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Met-Flow, a strategy for single-cell metabolic
analysis highlights dynamic changes in immune
subpopulations
Patricia J. Ahl 1,2, Richard A. Hopkins1,3, Wen Wei Xiang1,3, Bijin Au1, Nivashini Kaliaperumal1,

Anna-Marie Fairhurst1 & John E. Connolly1,2,4✉

A complex interaction of anabolic and catabolic metabolism underpins the ability of leuko-

cytes to mount an immune response. Their capacity to respond to changing environments by

metabolic reprogramming is crucial to effector function. However, current methods lack the

ability to interrogate this network of metabolic pathways at single-cell level within a het-

erogeneous population. We present Met-Flow, a flow cytometry-based method capturing the

metabolic state of immune cells by targeting key proteins and rate-limiting enzymes across

multiple pathways. We demonstrate the ability to simultaneously measure divergent meta-

bolic profiles and dynamic remodeling in human peripheral blood mononuclear cells. Using

Met-Flow, we discovered that glucose restriction and metabolic remodeling drive the

expansion of an inflammatory central memory T cell subset. This method captures the

complex metabolic state of any cell as it relates to phenotype and function, leading to a

greater understanding of the role of metabolic heterogeneity in immune responses.
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The immune status of a given cell type is defined by its
underlying metabolic state. Leukocytes utilize metabolic
pathways to coordinate immune-specific gene expression at

the epigenetic, transcriptional, post-transcriptional, and post-
translational levels. In T cells, glycolysis has an important role in
effector function and cytokine production1, and high activity
through AKT signaling during activation supports both increased
glycolysis and oxidative phosphorylation (OXPHOS) of naive
T cells2. In the context of activation in antigen presenting cells,
glycolysis, glycogen metabolism, and fatty-acid synthesis are
required for immuno-stimulatory function3–6. Conversely, for-
mation of regulatory T cells requires fatty-acid synthesis7, whereas
tolerogenic dendritic cells require fatty-acid oxidation for active
suppression8,9. This metabolic switch to lipid metabolism is driven
by increased signaling of the mechanistic target of rapamycin
(mTOR) pathway, measured by phosphorylated proteins (Phos-
Flow)10,11. These findings illustrate the critical role of multiple
metabolic pathways in shaping cellular phenotype and function.

Multiplexing the metabolic state of cells and immune function
is limited by available technologies. The field of immunology is
dominated by high-dimensional single-cell analysis using flow
cytometry, mass cytometry, and single-cell RNA sequencing
(scRNAseq), whereas bulk cellular analysis technology is often
used to capture metabolic respiration. However, these technolo-
gies are largely incompatible with analysis of heterogeneous cel-
lular populations at a protein level. There are additional
technologies for single-cell metabolic measurements, including
single-modality analysis of metabolites such as NADPH using
autofluorescence to measure redox state12, and lactate measure-
ments using microfluidics13.

Here we present Met-Flow, a high-parameter flow cytometry
method utilizing antibodies against metabolic proteins that are
critical and rate-limiting in their representative pathways. The
cell’s capacity to flux through anabolic pathways was examined by
the measurement of fatty-acid synthesis and an arginine meta-
bolism protein. The catabolic pathways encompassed quantifi-
cation of proteins involved in glycolysis, the pentose phosphate
pathway (PPP), tricarboxylic acid (TCA) cycle, OXPHOS, and
fatty-acid oxidation. The capacity for phosphate and glucose
uptake was measured by expression levels of metabolic trans-
porters and an antioxidant enzyme that affects oxidative stress.

The protein composition of these rate-limiting enzymes defines
the cellular capacity of metabolic pathways. Furthermore, dynamic
cellular differentiation engages rapid post-transcriptional and
post-translational mechanisms, thus affecting concentrations of
metabolic pathway-associated proteins. Met-Flow allows simulta-
neous capturing of the state of key metabolic pathways on a sin-
gle-cell, protein level, thus overcoming inherent drawbacks of
metabolic mRNA analysis, including the temporal discord
between mRNA abundance with protein concentration14. More-
over, dynamic cellular differentiation engages rapid post-
transcriptional and post-translational mechanisms, which are
not regulated by gene expression15. Combined, these limitations
highlight the importance of protein-level analysis.

We demonstrate the ability of Met-Flow to measure divergent
metabolic states across healthy human peripheral blood mono-
nuclear cells (PBMCs) and draw associations between the meta-
bolic profile of a cell with its subset phenotype, activation status,
and immunological function. With the ability to capture meta-
bolic heterogeneity on a single-cell level, Met-Flow provides
important insights into the understanding of the metabolic state
across any cell type.

Results
Protein-level divergent metabolic profiles in immune cells.
Innate and adaptive immune responses are orchestrated by

leukocytes, which require metabolic remodeling and mitochon-
drial signaling to exert their function16–19. In our studies, we
aimed to develop the capability to measure metabolic profiles
across immune subsets in a heterogeneous population on a single-
cell, protein level.

A 27-parameter flow cytometry panel was built, including 10
critical metabolic proteins, encompassing rate-limiting enzymes,
transporters (Table 1, Supplementary Fig. 1a), and phenotypic
markers to analyze 11 major leukocyte subsets. The metabolic
proteins were optimized and validated based on antibody
performance and fluorescence-minus-one controls (Supplemen-
tary Fig. 1b–c). Using the FitSNE algorithm, cellular subsets from
12 donor samples were clustered into immune phenotype with
15,000 cells per leukocyte population based on similarities in
expression profiles of individual cells20. This successfully
clustered populations by differential expression of both lineage
and metabolic proteins (Fig. 1a, Supplementary Fig. 1d). To
determine whether immune subsets could be identified by their
metabolic phenotype alone, clustering analysis was performed
using expression profiles of only 10 metabolic proteins. The
divergent expression levels of metabolic proteins alone clustered
populations into CD3+ T cells, CD56+ natural killer (NK),
CD19+ B cells, HLA-DR+/CD11c+/CD14− myeloid dendritic
cells (mDCs) and CD14+ monocytes (Fig. 1b), which were
retrospectively identified by lineage marker expression (Supple-
mentary Fig. 1e), and confirmed by overlay of conventionally
gated immune populations (Supplementary Fig. 1f). Both
monocytes and mDCs segregated into distinct, metabolically
defined islands. Monocytes separated into two subpopulations
mainly owing to differences in TCA cycle enzyme IDH2
expression (Fig. 1b). Unlike the projection of phenotypic markers
that separated out functional CD4+ and CD8+ subsets (Fig. 1a),
metabolic protein expression profiles alone showed similar
metabolic profiles across CD3+ T cells (Fig. 1b).

