solutions in non-decreasing

order, and a second algorithm to sample good partial solutions. Our evaluations on

simulated and biological data showed that both beam search approaches consistently

improve BCD on all evaluated datasets for k � 25. Both methods for computing

suboptimal cuts perform roughly on par, but the enumeration algorithm tends to be

more robust. However, the sampling algorithm scales linearly with the number of

suboptimal solutions to be considered, whereas the exact enumeration algorithm scales

quadratically in the worst case. We further found that BCD Beam Search, especially

when used together with BS weights, is on par with MRP and SuperFine even on

biological data with regards to supertree quality. This has not been achieved previously

by any worst-case polynomial time supertree method. Finally, BCD can significantly

outperform MRP and SuperFine for very large datasets with several thousand taxa

(Fleischauer & Böcker, 2017).

Table 2 Sum of false negative rates and the sum of false positive rates of supertrees against source

trees on biological supertree datasets.

Dataset SFN rate/SFP rate

Primates Seabirds THPL OMM Bats

MRP 0.169/0.165 0.153/0.159 0.190/0.328 0.386/0.425 0.063/0.015

SuperFine 0.165/0.172 0.127/0.206 n/a n/a n/a

BCD UW 0.178/0.185 0.153/0.206 0.454/0.523 0.425/0.457 0/0

BCD BS 0.174/0.180 n/a n/a n/a 0/0

BCD-K25-Enum UW 0.172/0.178 0.122/0.175 0.239/0.320 0.386/0.417 0/0

BCD-K25-Enum BS 0.165/0.169 n/a n/a n/a 0/0

BCD-K25-CS UW 0.176/0.183 0.122/0.175 0.250/0.334 0.388/0.420 0/0

BCD-K25-CS BS 0.169/0.176 n/a n/a n/a 0/0

Note:
Most datasets do not contain bootstrap values, prohibiting the use of Bootstrap weights. Best rates in each column are marked
in bold.We do not have results for SuperFine onOMMbecause the GSCMdid not finish in reasonable time. Since the GSCM
tree of the OMMdata does not contain a single clade (calculated with BCD), SuperFine results are identical to MRP anyways.
For Bats and THPL, SuperFine did not return a result due to too less overlap of the input trees in the unrooted case.

Fleischauer and Böcker (2018), PeerJ, DOI 10.7717/peerj.4987 16/20

http://dx.doi.org/10.7717/peerj.4987
https://peerj.com/

Availability
The BCD Beam Search algorithm has been implemented in Java as part of the open source

BCD command line tool (since v1.1) which is publicly available on GitHub (https://

github.com/boecker-lab/bcd-supertrees). All data used from the evaluation are publicly

available online (https://doi.org/10.6084/m9.figshare.6189113).

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Deutsche Forschungsgemeinschaft, project BO∼1910/12.
The funders had no role in study design, data collection and analysis, decision to publish,

or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

Deutsche Forschungsgemeinschaft: BO∼1910/12.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Markus Fleischauer conceived and designed the experiments, performed the

experiments, analyzed the data, contributed reagents/materials/analysis tools, prepared

figures and/or tables, authored or reviewed drafts of the paper, approved the final draft.

� Sebastian Böcker conceived and designed the experiments, contributed reagents/

materials/analysis tools, authored or reviewed drafts of the paper, approved the final

draft.

Data Availability
The following information was supplied regarding data availability:

Source code at GitHub: https://github.com/boecker-lab/bcd-supertrees.

Fleischauer, Markus (2018): BCD Beam Search evaluation data. figshare. Fileset.

https://doi.org/10.6084/m9.figshare.6189113.v1.

REFERENCES
Aho AV, Sagiv Y, Szymanski TG, Ullman JD. 1981. Inferring a tree from lowest common ancestors

with an application to the optimization of relational expressions. SIAM Journal on Computing

10(3):405–421 DOI 10.1137/0210030.

Ahuja RK, Orlin JB, Stein C, Tarjan RE. 1994. Improved algorithms for bipartite network flow.

