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Mesenchymal stem cells (MSCs) are proliferative and multipotent cells that play a key role in the bone
regeneration process. Empirical data have repeatedly shown the bioregulatory importance of magnesium
(Mg) ions in MSC growth and osteogenesis. In this study, we propose an agent-based model to predict the
spatiotemporal dynamics of the MSC population and osteogenic differentiation in response to Mg2+ ions.
A fuzzy-logic controller was designed to govern the decision-making process of cells by predicting four
cellular processes of proliferation, differentiation, migration, and mortality in response to several impor-
tant bioregulatory factors such as Mg2+ ions, pH, BMP2, and TGF-b1. The model was calibrated using the
empirical data obtained from three sets of cell culture experiments. The model successfully reproduced
the empirical observations regarding live cell count, viability, DNA content, and the differentiation-
related markers of alkaline phosphate (ALP) and osteocalcin (OC). The simulation results, in agreement
with the empirical data, showed that Mg2+ ions within 3–6 mM concentration have the highest stimula-
tion effect on cell population growth. The model also correctly reproduced the stimulatory effect of Mg2+

ions on ALP and its inhibitory effect on OC as the early and late differentiation markers, respectively.
Besides, the numerical simulation shed light on the innate cellular differences of the cells cultured in dif-
ferent experiments in terms of the proliferative capacity as well as sensitivity to Mg2+ ions. The proposed
model can be adopted in the study of the osteogenesis around Mg-based implants where ions released
due to degradation interact with local cells and regulate bone regeneration.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Mesenchymal stem cells (MSCs) are the key players in bone
fracture healing [1]. MSCs increase cell population through a fast
proliferation process and differentiate into multiple cell types
involved in bone tissue regeneration, in particular osteoblasts [2].
The proliferation process occurs through a cascade of cell cycle
events including the two major processes of DNA synthesis and
actual division of the parent cell into two daughter cells [2]. The
specialization of MSCs toward osteoblasts involves a complex
intracellular interaction and is shown to occur continuously with
recognizable intermediate cells such as osteoprogenitors and pre-
osteoblasts [3]. During osteogenic differentiation, MSCs experience
a decline in proliferative capacity and gain osteoblastic properties
[4]. The onset of MSC differentiation to osteoblasts and the
progression along this lineage are controlled by various signals
such as growth factors, mechanical signals, and biomaterials [5,6].

Magnesium (Mg)-based biomaterials are biodegradable which
makes them an attractive choice in the orthopedic application
and medical-technical industry [6,7]. Mg implants degrade at the
implantation site resulting in an alteration in the microenviron-
ment of the local tissue. Mg2+ ions released during degradation
are demonstrated by several in vivo and in vitro studies to regulate
gene and protein expressions associated with cell growth and
osteogenesis [7–9]. The release of Mg2+ ions in high concentrations
is also associated with the alteration of the microenvironment pH
[9], causing an alkaline condition and consequently interfering
with a broad range of physiological processes [10–12]. In order
to design an effective Mg-based implant, it is essential to study
the bioregulatory mechanisms of Mg2+ ions and identify the opti-
mal conditions to promote osteogenic activities [13,14]. So far,
the empirical approach has been the only means to study the
bioregulatory effect of Mg-based materials. In this study, we aim
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at numerically investigating the physiological interaction of Mg2+

