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ABSTRACT

Motivation: In recent years, the biological literature has seen a
significant increase of reported methods for identifying both structure
and parameters of ordinary differential equations (ODEs) from time
series data. A natural way to evaluate the performance of such
methods is to try them on a sufficient number of realistic test cases.
However, weak practices in specifying identification problems and
lack of commonly accepted benchmark problems makes it difficult
to evaluate and compare different methods.
Results: To enable better evaluation and comparisons between
different methods, we propose how to specify identification problems
as optimization problems with a model space of allowed reactions
(e.g. reaction kinetics like Michaelis–Menten or S-systems), ranges
for the parameters, time series data and an error function. We also
define a file format for such problems.

We then present a collection of more than 40 benchmark problems
for ODE model identification of cellular systems. The collection
includes realistic problems of different levels of difficulty w.r.t. size
and quality of data. We consider both problems with simulated
data from known systems, and problems with real data. Finally,
we present results based on our identification algorithm for all
benchmark problems. In comparison with publications on which we
have based some of the benchmark problems, our approach allows
all problems to be solved without the use of supercomputing.
Availability: The benchmark problems are available at
www.odeidentification.org
Contact: peterg@chalmers.se
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
We consider the problem of identifying both the structure and the
parameters of an ordinary differential equation (ODE) system from
time series data. In recent years, there has been a significant increase
in the number of reported methods approaching this problem in the
biological literature (see Table 1 and the references).

For systems of realistic size and with realistic amount and quality
of data this is a hard problem and heuristic algorithms are therefore
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typically employed. Such algorithms cannot guarantee that they
give the best answer to a given problem. An established way to
evaluate the performance of heuristic algorithms is to try them
on a sufficient number of realistic test cases. However, lack of
well defined and commonly accepted benchmark problems makes it
difficult to evaluate and compare different methods:

• Problems are often incompletely and/or ambiguously specified,
and personal communication is required to reconstruct essential
aspects of the problems.

• Very few test problems are usually considered. This serves
the purpose of demonstrating feasibility, but says little about
general performance.

• Even when problems originate from the same system, different
papers typically consider slight modifications of the original
problem, which make direct comparisons difficult. An example
is a test problem from Kikuchi et al., 2003. Several recent
publications (Cho et al., 2006; Daisuke and Horton, 2006;
Gennemark and Wedelin, 2007; Kimura et al., 2005; Liu and
Wang, 2008; Tsai and Wang, 2005; Tucker and Moulton, 2006)
consider the same system, but usually with a more informative
dataset.

To a considerable degree, the lack of benchmark problems is
caused by a more fundamental underlying difficulty in how to
specify such identification problems mathematically, and how to
conveniently represent them in files. This is much more complex
when both structure and parameters are unknown, compared with
the well known case of parameter estimation in a given structure.

In particular, it is not sufficient to give only data from one
or several experiments, or a source model from which such data
can be simulated, see Figure 1A. In addition to the data, a model
space must be defined, to specify the possible forms of the right-
hand side of the ODEs and appropriate parameter ranges. Clearly,
if we allow few possible reactions and narrow parameter ranges
we obtain a simpler identification problem, and if we allow many
possible reactions and wide parameter ranges we obtain a more
difficult problem. Furthermore, known prior information about parts
of the model may be given. Finally, we must define an objective
function that also includes some notion of model complexity. This
is needed since we are searching among different structures, and
a simple maximum likelihood criterion is not sufficient and will
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Table 1. Benchmark problems for ODE system identification

Problem name Original problem reference Source system/Model #var #exp #pts Noise (%)

simpleLin1 Simple linear system 3 3 13 0
simpleLin2 8 13 10
simpleFb1 Simple feedback loop (McKinney et al., 2006) 3 4 7 0
simpleFb2 4 7 5
simpleFb3 1 7 0
simpleFb4 (McKinney et al., 2006) 1 7 ≈5a

osc1 An oscillator (Karnaukhov et al., 2007) 3 1 41 0
osc2 (Karnaukhov et al., 2007) 1 41 3
metabol1 (Gennemark and Wedelin, 2007) A metabolic pathway (Arkin and Ross, 1995) 5 12 7 0
metabol2 (Gennemark and Wedelin, 2007) 12 21 10
metabol3 (Gennemark and Wedelin, 2007) 12 21 20
3genes1 A 3-step gene network (Moles et al., 2003) 8 16 21 0