SIAM Journal on Computing 23(5):906–933 DOI 10.1137/s0097539791199334.

Allman E, Degnan J, Rhodes J. 2016. Species tree inference from gene splits by unrooted STAR

methods. IEEE/ACM Transactions on Computational Biology and Bioinformatics 15(1):337–342

DOI 10.1109/tcbb.2016.2604812.

Bansal MS, Burleigh JG, Eulenstein O, Fernández-Baca D. 2010. Robinson-Foulds supertrees.

Algorithms for Molecular Biology 5(1):18 DOI 10.1186/1748-7188-5-18.

Fleischauer and Böcker (2018), PeerJ, DOI 10.7717/peerj.4987 17/20

https://github.com/boecker-lab/bcd-supertrees
https://github.com/boecker-lab/bcd-supertrees
https://doi.org/10.6084/m9.figshare.6189113
https://github.com/boecker-lab/bcd-supertrees
https://doi.org/10.6084/m9.figshare.6189113.v1
http://dx.doi.org/10.1137/0210030
http://dx.doi.org/10.1137/s0097539791199334
http://dx.doi.org/10.1109/tcbb.2016.2604812
http://dx.doi.org/10.1186/1748-7188-5-18
http://dx.doi.org/10.7717/peerj.4987
https://peerj.com/

Baum BR. 1992. Combining trees as a way of combining data sets for phylogenetic inference, and

the desirability of combining gene trees. Taxon 41(1):3–10 DOI 10.2307/1222480.

Berry V, Bininda-Emonds ORP, Semple C. 2013. Amalgamating source trees with different

taxonomic levels. Systematic Biology 62(2):231–249 DOI 10.1093/sysbio/sys090.

Bininda-Emonds ORP. 2004. The evolution of supertrees. Trends in Ecology & Evolution

19(6):315–322 DOI 10.1016/j.tree.2004.03.015.

Böcker S, Bui B, Nicolas F, Truss A. 2011. Intractability of the minimum flip supertree problem

and its variants. Technical report. Available at http://arxiv.org/abs/1112.4536v1.

Brinkmeyer M, Griebel T, Böcker S. 2011. Polynomial supertree methods revisited. Advances in

Bioinformatics 2011:1–21 DOI 10.1155/2011/524182.

Brinkmeyer M, Griebel T, Böcker S. 2013. FlipCut supertrees: towards matrix representation

accuracy in polynomial time. Algorithmica 67(2):142–160 DOI 10.1007/s00453-012-9698-3.

Burleigh JG, Eulenstein O, Fernández-Baca D, Sanderson MJ. 2004. MRF supertrees. In:

Bininda-Emonds OR, ed. Phylogenetic Supertrees. Vol. 4. Dordrecht, The Netherlands: Springer,

65–85.

Chen D, Eulenstein O, Fernández-Baca D, Sanderson M. 2006. Minimum-flip supertrees:

complexity and algorithms. IEEE/ACM Transactions on Computational Biology and

Bioinformatics 3(2):165–173 DOI 10.1109/tcbb.2006.26.

Cotton JA, Wilkinson M. 2007. Majority-rule supertrees. Systematic Biology 56(3):445–452

DOI 10.1080/10635150701416682.

Creevey CJ, Mcinerney JO. 2005. Clann: investigating phylogenetic information through

supertree analyses. Bioinformatics 21(3):390–392 DOI 10.1093/bioinformatics/bti020.

Criscuolo A, Berry V, Douzery EJP, Gascuel O. 2006. SDM: a fast distance-based approach for (super)

tree building in phylogenomics. Systematic Biology 55(5):740–755 DOI 10.1080/10635150600969872.

Fleischauer M, Böcker S. 2016. Collecting reliable clades using the greedy strict consensus merger.

PeerJ 4:e2172 DOI 10.7717/peerj.2172.

Fleischauer M, Böcker S. 2017. Bad Clade Deletion supertrees: a fast and accurate supertree

algorithm. Molecular Biology and Evolution 34(9):2408–2421 DOI 10.1093/molbev/msx191.