ions with MSCs.
We choose agent-based modeling (‘‘agent-based model” and

‘‘agent-based modeling” are both abbreviated as ABM) to address
the current problem. ABM provides a multiscale investigation of
a system as a direct observation can be made on individual cells
while the cumulative results are captured at the population level
[19–21]. ABM has been widely used in the literature to study cel-
lular responses [15,17,18]. A common challenge in ABM is the
abstraction of cellular behavior which requires an algorithm to cor-
rectly govern the decision-making process [22,23]. Such an algo-
rithm receives cellular inputs at the microscale and predicts
cellular behavior. Several approaches have been proposed in the
literature to simulate the decision-making process such as simple
rule definition, differential equations, logic-based approach, and
artificial neural networks [15,24–26]. Fuzzy logic (FL)-based have
shown great potential in resolving technical barriers between
experimental and simulation experts thanks to its plain language
[27]. In this approach, knowledge about a system can be formu-
lated in the form of IF-THEN statements, in which IF and THEN
are conditions and results, respectively. This plain language can
potentially ease the involvement of people with domain knowl-
edge in the rapid development of computer models. Since FLB
models can define a system without precise mechanistic informa-
tion, it is possible to leverage qualitative knowledge in numerical
modeling which would be otherwise difficult or impossible using
other simulation approaches that require real-valued variables
[27]. Due to these advantages, the FL-based approach has already
been repeatedly employed in the numerical investigation of bone
regeneration [28–30].
Fig. 1. The workflow of the ABM in this study. Once the model is initialized, cells and gro
to their results. For culture experiments longer than 3 days, the content of the growth
process of medium change [31]. Four cellular events of proliferation, migration, osteob
environmental factors. The dynamics of the growth factors are driven by cellular pr
simulation represents one hour [34,35]. Some elements of the graph are created with B
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In this study, we propose a fuzzy agent-based model to simulate
the spatiotemporal dynamics of mesenchymal stem cell population
and osteogenic differentiation in response to Mg2+ ions. To this
end, the available information in the literature regarding the
bioregulatory effect of Mg2+ ions in tandem with several other
important factors is curated and tailored as fuzzy logic rules. Dif-
ferential equations are used to describe the dynamics of growth
factors. The data obtained from three sets of published cell-
culture experiments are used to estimate the model’s parameters
by employing approximate Bayesian calculation.

2. Materials and methods

The proposed ABM in this study consists of three components; a
cell model, a model to simulate growth factors, and a coordinator.
As shown in Fig. 1, the coordinator initializes the simulation, iter-
atively executes cells and growth factors, and updates the simula-
tion world. In the rest of this section, we first give an introduction
to the ABM. Then, the construction of the cell model is elaborated
in detail. Lastly, the process of sensitivity analysis and the calibra-
tion is introduced.

2.1. The agent-based model

We use a lattice-based approach where the occupancy of each
patch is limited to one cell at a time. A three-dimensional (3D)
space with 8 layers in the z-direction is created to account for
the observation that the osteoblastic differentiation of MSCs gener-
ates more than four cell layers in vitro [31]. Further information
regarding the geometry of the model, the initialization, and the
wth factors are simulated iteratively, and the simulation world is updated according
factors and pH value is reset to the initial values every 2.5 days accounting for the
lastic differentiation, and mortality are simulated which are affected by multiple
oduction, cellular consumption, degradation, and diffusion. Each iteration in our
ioRender.com.
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boundary conditions can be found in section S1 in the supple-
ments. The dynamics of growth factors are simulated similar to
Ribeiro et al [32] and are elaborated in section S2 in the supple-
ment. The software used to develop the model can be found in sec-
tion S3 in the supplement. The source code of the present model
can be found online [33].

2.2. The cell model

We define five inputs of Mg2+ ions, alkalinity, TGF-b1, BMP2,
and cell density as the bioregulatory cues of the cellular behavior.
In addition, two intrinsic factors of maturity and DNA damage are
simulated to influence cellular functions. The cell model predicts
the four cellular behaviors of proliferation, differentiation, mortal-
ity, and migration. A Mamdani-type FL controller is implemented
to compute the intensity of the cellular actions as a cumulative
result of the stimulatory signal. The FL controller operates in three
steps of fuzzification, inference, and defuzzification as shown in
Fig. 2 [36].
Fig. 2. The complete calculation process of the FL controller in this study. The inputs of th
(step 1). The decision-making center, which comprises the fuzzy rules, receives the fuz
output of the controller is calculated by averaging on the activated outputs using the w
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2.2.1. Cellular inputs and fuzzification
Maturity represents the degree of maturation of MSCs along the

line of osteoblast lineage, similar to Krinner et al [17]. The spec-
trum of maturation is divided into two phases of the early and late
differentiation, marked by a parameter termed maturity threshold
(Mt). Maturity linearly increases by cell commitment to the differ-
entiation process at each time step of the simulation. During this
process, cells lose their characteristics as MSCs and obtain
osteoblastic characteristics. Maturity is fuzzified using two linguis-
tic terms as shown in Fig. 2.