ss_cascade1 (Tsai and Wang, 2005) A cascaded pathway (Voit, 2000) 3 8 41 0
ss_cascade2 4 41 0
ss_cascade3 8 41 5
ss_branch1 (Voit and Almeida, 2004) A branched pathway (Voit, 2000) 4 3 21 0
ss_branch2 (Marino and Voit, 2006) 6 51 0
ss_branch3 (Tucker and Moulton, 2006) 5 20 0
ss_branch4 (Kutalik et al., 2007) 4 20 0
ss_branch5 (Kutalik et al., 2007) 4 20 2.5
ss_branch6 (Gonzalez et al., 2007) 5 31 0
ss_5genes1 (Kikuchi et al., 2003) A genetic network (Hlavacek and Savageau, 1996) 5 10 11 0
ss_5genes2 (Gennemark and Wedelin, 2007) 10 9 20
ss_5genes3 (Gennemark and Wedelin, 2007) 10 3 0
ss_5genes4 (Kimura et al., 2005) 15 11 0
ss_5genes5 (Daisuke and Horton, 2006) 10 11 0
ss_5genes6 (Cho et al., 2006) 1 16 0
ss_5genes7 (Tucker and Moulton, 2006) 10 20 0
ss_5genes8 (Tsai and Wang, 2005) 8 41 0

(Liu and Wang, 2008)
ss_15genes1 A genetic network (Maki et al., 2001) 15 10 11 0
ss_15genes2 20 11 10
ss_30genes1 A genetic network (Maki et al., 2001) 30 15 11 0
ss_30genes2 (Kimura et al., 2005) 20 11 10
ss_30genes3 (Liu and Wang, 2008) 8 41 0

cytokine1 (McKinney et al., 2006) Immunologic data (Rock et al., 2004) 4 1 7 10a

cytokine2 1 7 10a

ss_ethanolferm1 (Liu and Wang, 2008) Ethanol fermentation (Wang et al., 2001) 4 2 11–15 ≈30a

ss_ethanolferm2 3 11–19 ≈30a

ss_sosrepair1 (Cho et al., 2006) SOS repair system Escherichia coli (Ronen et al., 2002) 6 1 50 10a

ss_sosrepair2 1 50 10a

ss_cadBA1 (Gonzalez et al., 2007) cadBA network in E. coli (Kuper and Jung, 2005) 5 1 25 <20a

ss_cadBA2 1 25 <20a

ss_clock1 (Daisuke and Horton, 2006) Mice cell cycle (Barrett et al., 2005) 7 1 12 ≈10a

ss_clock2 1 12 ≈10a

aEstimate from or assumption about data. See web site for further information.
#var, number of dependent variables; #exp, number of experimental conditions with different initial conditions and/or input functions; #pts, number of data-points per time series.
Noise is added from a Gaussian distribution with SD given as a certain percentage (denoted Noise) of each experimental value. Problem names starting with ‘ss_’ correspond to
S-systems. The last section lists problems with real data from biological systems.

lead to over-fitting. Together, this defines the identification problem
mathematically as an optimization problem, the solution of which
is a model. An illustration of an identification problem is shown in
Figure 1B, and the solution model is shown in Figure 1C.

Based on these considerations, we present a collection of more
than 40 fully specified and publicly available benchmark problems

for ODE system identification. The problems have mainly been
collected and translated from recent publications, but we have also
included new and carefully designed problems.

The collection includes both simple problems suitable for initial
testing, and more complex problems with realistic size and quality
of data. Most problems are based on simulated data from a known
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Fig. 1. Identification of ODE systems. (A) An identification problem can be specified with real or simulated data from one or several experiments, a model
space of allowed reactions occurring on the right-hand side of the ODEs, an initial model representing prior knowledge and an error function. (B) An example
of an identification problem with a model space of three traditional chemical reaction types, an error function where L = likelihood function, λK = structural
complexity term (λ = constant and K = number of model parameters) and an initial model with no prior information. (C) An example of a solution model.

source model, which is important for evaluation purposes. However,
several problems are also based on real data.

The collection consists of problems of two different kinds. The
first kind are problems whose solutions are models based on
traditional chemical rate equations like unimolecular mass action
and Michaelis–Menten’s kinetics. An example of such a system with
three variables is shown in Figure 1C. Typically for systems of this
kind, the rate equations are composed as linear combinations of
known reaction types that can be non-linear in both the parameters
and in the state variables.