In comparison with scRNAseq analysis of isolated PBMC
populations, we showed the ability of Met-Flow to define immune
cells by their metabolic state with 10 metabolic proteins, which was
comparable to the resolution of ~500 metabolic genes by
scRNAseq21,22 (Supplementary Fig. 1g). Unlike protein-level
analysis, the same 10 metabolic genes alone were not able to
resolve immune populations at the RNA level (Supplementary
Fig. 1h). Our data demonstrate the strong correlation of metabolic
protein profiles with distinct leukocyte subsets. There is a well-
characterized contribution of both post-transcriptional and post-
translational modifications that regulate metabolic genes1,2,23.
Several studies have demonstrated the inability to directly correlate
mRNA abundance to protein levels. Across 375 cell lines24 and 95
human colon and rectal cancer samples25, it was demonstrated that
mRNA does not always predict protein-level expression. Despite
similar mRNA levels, stimulation can cause increased protein
expression, highlighting post-transcriptional and translational
regulation of metabolic genes26. Furthermore, the ability to identify
subsets using transcriptome data require a greater amount of
dimensionality compared with using the protein-based Met-Flow
method, thus reducing the burden for advanced analytical
techniques. In addition, technological limitations to scRNAseq
owing to imputations and noise are associated with sequencing
analysis. Pre-processing of sequencing data are required21, filtering
to remove low count genes and log transformation to control for
technical noise. However, this is a minor contributor to the
discrepancy between mRNA and protein level.

Using comparative heatmap analysis of geometric mean
fluorescence intensity (gMFI) of each protein, we showed
metabolic heterogeneity across leukocytes, where each population
was gated based on lineage markers (Fig. 1c, Supplementary
Fig. 2a). In plasmacytoid DCs (pDCs), our data showed higher
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levels of IDH2, ATP5A, G6PD, and GLUT1, reflecting heightened
capacity for OXPHOS, TCA cycle, PPP, and glucose uptake
compared with mDCs (Fig. 1c, Supplementary Fig. 2b). In both
CD16hi/lo monocyte subsets, the expression of all metabolic
proteins is high compared with other populations. Inflammatory
CD16+ monocytes expressed higher G6PD, ACAC, and HK1
than CD16− monocytes (Fig. 1c, Supplementary Fig. 2c). Analysis
of B cells showed significantly higher GLUT1 and IDH2 in
comparison with T and NK subsets (Fig. 1c, Supplementary
Fig. 2d–e). Increased GLUT1 and IDH2 indicate a high capacity
for glucose uptake and OXPHOS, which has been shown to play a
critical role for B-cell activation by mTOR signaling, mitochon-
drial membrane potential remodeling, and ROS production27,28.
Across CD16− NK subsets, divergent metabolic profiles of
CD56bright cells are demonstrated compared with the CD56dim

population (Fig. 1c, Supplementary Fig. 2f). The former express
higher SLC20A1, ASS1, ACAC, and HK1, whereas CD56dim cells
show greater expression of CPT1A and GLUT1. In comparison
with CD4+ T cells, NKT cells expressed higher IDH2, G6PD,
ACAC, CPT1A, GLUT1 (Fig. 1c, Supplementary Fig. 2g). At last,
GLUT1 and HK1 are expressed at similar levels between CD4+

and CD8+ T cells (Fig. 1c, Supplementary Fig. 2h), as both
subsets similarly rely on glycolytic flux29, however, there is a
significant difference in G6PD, indicating a dissimilarity in
capacity for flux through the PPP. In addition, the relative
correlation between immune subsets of a given phenotypic

marker to each metabolic protein was measured. This showed an
increased or decreased association between specific metabolic
pathways and individual leukocyte populations, reflecting meta-
bolic heterogeneity of human PBMC populations (Fig. 1d).

Collectively, this demonstrated the ability of our immuno-
metabolic flow cytometry method to capture differential meta-
bolic profiles within heterogeneous immune populations. Met-
Flow measured single-cell, protein-level metabolic states and
provided unique correlations between immune subpopulations
and specific metabolic pathways.

Metabolic remodeling occurs during T-cell activation. With the
ability to measure divergent metabolic profiles across resting
immune populations, the relationship between metabolism, leu-
kocyte activation, and maturation was tested using purified
T cells. To explore metabolic dynamics, beads coated with anti-
CD3 and anti-CD28 (CD3/28) were added to activate T cells by
TCR engagement and co-stimulatory signal30. A modified flow
cytometry panel was used, including T-cell memory markers and
focused on CD4+ T cells. Stimulation of T cells altered activation-
dependent protein levels, with the highest fold change increase
observed in CD25 expression, followed by CD69 and HLA-DR
(Fig. 2a, b). Simultaneous measurement of metabolic protein
expression showed a threefold induction of GLUT1, suggesting
significantly increased capacity for glucose transport in these

Fig. 1 Protein-level analysis shows divergent metabolic profiles in leukocytes. a FitSNE projection of both phenotypic and metabolic proteins, and
b FitSNE projection of metabolic proteins only, with corresponding expression of each population, representing n= 12 samples from four independent
experiments. c gMFI expression (log2) of each immune cell type (n= 12). d Chord visualization using spearman correlation between metabolic protein
and immune phenotype. A positive correlation is presented in red, a negative correlation is presented in blue based on the r value (n= 9).
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activated cells (Fig. 2a, b, Supplementary Fig, 3a, b). Moreover,
the analysis showed over twofold inductions of IDH2, ACAC,
G6PD, ASS1, and PRDX2, indicating increased capacity for flux
through TCA cycle, fatty-acid synthesis, oxidative PPP, arginine
synthesis, and antioxidant response pathways, respectively
(Fig. 2a, b, Supplementary Fig. 3a, b). Following activation, HK1,
ATP5A, and CPT1A were significantly higher, showing increased
capacity for flux through glycolysis, OXPHOS, and fatty-acid
oxidation (Fig. 2a, b). Cumulatively, the data demonstrated that
differential reprogramming of multiple metabolic pathways is
closely linked to T-cell activation.

Congruent with the findings in purified T cells, mixed PBMC
studies showed similar increases in the capacity for flux through
glycolysis, PPP, OXPHOS, and fatty-acid pathways (Supplemen-
tary Fig. 3c). Although purified T cells demonstrated a significant
increase of ASS1 and PRDX2 protein level with activation, this
was less pronounced in total PBMCs (Supplementary Fig. 3c). In
contrast to the decreased expression of the phosphate transporter
SLC20A1 with activation in PBMCs, we noted the loss of
SLC20A1 once T cells were purified (Supplementary Fig. 3d).
This was independent of stimulation and suggests that purifica-
tion methods alter expression of some metabolic proteins. Owing
to this loss, the antibody SLC20A1 was not further investigated in
purified T cells.