Foulds L, Graham RL. 1982. The Steiner problem in phylogeny is NP-complete. Advances in

Applied Mathematics 3(1):43–49 DOI 10.1016/s0196-8858(82)80004-3.

Hao JX, Orlin JB. 1994. A faster algorithm for finding the minimum cut in a directed graph.

Journal of Algorithms 17(3):424–446 DOI 10.1006/jagm.1994.1043.

Holland B, Conner G, Huber K, Moulton V. 2007. Imputing supertrees and supernetworks from

quartets. Systematic Biology 56(1):57–67 DOI 10.1080/10635150601167013.

Huson DH, Nettles SM, Warnow TJ. 1999a. Disk-Covering, a fast-converging method for

phylogenetic tree reconstruction. Journal of Computational Biology 6(3–4):369–386

DOI 10.1089/106652799318337.

Huson DH, Vawter L, Warnow TJ. 1999b. Solving large scale phylogenetic problems using DCM2.

In: Proceedings of Intelligent Systems for Molecular Biology (ISMB 1999). Palo Alto: The

Association for the Advancement of Artificial Intelligence (AAAI), 118–129.

Jones KE, Purvis A, MacLarnon A, Bininda-Emonds OR, Simmons NB. 2002. A phylogenetic

supertree of the bats (mammalia: Chiroptera). Biological Reviews of the Cambridge Philosophical

Society 77(2):223–259 DOI 10.1017/s1464793101005899.

Karger DR, Stein C. 1996. A new approach to the minimum cut problem. Journal of the ACM

43(4):601–640 DOI 10.1145/234533.234534.

Fleischauer and Böcker (2018), PeerJ, DOI 10.7717/peerj.4987 18/20

http://dx.doi.org/10.2307/1222480
http://dx.doi.org/10.1093/sysbio/sys090
http://dx.doi.org/10.1016/j.tree.2004.03.015
http://arxiv.org/abs/1112.4536v1
http://dx.doi.org/10.1155/2011/524182
http://dx.doi.org/10.1007/s00453-012-9698-3
http://dx.doi.org/10.1109/tcbb.2006.26
http://dx.doi.org/10.1080/10635150701416682
http://dx.doi.org/10.1093/bioinformatics/bti020
http://dx.doi.org/10.1080/10635150600969872
http://dx.doi.org/10.7717/peerj.2172
http://dx.doi.org/10.1093/molbev/msx191
http://dx.doi.org/10.1016/s0196-8858(82)80004-3
http://dx.doi.org/10.1006/jagm.1994.1043
http://dx.doi.org/10.1080/10635150601167013
http://dx.doi.org/10.1089/106652799318337
http://dx.doi.org/10.1017/s1464793101005899
http://dx.doi.org/10.1145/234533.234534
http://dx.doi.org/10.7717/peerj.4987
https://peerj.com/

Kennedy M, Page RD. 2002. Seabird supertrees: combining partial estimates of procellariiform

phylogeny. Auk 119(1):88–108 DOI 10.2307/4090015.

Kupczok A, Schmidt HA, von Haeseler A. 2010. Accuracy of phylogeny reconstruction methods

combining overlapping gene data sets. Algorithms for Molecular Biology 5(1):37

DOI 10.1186/1748-7188-5-37.

Larget BR, Kotha SK, Dewey CN, Ane C. 2010. BUCKy: gene tree/species tree reconciliation

with Bayesian concordance analysis. Bioinformatics 26(22):2910–2911

DOI 10.1093/bioinformatics/btq539.

Liu L, Yu L. 2011. Estimating species trees from unrooted gene trees. Systematic Biology

60(5):661–667 DOI 10.1093/sysbio/syr027.

Liu L, Yu L, Edwards SV. 2010. A maximum pseudo-likelihood approach for estimating species

trees under the coalescent model. BMC Evolutionary Biology 10(1):302

DOI 10.1186/1471-2148-10-302.