The other kind of problem is where the solutions are defined on
a fixed form, like S-systems which is currently the most popular
form for identification. The S-system formalism (Savageau, 1976;
Voit, 2000) is based on approximating kinetic laws with multivariate
power-law functions. A model consists of n non-linear ODEs and
the generic form of equation i reads

X ′
i (t)=αi

n∏
j=1

X
gij

j (t)−βi

n∏
j=1

X
hij

j (t) (1)

where X is a vector (length n) of dependent variables, α and β

are vectors (length n) of non-negative rate constants and g and h
are matrices (n×n) of kinetic orders, that can be negative as well
as positive. The structure of the system is defined by the non-zero
elements of g and h, and for realistic models most of these parameters
are zero.

To our knowledge, this is the first article to address how to
best represent this kind of identification problems as optimization
problems and to define a suitable file format. As far as we know, this
is also the first collection of benchmark problems for ODE system
identification, where both structure and parameters are unknown.

Another paper that recognizes the importance of systematic
evaluation of identification algorithms, is Mendes et al. (2003),

which presents a system for generating realistic artificial gene
networks and simulated data, and a large number of problems
generated by this system. In comparison, our benchmark problems
are typically smaller and address the more specific need of
evaluating algorithms identifying both structure and parameters,
fully specifying problems as optimization problems. For parameter
estimation only, several benchmark problems are publicly available,
e.g. in the data base EASY-FIT (Schittkowski, 2002).

The two kinds of systems we consider, chemical rate equations
and S-systems, have previously been used for identification of
ODE models as indicated by references in Table 1. In addition to
these kinds of systems, other fixed forms have been considered in
the literature. One example is Generalized Mass Action (GMA)
models (Tucker et al., 2007; Voit, 2000), and another is linear
dynamical models with non-linear transfer functions of sigmoid
type (D’haeseleer, 2000; Nelander et al., 2008; Wahde and Hertz,
2000). However, at this stage, we have chosen to focus on the more
frequently used S-systems as one representative fixed form system.

We finally note that identification of ODEs where more basic
operands and operators are used as structural components have been
considered (Bongard and Lipson, 2007).

2 SPECIFYING IDENTIFICATION PROBLEMS AS
OPTIMIZATION PROBLEMS

We now outline how we define identification problems
mathematically. Our first and most important concern has
been that an identification problem must be defined unambiguously
as an optimization problem. This ensures that a problem has a well
defined solution independently of any method for solving it, and
that the task of modelling identification problems is separated from
the algorithmic task of solving given problems. It is to be noted
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that if we fail to explicitly specify the entire problem, missing parts
have to be supplied by the user or be implicitly defined by the
algorithm, resulting in confusion and lack of reproducibility.

Our second concern has been to find a reasonably simple standard
form that can still represent a wide range of identification problems.
We have then chosen the following way to structure and specify our
problems.

• Data. Time series data for one or several experiments. In the
case of several experiments, they may differ with respect to
initial values of the variables and/or input functions. For each
data-point, the standard deviation is also given in the problem
specification.

• Model space. The model space determines the allowed form of
the right-hand side of the ODEs.
For models based on traditional chemical rate equations, each
ODE in the model is assumed to be a sum of a number of
reactions. The possible reactions must belong to a subset of
predefined reaction types, where each allowed reaction type
is specified by its name, a subset of possible input variables
and ranges of allowed parameter values. The allowed reaction
types can be specified individually for each state variable.
As an example, in Figure 1B, the allowed reactions types
are a unimolecular mass action reaction, a Michaelis–Menten
reaction, and a simplified Hill equation. For reactions having
multiple input variables, e.g. a bimolecular mass action reaction
with equation k1XiXj , it is implicitly assumed that i and j are
not equal (to consider equality as in problem osc1 and osc2,
we define an additional reaction type k1X2

i ).
The model space of an S-system is simply defined by lower and
upper bounds for each element in the parameter vectors (α and
β) and matrices (g and h). Sometimes, additional constraints
are required. For example, three of the benchmark problems
include an additional constraint of type {gi,j ∈[−3,3],gi,j �=0}
(there is an interaction between variable i and j but the direction
is unknown).
Finally, we also define lower and upper bounds for the initial
data-point in each time series. For noisy data, these bounds were
set to ±2 SDs. Hence, for noisy data there is one additional
parameter for each time series, but these parameters are
typically bound tighter compared with the model parameters.