We next investigated the relationship between metabolic state
and T-cell activation (Fig. 2c). The activation markers CD25 and
CD69 showed positive correlations with multiple metabolic
proteins. Conversely, a negative correlation between ACAC and
HK1 with HLA-DR was demonstrated, indicating a difference in
metabolic requirements of fatty-acid synthesis and glycolysis for
early and late activation. Specifically, the strongest correlation was
seen between GLUT1 and CD25 (r= 0.8571), indicating a
positive relationship between capacity for glucose uptake and
CD25 expression with activation (Fig. 2d, e), and demonstrated
by the overlap of high expressing CD25 and GLUT1 cells in the
FitSNE projection of activated CD4+ T cells (Fig. 2f). This
directly correlates the sensitivity of T cells to the IL-2 growth
factor CD25, to the capacity for glucose uptake by GLUT1, and is
supported by increased glucose uptake (Supplementary Fig. 3e).
In comparison with CD8+ T cells, we further demonstrate
differential metabolic upregulation in CD4+ T cells with
activation. Though at resting state, CD4+ and CD8+ subsets
show similar metabolic profiles, CD4+ T cells upregulate
oxidative metabolism with higher expression of IDH2 and
ATP5A, as well as GLUT1. In contrast, CD8+ T cells augment
their capacity for flux through the PPP with higher G6PD
expression (Fig. 2b, Supplementary Fig. 3f). This confirmed that
T-cell activation requires remodeling of the metabolic state that is
specific to functional T-cell subsets31.

Together, Met-Flow confirmed previously described metabolic
inductions of glycolysis, OXPHOS and fatty-acid synthesis in
activated T cells1,32–34. This technique enabled associations of
glycolysis and immune activation on a single-cell level, by
elucidating the positive correlation between GLUT1 and CD25
expression. The data further demonstrated reprogramming of
other pathways, including key enzymes in mitochondrial
respiration, PPP, and fatty-acid oxidation, that contribute to the
metabolic state of activated T cells.

Glycolytic inhibition alters T-cell metabolism and activation.
Previous analysis of global metabolic reprograming showed an
increased capacity for glucose uptake and glycolysis, associated
with T-cell activation. Therefore, we investigated the dependence
on glycolytic metabolism for the immuno-metabolic state. The
glucose analog 2-Fluoro-2-deoxyglucose (2-FDG) was added in

the presence or absence of anti-CD3/28 stimulation in purified
T cells. 2-FDG is a closer analog to glucose than 2-DG, is less
toxic, more specific, and does not interfere with mannose meta-
bolism by incorporating into N-linked glycosylation35–38. We
determined that 24 h of 2-FDG alone did not cause a significant
decrease in any metabolic pathways (Fig. 3a–d). Anti-CD3/
28 stimulation increased CD25 surface expression (Fig. 2a),
whereas addition of 2-FDG prevented this increase (Fig. 3c)39.
The dependence of glycolysis for CD25 expression was not shared
across all surface activation molecules, as CD69 and HLA-DR
were unchanged or increased, respectively (Fig. 3c, Supplemen-
tary Fig. 4a). Glycolytic inhibition did not affect GLUT1 levels,
indicating a feedback loop and the requirement to maintain high
levels of intracellular glucose (Fig. 3d, Supplementary Fig. 4a). As
shown previously, CD3/28 stimualtion upregulated the expres-
sion of all other metabolic proteins, whereas 2-FDG combined
with CD3/28 treatment reduced expression with differential
sensitivity, indicating partial dependence on glycolysis (Fig. 3a, b,
d, Supplementary Fig. 4a). Taken together, this indicates a heavy
reliance on glucose for metabolic function during T-cell
activation.

To correlate changes in maturation and metabolism of T cells
with cellular function, we measured cytokine and chemokine
production. This showed a significant increase in pro-
inflammatory CCL3, IL-13, IL-6, sCD40L, IL-17A, TNF-α, IFN-
γ, and CXCL10 following CD3/28 stimulation, as expected
(Supplementary Fig. 4b). Glycolytic inhibition with 2-FDG
selectively reduced the production of IL-13, IL-6, sCD40L, IL-
17A. In contrast, IL-8 and GM-CSF increased following
stimulation in the presence of 2-FDG, suggesting a regulatory
role of glycolysis for these molecules (Supplementary Fig. 4b).

With differential effects of glycolytic inhibition on activation
markers and metabolic protein levels, our data demonstrated the
dependence on glycolysis in regulating multiple metabolic
pathways that alters T-cell cytokine release. We showed glycolytic
requirement for the upregulation of specific activation molecules
and cytokines, including CD25, IL-13, IFN-γ, and IL-17A.
Moreover, all metabolic proteins were expressed at a lower level
following glycolytic inhibition, with the exception of GLUT1,
indicating maintenance of metabolic feedback. Collectively, Met-
Flow is effective at elucidating differential responses of metabolic
pathways in immunological processes.

T-cell memory subsets show differential metabolic phenotypes.
In the studies described above, we showed the use of Met-Flow in
assessing dynamic metabolic remodeling in T-cell subsets fol-
lowing activation. Past studies have shown that T-cell subsets
utilize distinct energy sources under differential nutrient
availability31,40–43. Leveraging the capability of Met-Flow to
measure metabolism of cellular subsets, we investigated different
metabolic states during memory differentiation and the effect of
glycolytic inhibition. To distinguish subset-specific metabolic
preferences, T-cell memory populations were gated using
expression of CCR7 and CD45RA to identify naive, central
memory (TCM), effector memory (TEM), and terminally differ-
entiated effector memory T cells (TTEMRA).

Using FitSNE projection, the 10 metabolic proteins are
differentially expressed across memory subsets (Fig. 4a–b). We
showed distinct sub-clusters of TCM and TEM populations based
on their immuno-metabolic profiles, whereas naive and TTEMRA

subsets showed some overlap (Fig. 4a). The TCM and TEM

populations both expressed higher levels of ACAC, PRDX2, and
CPT1A, in contrast to naive and TTEMRA subsets (Fig. 4b).
Previous work has shown that TEM cells have higher oxygen
consumption rates and spare respiratory capacity in comparison
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Fig. 2 Activation induces extensive metabolic reprogramming in T cells. Purified T cells were untreated (UT) or activated with anti-CD3/CD28 beads
(CD3/28). a Geometric mean fluorescence intensity (gMFI) was measured for activation and metabolic proteins in CD4+ T cells. Each dot represents one
donor, data representative of n= 8 donors, from three independent experiments. b FitSNE projection and corresponding expression of metabolic protein
and activation markers in T cells, data acquired from n= 5 samples, with 10,000 cells per donor. c Chord visualization of correlation between immune and
metabolic proteins in activated CD4+ T cells, representative of n= 8 donors. d Spearman correlation of GLUT1 and CD25 expression in untreated and e
activated CD4+ T cells. f Heatmap of FitSNE projection of GLUT1 and CD25 expression in untreated and activated CD4+ T cells.
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to naive CD4+ T cells2,40. We corroborated this by showing
increased IDH2 expression in TEM cells (Fig. 4b, Supplementary
Fig. 5a). Moreover, there is a concomitant high expression of
PRDX2 in TEM cells, which may be a result of high oxidative
stress produced by OXPHOS. These findings illustrate the ability
to capture differential metabolic states across T-cell memory
subsets using Met-Flow.