Liu L, Yu L, Pearl DK, Edwards SV. 2009. Estimating species phylogenies using coalescence times

among sequences. Systematic Biology 58(5):468–477 DOI 10.1093/sysbio/syp031.

Markin A, Eulenstein O. 2016. Manhattan path-difference median trees. In: Proceedings of the 7th

ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics

—BCB 16. New York: Association for Computing Machinery (ACM).

McMorris FR, Wilkinson M. 2011. Conservative supertrees. Systematic Biology 60(2):232–238

DOI 10.1093/sysbio/syq091.

Mirarab S, Reaz R, Bayzid MS, Zimmermann T, Swenson MS, Warnow T. 2014. ASTRAL:

genome-scale coalescent-based species tree estimation. Bioinformatics 30(17):i541–i548

DOI 10.1093/bioinformatics/btu462.

Nelesen S, Liu K, Wang L-S, Linder CR, Warnow T. 2012. DACtal: divide-and-conquer

trees (almost) without alignments. Bioinformatics 28(12):i274–i282

DOI 10.1093/bioinformatics/bts218.

Nguyen N, Mirarab S, Warnow T. 2012. MRL and SuperFine+MRL: new supertree methods.

Algorithms for Molecular Biology 7(1):3 DOI 10.1186/1748-7188-7-3.

Pe’er I, Pupko T, Shamir R, Sharan R. 2004. Incomplete directed perfect phylogeny. SIAM Journal

on Computing 33(3):590–607 DOI 10.1137/s0097539702406510.

Purvis A. 1995. A composite estimate of primate phylogeny. Philosophical Transactions of the Royal

Society B: Biological Sciences 348(1326):405–421 DOI 10.1098/rstb.1995.0078.

Ragan MA. 1992. Phylogenetic inference based on matrix representation of trees. Molecular

Phylogenetics and Evolution 1(1):53–58 DOI 10.1016/1055-7903(92)90035-f.

Ranwez V, Criscuolo A, Douzery EJP. 2010. SuperTriplets: a triplet-based

supertree approach to phylogenomics. Bioinformatics 26(12):i115–i123

DOI 10.1093/bioinformatics/btq196.

Rodrigo AG. 1996. On combining cladograms. Taxon 45(2):267–274 DOI 10.2307/1224667.

Roshan U, Moret B, Warnow T, Williams T. 2004. Rec-I-DCM3: a fast algorithmic technique for

reconstructing large phylogenetic trees. In: Proceedings of IEEE Computational Systems

Bioinformatics Conference (CSB 2004). Piscataway: IEEE Press, 98–109.

Ross H, Rodrigo A. 2004. An assessment of matrix representation with compatibility in

supertree construction. In: Bininda-Emonds ORP, ed. Phylogenetic Supertrees. Vol. 4. Dordrecht:

Springer, 35–63.

Fleischauer and Böcker (2018), PeerJ, DOI 10.7717/peerj.4987 19/20

http://dx.doi.org/10.2307/4090015
http://dx.doi.org/10.1186/1748-7188-5-37
http://dx.doi.org/10.1093/bioinformatics/btq539
http://dx.doi.org/10.1093/sysbio/syr027
http://dx.doi.org/10.1186/1471-2148-10-302
http://dx.doi.org/10.1093/sysbio/syp031
http://dx.doi.org/10.1093/sysbio/syq091
http://dx.doi.org/10.1093/bioinformatics/btu462
http://dx.doi.org/10.1093/bioinformatics/bts218
http://dx.doi.org/10.1186/1748-7188-7-3
http://dx.doi.org/10.1137/s0097539702406510
http://dx.doi.org/10.1098/rstb.1995.0078
http://dx.doi.org/10.1016/1055-7903(92)90035-f
http://dx.doi.org/10.1093/bioinformatics/btq196
http://dx.doi.org/10.2307/1224667
http://dx.doi.org/10.7717/peerj.4987
https://peerj.com/

Scornavacca C, Berry V, Lefort V, Douzery EJP, Ranwez V. 2008. PhySIC_IST: cleaning source

trees to infer more informative supertrees. BMC Bioinformatics 9(1):413

DOI 10.1186/1471-2105-9-413.