• Initial model. It is convenient to allow definition of an initial
model, corresponding to prior knowledge of the system.
The initial model is described as known reactions (terms) on
the right-hand side of the ODEs. Also reactions from outside
the model space can be included in the initial model.
In principle, one can also think of prior information in the
form of starting points for iterative algorithms and thus not
technically a part of the defined problem. No such information
is assumed known in our current problems.

• Error function. We have chosen to minimize

−L(X̂|k)+λK . (2)

The first term is the negative log-likelihood of the experimental
data, and the second term is a term that penalizes structural
complexity of the model. This kind of error function is
common, and is related to several different proposed methods
for handling model complexity (Crampin et al., 2004).

In detail, L is the log-likelihood, X̂ denotes the experimental
data, k is a vector of parameters, λ is a constant and K is the
number of parameters. By assuming independent and normally
distributed measurement errors and disregarding constant terms
we can express the log-likelihood for one time series as

L(X̂j|k)=−1

2

∑
i

(
Xj(ti)−X̂j(ti)

σj(ti)

)2

(3)

where i indexes the measurement points, and where Xj , X̂j
and σj denotes simulated data, experimental data and SD

for variable j, respectively. The total log-likelihood L(X̂|k) is
defined by summing over all variables and all experiments.
For models based on chemical rate equations, K is simply the
total number of parameters on the right-hand side of the ODEs.
For S-systems, it is natural to define K as the total number of
non-zero elements in g and h plus the number of parameters in
α and β.

To establish the relationship with standard optimization
terminology, the model space and and the initial model define the
feasible set, and the data together with the error function define the
objective function.

2.1 File format for identification problems
In order to work with identification problems and to provide them
as input to identification algorithms, we also need to represent such
problems in files, and it is highly desirable that an entire problem
can be represented in a single file. Since an identification problem is
an optimization problem and not a model, common model formats
such as SBML are not applicable, and no existing format known
to us can be used for this purpose. However, the output of an
identification algorithm is a model and can be represented in SBML.
Also, if a partially known initial model is available in SBML, an
identification algorithm can input that part in SBML and the rest of
the identification problem in our format.

The file format we have designed for the identification problems
can be seen as a special case of a more general format that is
currently developed as a separate project. The format attempts to
be self documenting and easy to read both by the human and the
computer. Compared with a typical XML-equivalent, more structure
is explicit and it is easier to read. It bears some resemblance to how
data structures are built in a computer programme, but without the
explicit use of pointers. An extract of the format is given below:

{
// VARIABLES
variable_1 has name = x1 is inputVariable
variable_2 has name = x2 is inputVariable
variable_3 has name = x3 is dependent
...
// MODEL SPACE OF VARIABLE 3
possibleReaction_3 of variable_3
has type = biMolecularMassAction
has spaceOfVariable X1 = memberOfSet_2
has spaceOfVariable X2 = memberOfSet_1
has rangeOfParameter k1 = range_1
...
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// EXPERIMENT 1
sample_1 of experiment_1
has time = 0.00
has variable_ = 3.00 2.00 ...
has sdev of variable_ = 0.00 0.00 ...
...}

This particular extract describes first some variables and then a
possible reaction in the model space. Finally, a sample from the first
experiment is given.

The format can also be used to specify a parameter estimation
problem only. Method specific parameters (like random seed) can
be defined in the same file or separately. Finally, we can easily
extend the format to describe new classes of problems, for example
with compartment modelling and system modifications like gene
deletions.

We anticipate that the exact mathematical form of the
identification problems, as well as the file format, will be extended
over time. Up-to-date information and detailed documentation is
therefore available on the web site, as well as a simple parser for
the file format.

3 THE COLLECTION OF BENCHMARK
PROBLEMS

An overview of the collection of benchmark problems is presented
in Table 1. The problems have different sources, and in most cases
several different problems are given for each system.

The number of variables in combination with the amount of data
and noise level, give a rough indication of the difficulty of each
problem. The first problem for each system generally has a lower
level of difficulty than the subsequent problems, and is hence a good
starting point when evaluating new methods.