To measure the effect of glycolytic inhibition on the metabolic
state across subsets, cells were stimulated with CD3/28 and 2-
FDG. This resulted in differential effects in each memory
population, measured by cell frequency, metabolic protein level,
and activation status. Stimulation with CD3/28 caused a decrease
in frequency of naive CD4+ T cells compared with untreated
control (Fig. 4c, d). Addition of 2-FDG during activation (Combi)
resulted in an increased frequency of TCM cells and reduction of
both TTEMRA and TEM populations (Fig. 4d). To further explore
this expanded CM subset, we focused on immuno-metabolic
differences within TCM subpopulations across treatment. The
results demonstrated that glycolytic inhibition attenuated
activation-induced expression of HK1, GLUT1, CPT1A, IDH2,
G6PD, ACAC, ATP5A, PRDX2, ASS1 compared with activated
TCM cells (Fig. 4e, Supplementary Fig. 5b). This coincided with
decreased CD25, but not CD69 or HLA-DR, highlighting the
difference in glycolytic dependence in early and late activation
(Fig. 4e, Supplementary Fig. 5b). At last, compared with all other
memory subsets and treatments, the FitSNE projection demon-
strated a well-defined cluster based on the immuno-metabolic
state of this perturbed TCM subset (Fig. 4e, Supplementary
Fig. 5c), indicating population’s specific metabolic state.

Taken together, we show that Met-Flow can dissect metabolic
profiles within T-cell memory subsets. We identified the selective
expansion of TCM cells, that is independent of glycolysis. Met-

Flow captures divergent immuno-metabolic states in cellular
subpopulations that arise during different cellular and tissue
environments.

Increased respiration and signaling in activated T cells. To
confirm the metabolic reprogramming by flow cytometry, we
assessed real-time respiration in bulk T cells using extracellular
flux analysis, which analyses glycolytic function and mitochon-
drial respiration. As expected, CD3/28 addition induced a sig-
nificant increase in glycolytic function, with elevated basal
glycolysis, glycolytic capacity and reserve, compared with
untreated controls (Fig. 5a, b). Mitochondrial respiration was
significantly impacted, revealing enhanced basal, maximal
respiration, and spare mitochondrial capacity (Fig. 5c, d). These
metabolic shifts in glycolysis and OXPHOS confirmed our
metabolic protein flow cytometry results (Fig. 2b). Moreover,
these changes in real-time respiration are supported by earlier
work showing remodeling of glycolysis, TCA cycle, and OXPHOS
following T-cell activation26,31,44. We next evaluated the depen-
dence of energetic metabolism on glucose using 2-FDG in real-
time respiration. The activation-induced increases in glycolytic
parameters were reduced in the presence of 2-FDG, confirming
our earlier Met-Flow results (5a, b). Overall mitochondrial
respiration did not significantly decrease with 2-FDG addition
(Fig. 5c, d, Supplementary Fig. 6), indicating that at the bulk level
their OXPHOS is not dependent on glucose.

Bulk analysis did not show a concurrent decrease in
mitochondrial respiration with glycolytic inhibition, indicating
cellular dependence on other carbon sources. We therefore aimed
to investigate whether this dependence on alternative carbon
sources was true for the entire population or specific for a subset
of cells within bulk analysis. To evaluate the dynamics of

Fig. 3 The activation and metabolic states of CD4+ T cells are altered by glycolytic inhibition. Fold change of metabolic protein and activation markers
(gMFI) was measured in CD4+ T cells untreated (UT), with 2-FDG, CD3/28, and combination of 2-FDG with CD3/28 (Combi). Metabolic proteins are
grouped by a anabolic pathways, including fatty-acid synthesis and arginine metabolism, and b catabolic pathways, including glycolysis, oxidative PPP, TCA
cycle, and fatty-acid oxidation. c Activation markers and d the ATP synthase protein critical for OXPHOS, glucose transporter, and the antioxidant protein
were measured. Each dot represents one donor sample, total n= 8 donors from three independent experiments.
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metabolic protein-level changes, we incorporated the phosphor-
ylation state of ribosomal protein S6 (pS6) into Met-Flow. The S6
protein is downstream of mTORC1 signaling and is phosphory-
lated upon TCR engagement, driving translation of glycolytic
proteins in T cells2,45. Met-Flow analysis showed increased levels
of CD69, CD25, and GLUT1 in pS6-positive cells compared with
pS6-negative cells, whereas other metabolic proteins showed
heterogeneous expression (Fig. 5e). This phosphorylation was
specifically induced by CD3/28 stimulation, as untreated or 2-
FDG treated T cells are pS6 negative. However, 2-FDG dampened
this activation-induced increase in the bulk population (Fig. 5f).

Within memory subsets, stimulation increased S6 phosphor-
ylation across all cells compared with unstimulated conditions. In
the naive and TCM subsets, there was a mean of 67% and 69%
pS6-positive cells, respectively, whereas TEM and TTEMRA were
38% and 36%. The addition of 2-FDG to stimulation caused the
majority of cells to become pS6 negative in all subsets, apart from
CD4+ TCM cells, in which the majority of cells maintained pS6
positivity. This indicates their dependence on carbon sources
other than glucose. These findings demonstrate the ability of Met-
Flow to identify cellular populations with alternative metabolic
reliance, which would not be achievable using other
methodologies.

In sum, bulk real-time respiration analysis confirms our
previously described differential effect of activation and glycolytic

inhibition on the metabolic state of T cells. Overall, increased
downstream mTOR signaling corresponded with T-cell activation
in all memory subsets. We additionally identified the expanded
TCM subset that was highly phosphorylated and glycolytically
independent. Unlike bulk analysis, using Met-Flow identifies
specific metabolic reprogramming corresponding to particular T-
cell subsets. These studies corroborate changes in metabolic
protein levels demonstrated by Met-Flow and further emphasize
unique advantages of single-cell metabolic flow cytometry over
bulk analysis.