Snir S, Rao S. 2010. Quartets MaxCut: a divide and conquer quartets algorithm. IEEE/ACM

Transactions on Computational Biology and Bioinformatics 7(4):704–718

DOI 10.1109/tcbb.2008.133.

Steel M, Rodrigo A. 2008. Maximum likelihood supertrees. Systematic Biology 57(2):243–250

DOI 10.1080/10635150802033014.

Swenson MS, Barbançon F, Warnow T, Linder CR. 2010. A simulation study comparing supertree

and combined analysis methods using smidgen. Algorithms for Molecular Biology 5(1):8

DOI 10.1186/1748-7188-5-8.

Swenson MS, Suri R, Linder CR, Warnow T. 2011. An experimental study of Quartets

MaxCut and other supertree methods. Algorithms for Molecular Biology 6(1):7

DOI 10.1186/1748-7188-6-7.

Swenson MS, Suri R, Linder CR, Warnow T. 2012. SuperFine: fast and accurate supertree

estimation. Systematic Biology 61(2):214–227 DOI 10.1093/sysbio/syr092.

Swofford DL. 2002. PAUP�: Phylogenetic Analysis Using Parsimony (and Other Methods) 4.0 Beta.

Sunderland: Sinauer Associates.

Vachaspati P, Warnow T. 2016. FastRFS: fast and accurate robinson-foulds supertrees using

constrained exact optimization. Bioinformatics 33:btw600 DOI 10.1093/bioinformatics/btw600.

Vazirani V, Yannakakis M. 1992. Suboptimal cuts: their enumeration, weight and number. In:

KuichW, ed. Proceedings of International Colloquium on Automata, Languages and Programming

(ICALP 1992). Vol. 623. Berlin: Springer, 366–377.

von Haeseler A. 2012. Do we still need supertrees? BMC Biology 10(1):13

DOI 10.1186/preaccept-2146874722677283.

Whidden C, Zeh N, Beiko RG. 2014. Supertrees based on the subtree prune-and-regraft distance.

Systematic Biology 63(4):566–581 DOI 10.1093/sysbio/syu023.

Wilson EO. 1965. A consistency test for phylogenies based on contemporaneous species.

Systematic Zoology 14(3):214–220 DOI 10.2307/2411550.

Wojciechowski MF, Sanderson MJ, Steele KP, Liston A. 2000. Molecular phylogeny of the

“temperate herbaceous tribes” of papilionoid legumes: a supertree approach. Advances in

Legume Systematics 9:277–298.

Yeh L-P, Wang B-F, Su H-H. 2010. Efficient algorithms for the problems of enumerating cuts by

non-decreasing weights. Algorithmica 56(3):297–312 DOI 10.1007/s00453-009-9284-5.

Fleischauer and Böcker (2018), PeerJ, DOI 10.7717/peerj.4987 20/20

http://dx.doi.org/10.1186/1471-2105-9-413
http://dx.doi.org/10.1109/tcbb.2008.133
http://dx.doi.org/10.1080/10635150802033014
http://dx.doi.org/10.1186/1748-7188-5-8
http://dx.doi.org/10.1186/1748-7188-6-7
http://dx.doi.org/10.1093/sysbio/syr092
http://dx.doi.org/10.1093/bioinformatics/btw600
http://dx.doi.org/10.1186/preaccept-2146874722677283
http://dx.doi.org/10.1093/sysbio/syu023
http://dx.doi.org/10.2307/2411550
http://dx.doi.org/10.1007/s00453-009-9284-5
http://dx.doi.org/10.7717/peerj.4987
https://peerj.com/

	BCD Beam Search: considering suboptimal partial solutions in Bad Clade Deletion supertrees
	Introduction
	Preliminaries
	Bad Clade Deletion Beam Search
	Searching for Suboptimal Vertex-Cuts in G(S, D)
	Experimental Setup
	Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