A part of the collection is based on identification problems
considered in the literature, which is dominated by problems
based on S-systems, probably because these are relatively easy to
represent. By including translations of these problems that were
previously not easily accessible, the collection has an immediate
value for those actively developing algorithms in this area. However,
we balance the S-system dominance by also defining new problems
based on traditional chemical reactions that are more frequently used
in the biological modelling community. We note that research in
this area is in an early stage, and in our experience identification
algorithms for S-systems can relatively easily be modified for other
kinds of models. Our proposed way of specifying identification
problems can then facilitate and contribute to a more widespread
use of problems based on other kinds of models.

For problems that have been collected and translated from another
publication, we have taken care to match the original problem
as closely as available information and the standardization to our
formalism allow, see the Supplementary Material for details. We
have replaced some non-standard objective functions with our
simple function, and relaxed a few unusual constraints. Noisy data
have been simulated from random distributions, and in one case we
have also reduced an excessive and unrealistic number of data-points
in the original problem. However, the solutions in the next section
confirm that the changes have not negatively affected the quality
of the solutions when compared directly with the source models.
We note that our problems never have more data or a smaller model

space, so they are in this sense at least as difficult as the original
problems.

3.1 Best known solutions
In Table 2 we report the best known solutions for all benchmark
problems, and we will now describe the detailed information in
the table. The solutions have been found using our own identification
algorithm (Gennemark and Wedelin, 2007). All solution models as
well as source models are available in SBML on our web site.

For problems with noisy or otherwise insufficient data, an optimal
solution has slightly different parameter values and sometimes also
different structure than the source model. To clarify this for our
solutions, Table 2 gives the error of the source model from which
data was simulated. We can see that for all problems based on
simulated data the found solutions have approximately equal or
lower error than that of the source model. We also give the number of
FP and FN interactions, to indicate if the found structure is the same
as the source model. If the structure is the same as for the source
model, we also give the largest deviation (LD) in percent for any
parameter compared with the source model. For the problems based
on real data, no source model is available, and no such comparisons
can be made.

For our algorithm, as well as for most algorithms in the literature,
the results may differ between runs depending on a random seed.
With our approach, the main difference between runs is that
sometimes the best structure is not found due to the heuristic nature
of the search algorithm. However, for two solutions with the same
structure, the difference in the parameters is negligible for all tested
problems. To indicate the stability of the algorithm, we therefore
report the proportion of runs where the best structure was found.
Note, however, the fact that solutions are stable does not generally
imply that they are optimal.

Computation times are reported as the average computation time
for runs with different random seeds, scaled to a 1 GHz processor
(the actual runs were performed on a Pentium IV, 2.13 GHz). The
times can be improved by adjusting the method parameters for
individual problems, but we report the computation time using our
standard settings, see the Supplementary Material.

For the benchmark problems that have been adapted from
problems in the literature, the final columns report available results
for these original problems.

In addition to the numerical details, Table 2 allows us to draw the
following qualitative conclusions about the benchmark problems.

• Every problem with data from a known source model is well
formulated in the sense that the solution model is similar to the
source model, in terms of the FP/FN/LD values.

• Every solution model is at least as similar to the source model
as any previously reported solution. This confirms that the
translation to our standard format works well, and also that our
solutions are indeed the best known solutions to the benchmark
problems.

• Every problem can be solved within hours on an ordinary
computer with our approach, so there is no need for
supercomputing. This was not previously established since
some previous results for the original problems required
running times of several months if run on a single processor.
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Table 2. Best known solutions to the benchmark problems

Problem Error of source
model −L+λK

Best known solutiona Solution of original problem
(if available)

Error
−L+λK

Residual
−L

Structure
FP/FN/LD

Stability
between runs

Average
time (s)
(1 GHz)

Structure
FP/FN/LD

Time (s)
(1 GHz)

simpleLin1 8 8 0 0/0/0 5/5 17
simpleLin2 187.4 140.2 132.2 0/0/– 5/5 86
simpleFb1 7 7 0 0/0/0 5/5 14
simpleFb2 45.46 42.14 34.14 1/1/– 3/5 36
simpleFb3 7 7 0 0/0/0 3/5 41
simpleFb4 18.39 7.071 0.0713 0/0/– 2/5 47 0/0/– –
osc1 6 6.149 0.1491 0/0/0 5/5 18
osc2 122.1 87.34 57.34 0/0/0 4/5 24 – –
metabol1 30 30 0 0/0/0 3/3 5400
metabol2 1214 751.6 601.6 0/0/– 2/3 11 000
metabol3 1442 861.1 696.1 2/1/– 1/5b 13 000
3genes1 39 39 0 0/0/0 3/3 35 000