Metabolism drives GM-CSF production in central memory
T cells. We previously demonstrated that GM-CSF increased with
glycolytic inhibition in bulk T cells, unlike other effector cyto-
kines. To determine whether the metabolically distinct TCM

population was responsible for this inflammatory cytokine pro-
duction, we measured GM-CSF production by incorporating a
capture antibody into the Met-Flow capability. GM-CSF pro-
duction by activated T cells stimulates myeloid cells to promote
tissue inflammation46,47. Our data confirmed increased GM-CSF
with CD3/28 stimulation, linked to a higher metabolic state
(Fig. 6a), whereas unstimulated or 2-FDG-treated T cells pro-
duced low GM-CSF and showed lower levels of metabolic protein
expression (Fig. 6a, Supplementary Fig. 7a). Across T-cell mem-
ory subsets, the TEM subset was the largest GM-CSF-producing

Fig. 4 T-cell memory subsets differentially respond to glycolytic inhibition. a FitSNE projection of resting state CD4+ memory populations, data
represent n= 5 donor samples. b Metabolic protein expression of resting state CD4+ memory subsets by gMFI, data represent n= 8 donor samples.
c Gating strategy of CD4+ memory subsets by CCR7 and CD45RA. d Cell count of CD4+ T memory populations across treatments. e FitSNE of CD4+

CM populations across treatments, data represent five donor samples from two independent experiments, with 20,000 cells per samples.
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population with CD3/28 activation (Fig. 6b, Supplementary
Fig. 7b). Addition of 2-FDG showed a selective reduction of GM-
CSF production in TEM and TTEMRA memory populations. In
contrast, the TCM subset increased with 2-FDG addition to CD3/
28, and the naive population showed a similar trend. This
increase in the GM-CSF producing TCM cells was similar to the

expanded pS6 high TCM population (Fig. 4g), demonstrating
glycolytic independence specific for this memory subset.

To link differential GM-CSF-producing subsets to their
underlying metabolic state, we measured metabolic protein
expression. The decrease in GM-CSF production with 2-FDG
addition in TEM was associated with lower metabolic protein

Fig. 5 Respiration and mTOR signaling increase with T-cell activation. a Glycolytic function across untreated (UT), 2-FDG treated, CD3/28 activated,
and combination treated (2-FDG+CD3/28) donor samples. Graph depicts one representative sample from a single donor. b Glycolytic parameters
measured by extracellular acidification rate (ECAR) across treatments. c Mitochondrial respiration measured by oxygen consumption rate (OCR) in
purified T cells across treatments and its associated d mitochondrial parameters. Respiration data represent n= 6 donor samples from two independent
experiments. Statistical analysis was performed using one-way ANOVA with Tukey’s multiple comparisons test. e CD4+ T cells phosphorylation status of
phospho-S6 (pS6) and respective levels of metabolic and activation markers. Data shown represent n= 6 by FitSNE analysis. f Phosphorylation status
across different treatments in total CD4+ T cells. g Phosphorylation status across memory subsets with treatment. Statistical analysis was performed
using multiple t test and Holm-Sidak multiple comparisons.
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expression compared with CD3/28 treatment alone (Supplemen-
tary Fig. 7c). Comparing across subsets with activation and
glycolytic inhibition, the TCM subsets shows an overall higher
metabolic protein expression (Fig. 6c). Specifically, in comparison
with the glycolytically dependent EM subset, the TCM population
was characterized by higher expression of glycolytic proteins,
GLUT1, HK1, increased fatty-acid synthesis enzyme ACAC,
OXPHOS protein ATP5A, arginine synthesis by ASS1 and
antioxidant enzyme PRDX2. Unlike other memory subsets, this
increased frequency of GM-CSF-producing TCM population has a
specific metabolic state, that is differentially impacted by
glycolytic inhibition.

In conclusion, the expansion of Met-Flow with cytokine
analysis demonstrated the ability to attribute differential effector
function to divergent metabolic states of specific immune subsets.
To our knowledge, we identified a novel metabolic profile of pro-
inflammatory TCM, which produces high GM-CSF independently
of glucose metabolism.

Discussion
The ability to measure the metabolic state of specific immune
cells is essential for a fundamental understanding of cellular

function. Here, we present Met-Flow, a capability to simultaneously
measure multiple metabolic pathways across diverse immune sub-
sets on a single-cell, protein level using a combination of intracel-
lular staining and flow cytometry. This technology measures the
metabolic capacity of a cell by protein levels of rate-limiting and
critical enzymes, which govern pathways. A higher capacity indi-
cates increased potential to engage a metabolic pathway. This
defines cellular plasticity, the ability to respond to metabolic
demands, including changes in redox environments or nutrient
availability. Therefore, capacity translates into cellular flexibility,
linking metabolic phenotype to function. Met-Flow does not
directly measure flux of a pathway, which can be investigated by
real-time respiration or metabolite measurements. Our application
of Met-Flow on human PBMCs revealed cell-specific differences in
core metabolic pathways. Furthermore, we demonstrated that sur-
face expression of specific activation molecules, cytokines, and
chemokines were dependent on their underlying metabolic state in
a cell type-specific manner. Together, this technique demonstrates
that immune cell subsets have unique metabolic protein signatures
relating directly to activation and maturation states.

Bulk cellular analysis demonstrated that leukocytes possess an
array of metabolic states leading to different functional capacity

Fig. 6 Glucose restriction and metabolic remodeling drive the expansion of inflammatory memory T subpopulation. a FitSNE projection of GM-CSF
producing total CD4+ T cells. b Comparison of activation and combi (CD3/28+2-FDG) treated memory subset frequency. c Differential expression of
metabolic proteins across T-cell memory subsets with glycolytic inhibition during CD3/28 activation (combi). All data represents n= 8 donors, and
statistical analysis was performed using T test or Friedman’s test with Dunn’s multiple comparisons.
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and disease outcome40,48. Moreover, the metabolic micro-
environment and tissue localization influence immune cell
function49–51. We analyzed PBMCs using Met-Flow, enabling a
global view of immune cell metabolism. Analysis of monocytes,
key innate immune cells, revealed higher expression of all
metabolic proteins relative to other cell types. This suggests that
they exist in a metabolically poised state with implications for
inflammatory responses and plasticity52,53. This elevated expres-
sion was not due to assay intrinsic factors such as cellular size, as
monocyte and mDC populations share a similar forward scatter
profile (Supplementary Fig. 7d), yet their metabolic protein
expression is vastly different. Deeper subset analysis demon-
strated that inflammatory CD86+CD16+ monocytes expressed
higher HK1, suggesting greater glycolytic capacity. This supports
earlier monocyte work showing that activation-induced upregu-
lation is dependent on glycolysis54. In addition, our findings show
divergent metabolic requirements in DC subpopulations follow-
ing activation55. We observed higher capacity for flux through
arginine metabolism in mDCs, compared with higher OXPHOS
capacity and glucose uptake in pDCs. NK subset characterization
revealed that CD56bright cells expressed significantly higher HK1,
confirming increased glycolytic activity in comparison to
CD56dim cells56. Moreover, we highlight an opposing require-
ment for lipid metabolism, with higher fatty-acid synthesis
enzyme ACAC in CD56bright cells, compared with increased
capacity for flux through oxidation by CPT1A in CD56dim cells.
NKT cells had higher levels of IDH2 in comparison with CD4+

T cells, which verifies studies showing increased OXPHOS in
NKT cells, important for their function57. Taken together, this
demonstrates the ability of Met-Flow to simultaneously analyze
diverse metabolic states on differential immune subpopulations.

The association of immune and metabolic states has been
extensively studied in T-cell biology, including increased glyco-
lysis, OXPHOS, and fatty-acid synthesis following
activation1,26,39,58–60. In this study, we confirmed these findings
and further demonstrated the involvement of PPP, fatty-acid
oxidation, antioxidant, and arginine synthesis post-activation.
Using Met-Flow, we confirmed the highly oxidative phenotype of
CD4+ in comparison to CD8+ cells31. Though expression of the
glycolytic enzyme HK1 was similar between both subsets, the PPP
was significantly induced in CD8+ T cells, indicating a differential
metabolic program utilizing glucose breakdown. We also con-
firmed that activation-induced expression of the high affinity IL-2
receptor, CD25, is dependent on glycolysis. Importantly, CD25
expression positively correlated with GLUT1 protein levels,
confirming the association with activation-induced glucose
uptake. Similar associations between GLUT1 and CD25 expres-
sion were found in activated CD8+ T cells from chronic lym-
phocytic leukemia patients61. These patient-derived cells showed
lower GLUT1 intracellular reserves upon stimulation, and
impaired mitochondrial fitness compared with healthy donor
activated T cells. This highlights the potential of Met-Flow to
measure reprogramming of immuno-metabolic states in the dis-
eased context.

Studies have shown that CD8+ memory cells have a higher
mitochondrial capacity and favor fatty-acid oxidation compared
with naive counterparts62,63. Moreover, glycolytic inhibition
enhances CD8+ memory formation64,65. By leveraging the single-
cell nature of Met-Flow, we dissected T-cell memory subsets
based on surface markers and intracellular metabolic profiles, and
found differential regulation by glycolysis. At resting state, our
data confirm higher metabolic activity in TCM and TEM subsets
compared with naive cells2. Glycolytic inhibition revealed an
expansion of TCM cells, whereas the TEM frequency decreased. A
lower reliance on fatty-acid synthesis was previously shown in
CD4+ TEM cells in low glucose conditions, whereas TCM and

naive populations increase fatty-acid uptake for survival43. Our
data similarly demonstrate the distinct metabolic state of TCM

cells from other memory populations both with and without
glycolytic inhibition. This illustrates the ability to capture differ-
ential responses of cellular subpopulations by revealing diverse
immuno-metabolic states, reflecting divergent metabolic depen-
dence and function.

Consistent with previous studies, cytokine release post-
activation was largely dependent on glycolysis1. We showed
that glycolytic inhibition decreased IL-13, IL-6, sCD40L, and IL-
17A production from T cells. Interestingly, GM-CSF was not
dependent on glycolysis, suggesting differential control and
redundancy in metabolic regulation. A rapid immune response,
including cytokine production, is regulated by post-
transcriptional mechanisms, including RNA-binding proteins
and translational control by mTOR signaling15,66–68. Specifically,
GM-CSF mRNA stability is controlled by protein binding to AU-
rich elements in 3’-untranslated regions, which direct mRNA
degradation and control half-life69,70. The intersection of cytokine
biology and metabolism is often regulated at the post-
transcriptional level. Similarly, IFNγ and TNFα production are
controlled by the repression of mRNA-binding of lactate
dehydrogenase42,71. Like many genes in dynamic processes, post-
transcriptional regulation of cytokine production can make
accurate measurement of gene expression using mRNA abun-
dance difficult68.

T cell GM-CSF production activates myeloid cells for inflam-
matory cytokine production, phagocytosis, and pathogen kill-
ing72–74. These pro-inflammatory T cells are associated with
negative disease outcome, as GM-CSF drives disease progression
in autoimmune disorders75, neurological disease76, and skin
hyperinflammation77. In graft-versus-host disease, high GM-CSF
produced by allogeneic T cells induces donor-derived myeloid
cells to produce inflammatory cytokines, driving pathology78. In
hepatocellular carcinoma, tumor cells produce high GM-CSF that
recruits myeloid-derived suppressor cells to induce immune tol-
erance and increase PD-L1 expression79. Using Met-Flow, we
identified the selective expansion of TCM cells with a unique
metabolic state, producing high GM-CSF during glycolytic inhi-
bition. This population expressed high GLUT1, ACAC, PRDX2,
ATP5A, ASS1, and HK1, indicating a metabolic state independent
of glycolysis. This profile was specific to the TCM subset, as
activated TEM cells reduced total metabolic activity and frequency
of GM-CSF-producing cells with glycolytic inhibition. To the best
of our knowledge, using Met-Flow led to the discovery of a novel
metabolic phenotype of a clinically important T-cell subset. This
suggests an axis of pro-inflammatory T-cell differentiation rele-
vant in inflammatory pathologies. Inhibiting GM-CSF production
by targeted restriction of metabolic pathways identified using
Met-Flow could give rise to novel therapeutic targets for combi-
nation with tumor immunotherapy.

In summary, the studies presented here described a high-
dimensional flow cytometry technique, which facilitates analysis
of key metabolic proteins, cellular lineage, and activation mole-
cules simultaneously. Traditional methods assess metabolism in
bulk populations, which lack the ability to identify metabolic
profile differences in subsets on a single-cell, protein level. These
methods can mask important attributes specific to infrequent
populations and may not account for heterogeneity in cellular
subsets. Using Met-Flow, we simultaneously captured dynamic
metabolic states across multiple immune populations. This was
combined with methods of post-translational modification
including phosphorylation status and intracellular cytokine pro-
duction, enabling comprehensive protein level, single-cell
immuno-metabolic analysis. The expansion of this technique
with the inclusion of additional biosynthetic pathways, will be
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greatly assisted with improvements in other high-dimensional
flow-based methods, including Abseq80 and Cytof81. Met-Flow
can be applied to investigate metabolic remodeling in any cell
type and disease context and has the potential to uncover unique
metabolic targets for therapeutic intervention.