ss_cascade1 14 14 0 0/0/0 5/5 180 0/0/300 8900
ss_cascade2 14 14 0 0/0/0 4/5 130
ss_cascade3 498.9 476.7 462.7 1/1/– 1/5b 860
ss_branch1 17 17 0 0/0/0 5/5 68 0/0/15 2200
ss_branch2 17 17 0 0/0/0 5/5 110 0/0/5 35 000
ss_branch3 17 17 0 0/0/0 5/5 150 0/0/2 15 000
ss_branch4 17 17 0 0/0/0 5/5 71 0/0/0 25 000
ss_branch5 211.3 142.1 122.1 4/1/– 3/5 300 – –
ss_branch6 18 18 0 0/0/0 5/5 90 0/0/5 1100
ss_5genes1 23 23 0 0/0/0 5/5 600 1/0/– 2.4E+8
ss_5genes2 300.3 211.0 183.0 5/0/– 2/5b 2100
ss_5genes3 23 23 0 0/0/0 5/5 380
ss_5genes4 23 23 0 0/0/0 5/5 640 37/0/– 40 000
ss_5genes5 23 23.00 1.14E−3 0/0/0.02 5/5 400 4/2/– 7200
ss_5genes6 23 23 0 0/0/0 5/5 130 0/0/50 56 000
ss_5genes7 23 23 0 0/0/0 5/5 190 0/0/0.2 15 000
ss_5genes8 28 28 0 0/0/0 5/5 440 0/0/5 26 000

0/0/2.5 7000
ss_15genes1 62 62 0 0/0/0 5/5 1500
ss_15genes2 2010 1783 1478 3/4/– 2/5b 18 000
ss_30genes1 128 128 0 0/0/0 5/5 7900
ss_30genes2 4098 3628 2993 6/7/– 1/3b 94 000 242/10/– 6.2E+6
ss_30genes3 128 128 0 0/0/0 3/3 18 000 0/0/25 8.6E+6

cytokine1 25.92 17.92 1/5c 11 – –
cytokine2 42.17 32.17 1/5c 23
ss_ethanolferm1 127.4 110.4 1/5c 190 err>127.4d –
ss_ethanolferm2 1308 1292 1/5c 360
ss_sosrepair1 2642 2611 1/5c 510 err>2642d 2.7E+5
ss_sosrepair2 2823 2789 1/5c 470
ss_cadBA1 750.6 726.6 1/5c 250 err>750.6d >540
ss_cadBA2 709.1 687.1 1/5c 260
ss_clock1 928.4 803.4 1/5c 360 – 15 000
ss_clock2 814.5 649.5 1/5c 440

aBest known solutions, based on comparsion to the solutions of the original problems. For ss_30genes2, the similarity with the source model strongly indicates that our solution is
the best, but since we do not have access to the solution of the original problem this is not confirmed.
b The majority of runs have an error below the error of the source model, but differ slightly in structure.
cReal datasets with relatively few experiments and/or data-points making many similar models reasonable, increasing the variability in found solutions.
dSince no source model is available, we have evaluated the original solution with our error function, and it has an error higher than our solution.
The error of the source model refers to the error of the model from which data was simulated. The best result is taken from several runs with various random seeds. The error,
the negative log-likelihood and the number of false positives and negative (FP/FN) reactions are reported. Stability measures the frequency of runs for which the best structure is
obtained. Computation time in seconds is given as the average of several runs.
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4 CONCLUSIONS
We have proposed a way to unambiguously specify ODE
identification problems as mathematical optimization problems, and
have also defined a file format making it easy to document and
exchange such problems.

The benchmark problems include translations of problems that
have been frequently used in the development of algorithms, as well
as new problems based on chemical rate equations. The problems,
their best solutions and the source models from which problem data
was simulated are all available on our web site. This makes it easy
for everyone to evaluate and compare algorithms in a reproducible
way. To maintain a useful collection of problems of various types,
we intend to extend the collection, and are interested in contributions
and feedback from others, see the web site.

Finally, our own solutions show that all the benchmark problems
can be solved in reasonable time, in contrast to results for some of
the original problems where supercomputing was required.
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