Methods
PBMC isolation. PBMC were isolated from cone blood of healthy donors with
informed consent (National Healthcare Group Domain Specific Review Board,
Singapore, Reference No. 2000/00828) using ficoll density gradient centrifugation
(Ficoll-Paque, GE Healthcare). Whole blood was diluted in a 1:1 ratio with PBS
(Gibco, ThermoFisher, 10010023) supplemented with 2 mM ethylenediaminete-
traacetic acid (EDTA) (PBS-EDTA) (Invitrogen, ThermoFisher, 16676038). The
diluted blood was layered on top of the ficoll in a 2:1 diluted blood to ficoll ratio.
The sample was spun at 400 g for 30 min without brake 21 °C. After centrifugation,
the PBMC layer was carefully removed and washed twice in PBS-EDTA. Cells were
frozen down in freezing medium containing FBS (Hyclone, GE Healthcare,
SH30071.03) and 10 % dimethyl sulfoxide (DMSO) at 50 × 106 PBMC/ml over-
night at −80 °C and subsequently stored in liquid nitrogen.

PBMC and T-cell culture. PBMCs were thawed in a 37 °C water bath and washed
with 10 ml of complete (c)RPMI containing RPMI 1640 (Gibco, ThermoFisher,
11875093), 10% FBS, 100 U/ml penicillin, and 100 μg/ml streptomycin (Gibco,
ThermoFisher, 15140122), 1 mM sodium pyruvate (Gibco, ThermoFisher,
11360070), 2 mM L-glutamine (Gibco, ThermoFisher, 35050061), 1× nonessential
amino acids (Gibco, ThermoFisher, 11140050), 15 mM HEPES (Gibco, Thermo-
Fisher, 15630080). T cells were isolated from PBMCs by three sequential rounds of
magnetic separation using CD3 Microbeads (Miltenyi Biotec, 130-050-101),
according to the manufacturer’s instructions. PBMC and T cells were seeded at 1 ×
106 PBMC in a 96-well flat-bottom plate and rested in cRPMI for 1 h. After resting,
cells were stimulated for 24 h with Gibco Dynabeads Human T-Activator CD3/
CD28 (ThermoFisher, 11131D) in a bead-to-cell ratio of 0.5:1 in simultaneous
presence or absence of 2 mM 2-Fluoro-2-deoxy-D-glucose (2-FDG) (Sigma, F5006)
at 37 °C, 5% CO2.

Flow cytometry staining. Ten metabolic proteins were chosen and optimized
based on their critical role in specific metabolic pathways (Table 1). The purified
metabolic antibodies were purchased from Abcam and custom conjugated by
Becton Dickinson (BD) using their fluorochromes, unless otherwise indicated;
SLC20A1 at 1:100 dilution (clone EPR11427(2), BD AF647, Abcam ab231703),
ACAC at 1:100 dilution (clone EPR4971, BD BUV496, Abcam ab231686), HK1 at
1:50 dilution (clone EPR10134(B), BD BUV661, Abcam ab234112), CPT1A at 1:50
dilution (clone 8F6AE9, BD V450, Abcam ab231704), IDH2 at 1:50 dilution (clone
EPR7577, BD BB790, Abcam ab231695), G6PD at 1:100 dilution (clone EPR6292,
BD BUV395, Abcam ab231690), GLUT1 at 1:100 dilution (clone EPR3915, Abcam
AF488, ab195359), ASS1 at 1:100 dilution (clone EPR12398, BD AF700, Abcam
ab231684), PRDX2 at 1:50 dilution (clone EPR5154, BD BUV615, Abcam
ab231702), ATP5A at 1:100 dilution (clone EPR13030(B), Abcam AF594,
ab216385). These metabolic proteins are differentially localized to the mitochon-
dria, the cell surface or the cytosol (Table 1). In addition, antibodies to surface and
intracellular markers were used to phenotype 11 leukocyte subsets in PBMCs to
generate a 27 color flow cytometry panel; CD4 (clone SK3, BD, BV480, 566104),
CD8 (clone SK1, BD, BUV805, 564912), and CD3 (clone UCTH1, BD, BB630,
624294) for T cells; HLA-DR (clone G46-6, BD, BV786, 564041), CD11c (clone B-
ly6, BD, BB700, 624381), for myeloid and CD123 (clone 9F5, BD, BV650, 740588)
for plasmacytoid dendritic cells, IgM (clone G20-127, BD, BUV805, 624287), IgD
(clone IA6-2, BD, BV480, 566138) and CD19 (clone HIB19, BD, BB660, 624295)
for B cells; CD16 (clone 3G8, BD, BV750, 624380) and CD14 (clone M5E2, BD,
PE-Cy7, 557742) for Monocytes; and NK subsets using CD56 (clone NCAM16.2,
BD, PE-Cy5, 624350), as well as CD45 (clone 2D1, BD, BUV563, 624284), PD-1
(clone MIH4, BD, PE, 557946), ILT3 (clone ZM3.8, BD, BV605, 742807), CD69
(clone FN50, BD, APC-H7, 560737), CD86 (clone 2331/FUN-1, BD, BUV737,
564428) and live-dead dye FVS575V (BD, BV570, 565694). The modified T-cell
panel included CCR7 (clone G043H7, Biolegend, BV650, 353134), CD45RA (clo-
neHI100, BD, PE, 561883), CD25 (clone 2A3, BD, PE-Cy7, 335789), FOXP3 (clone
PCH101, eBioscienceTM, ThermoFisher, PE-Cyanine5.5, 35-4776-42), and CD14
(M5E2, BD, BV570, 624298) for monocytes.

PBMCs or purified T cells were stained for 30 min on ice with the antibodies
specific for extracellular proteins in Brilliant Stain Buffer (BD, 563794). Following
incubation, cells were washed with cold PBS and centrifuged at 3000 × g, 5 min,
three times. Cells were fixed and permeabilized using eBioscience Foxp3/
Transcription Factor Staining Buffer Set (Invitrogen, Catalog Number 00-5523-00)
according to manufacturer’s instructions. We then washed the cells in PBS as
previously described and stained with intracellular antibodies in permeabilization
buffer for 1 h at room temperature. Subsequently, cells were washed once in
permeabilization buffer followed by a PBS wash. Samples were acquired on a X-30
FACSymphony (BD) with FACS Diva Version (BD, Version 8.0.1) software.
Analysis was completed using FlowJo (BD, version 10.5.2).

Phos-Flow staining. Purified T cells were isolated and stimulated as described
above. After incubation with different treatments, cells were added to a 96-well V-
bottom plate and spun down at 1500 × g for 1 min at 4 °C. Cells were then stained
with live-dead dye FVS575V (BD, BV570, 565694) for 5 min and washed by adding
150 μl PBS and spinning at 3000 rpm for 1 min at 4 °C. Following this, Fix Buffer I
(BD, 557870) was added at 150 μl per well and incubated for 10 min at 37 °C. After
fixation and washing as described above, 150 μl of Perm/Wash Buffer I (BD,
557885) was added and incubated for 30 min, in the dark, at room temperature.
After permeablization, cells were stained with an antibody cocktail mix for 1 h at
room temperature in Perm/Wash Buffer I, including the antibodies CD4 (clone
SK3, BD, BV480, 566104), CD8 (clone SK1, BD, BUV805, 564912), CD3 (clone
UCTH1, BD, BB630, 624294), HLA-DR (clone G46-6, BD, BV786, 564041), CD16
(clone 3G8, BD, BV750, 624380), CD45 (clone 2D1, BD, BUV563, 624284), CD69
(clone FN50, BD, APC-H7, 560737), CCR7 (clone G043H7, Biolegend, BV650,
353134), CD45RA (cloneHI100, BD, PE, 561883), CD25 (clone 2A3, BD, PE-Cy7,
335789), CD14 (M5E2, BD, BV570, 624298), the phosphorylated ribosomal protein
S6 (Ser240/244, clone D68F8, AF647, 5044), as well as the above-mentioned nine
metabolic antibodies. Finally, cells were washed and acquired on the X-30
FACSymphony.

GM-CSF staining. Purified T cells were stimulated as previously described and
GM-CSF was measured using the GM-CSF Secretion Assay Enrichment and
Detection Kit (PE, Miltenyi, 130-105-760). The manufacturer’s instructions were
modified to a 96-well format with final volumes of 200 μl per well. Following the
GM-CSF kit protocol, cells were additionally stained with CD4 (clone SK3, BD,
BV480, 566104), CD8 (clone SK1, BD, BUV805, 564912), CD3 (clone UCTH1, BD,
BB630, 624294), HLA-DR (clone G46-6, BD, BV786, 564041), CD16 (clone 3G8,
BD, BV750, 624380), CD45 (clone 2D1, BD, BUV563, 624284), CD69 (clone FN50,
BD, APC-H7, 560737), CCR7 (clone G043H7, Biolegend, BV650, 353134),
CD45RA (cloneHI100, BD, PE, 561883), CD25 (clone 2A3, BD, PE-Cy7, 335789),
CD14 (M5E2, BD, BV570, 624298), CD56 (clone NCAM16.2, BD, PE-Cy5,
624350) and live-dead dye FVS575V (BD, BV570, 565694). Subsequently, cells
were fixed and permeabilized in Foxp3/transcription factor staining buffer as
previously described, and stained with the above-mentioned metabolic antibodies,
before acquiring on the X-30 FACSymphony.

Cytokine and chemokine analysis. Supernatants from stimulation experiments
were collected and stored at −80 °C for analysis. Cytokine and chemokine profiles
were analyzed using a multiplexed, bead-based kit (Milliplex 41-plex human
cytokine panel 1, Millipore, MA, USA) on the FLEXMAP 3D system (Luminex
Corporation, TX, USA).

Real-time metabolic characterization by extracellular flux. Glycolytic function
and mitochondrial respiration were measured by extracellular acidification rate
(ECAR, mpH/min) and oxygen consumption rate (OCR, pmol/min) using the
XFe96 extracellular flux analyzer (Seahorse Bioscience, MA, USA). 200,000 cells
per well were plated in a 96-well plate and pre-treated for 24 h in the presence or
absence of CD3/28 beads and 2-FDG in cRPMI. Respiration was measured in XF
Assay Modified Media with L-glutamine (2 mM), sodium pyruvate (1 mM) with or
without 11 mM glucose (Sigma-Aldrich, Merck, G8769) for OCR and ECAR
measurements, respectively. To measure glycolytic parameters, the glycolytic stress
test kit (Seahorse Bioscience, 103020-100) was used, containing glucose (10 mM),
oligomycin (2 μM), and 2-deoxy-glucose (50 mM). Mitochondrial respiration
parameters were measured using the mitochondrial stress test kit (Seahorse
Bioscience, 103015-100), by sequentially adding oligomycin (2 μM), carbonyl
cyanide-4 (trifluoromethoxy) phenylhydrazone (1.5 μM), rotenone and antimycin
A (1 μM).

Statistics and reproducibility. Statistical analysis was performed using Prism
(Graphpad, version 8.2.0). Data were compared using either t tests for paired
analysis or non-parametric one-way analysis of variance with Dunn’s Multiple
Corrections, unless otherwise stated. Data are represented as the mean±standard
deviation (SD). P values < 0.05 were considered significant; where *P < 0.05, **P <
0.01, ***P < 0.001, ****P < 0.00001. Reproducibility was evaluated by measuring
metabolic protein levels across four independent experiments and 12 biological
replicates. High-dimensional analysis by Fast Fourier Transform-accelerated
Interpolation-based t-distributed stochastic neighbor embedding (FitSNE) was
performed using FlowJo (BD, Version 10.6.1). FitSNE was applied to the down-
sampled number of 10,000–20,000 cells per donor. Clustering in PBMCs was
performed on the compensated data from the live, CD45+-gated population, with
all markers selected, except forward and side scatter, CD45 and Live Dead. For the
metabolic FitSNE, only the 10 metabolic proteins were selected in PBMCs, after
gating the live, CD45+ population. In T cells, similarly, the compensated data from
the live, CD45+ population was analyzed, with additional gating of CD14, CD16−,
CD56−, CD19−, CD3+ cells. These markers, except for CD3+, were excluded from
the FitSNE clustering algorithm. In both samples, the FitSNE input was by
approximate nearest neighbors with perplexity 20 and 1000 maximum iterations.
The histograms adjacent to FitSNE plots represent the counts of each fluorescence
channel on the y axis, and biexponential fluorescence intensity of each marker on
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the x axis. The heatmaps were generated using a web-enabled tool with the
fluorescence intensity values (Heatmapper82). Chord plots were generated using
custom code, which has previously described by Gu and colleagues83, using the
Spearman correlation values of gMFI in one immune population relative to the
gMFI of all other subsets. Analysis of scRNAseq data of 68k PBMCs and 5k PBMCs
was done using previously published data and R studio21,22.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Source data for the main figures are included in Supplementary Data 1. Additional data
generated and analyzed in this study are available from the corresponding author upon
request. The publicly available scRNAseq dataset was published by Zheng and colleagues
at https://doi.org/10.1038/ncomms14049.

Code availability
Software used is publicly available at the following URLs: FitSNE: https://www.flowjo.
com/exchange/#/plugin/profile?id=12/; Heatmapper: http://www.heatmapper.ca/. The
custom codes are available on GitHub84 under DOI: 10.5281/zenodo.3819784.
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