DNA damage stands for the irreversible cellular impairment
due to harsh environmental conditions. In our simulations, DNA
damage can be caused by either cell passaging due to the usage
of chemical products and mechanical forces [37] or exposure to a
high pH (pHt) [11]. In the simulation, DNA damage can occur by
a base chance (cC) at the beginning of the simulation, accounting
for cell passaging, or by one hour of exposure (one step of the sim-
ulation) to pHt [11]. The factor of DNA damage is simulated as a
crisp quantity that takes the value of either 1 (high) or 0 (low).
e FL controller are converted to linguistic variables using the membership functions
zified inputs and determines which fuzzy outputs are activated (step 2). The final
eighted mean approach (step 3).
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Mg2+ ions are shown to regulate cellular responses depending
on the applied concentration, exposure duration, and the state of
cell differentiation [9,38–40]. Mg2+ ions within the concentration
range of 2–10 mM enhance cell metabolism and upregulate prolif-
eration and early differentiation rate [38,40–43]. However, Mg2+

ions above 1.8 mM have shown an inhibitory effect on late differ-
entiation rate and matrix mineralization [40,13]. Also, Mg2+ ions at
concentrations ranging from 20 to 40 mM is reported toxic and can
reduce cell viability [42,44,45]. To account for these observations,
we define five linguistic terms to fuzzify the input factor of Mg2+

ions (see Fig. 2). The concentration of Mg2+ ions below 0.8 mM,
which is used in cell culture medium (minimal essential
Medium-MEM), are set to negligible with no stimulatory effect
[9,43]. The inhibitory level takes into account the inhibitory effect
of Mg2+ ions on the late differentiation process. The stimulatory
level simulates the stimulatory role of Mg2+ ions on proliferation
and early differentiation process. The toxic effect of Mg2+ ions in
high concentrations is modeled by destructive level. Three parame-
ters of cmlt , cmmt , and cmht mark the peak occurrence of stimulatory,
high, and destructive levels.

Alkalinity is defined as the sudden change of the ambient pH
with respect to the intracellular pH. Mg2+ ions are reported to alter
microenvironmental pH [9] (see Fig. S1-A in the supplements),
causing an alkaline condition which disrupts cellular reactions. In
contrast to permanent DNA damage, we assume that cells can
recover from mild alkalinity [9]. This process happens by the
adjustment of the cell’s internal pH with respect to the ambient
pH over time with a constant rate (rr) [9]. Alkalinity can signifi-
cantly affect cellular reaction depending on the severity [11]. Sev-
eral minutes of exposure to severe alkalinity is reported to cause
cell contraction and detachment from the culture surface [12]. Sev-
ere alkalinity can compromise human MSC renewal capability and
growth and thereby downregulate proliferation rate [10]. High
alkalinity also reduces cell viability in culture experiments [10].
However, a mild alkaline environment with a pH as high as 8.5
has shown no significant negative effect on osteoblast differentia-
tion [10]. Three linguistic terms are assigned to alkalinity during
the fuzzification process as shown in Fig. 2. We assume that both
mild and severe alkalinity can compromise cellular events of prolif-
eration and health, while only severe alkalinity affects the differen-
tiation process. The parameter of At marks the start of severe level.

BMP2 is the most potent BMP heterodimer in the stimulation of
osteoblast differentiation [46–48]. BMP2 is shown to affect cell
proliferation in a concentration-dependent fashion. BMP2 at the
concentration of 10–20 ng/mL promotes cell proliferation [49,50].
However, BMP2 has shown no effect and a negative effect within
the concentration ranges of 50–200 ng/mL and 500–2000 ng/mL,
respectively [51,52]. BMP2 at the concentration of 10–20 ng/mL
has also shown a stimulatory impact on osteogenic differentiation
[49,50]. BMP2 at the concentration of 500–2000 ng/mL stimulates
cell apoptosis and thereby decreases cell viability [51]. We assign
four membership levels to the input of BMP2 as shown in Fig. 2.
The stimulus level starts from the concentration of 0.008 ng/mL
as the lower bound of the physiological concentration reported in
in vitro experiments [53–55].

TGF-b1 is an important regulatory factor in every stage of bone
regeneration [16,56,46]. Within the physiological concentration of
14.2–36.3 ng/mL, TGF-b1 is shown to stimulate the proliferation
process, promote early osteoblast differentiation, and inhibit the
later phase of differentiation [56,46]. Within the physiological
range, TGF-b1 is also shown to block the natural process of apop-
tosis [57]. The input variable of TGF-b1 is fuzzified according to
Fig. 2, where the concentration of 0.05 ng/mL marks the beginning
of the stimulatory level [58,59].

Cell density is calculated as the normalized number of cells in
one patch neighborhood. Cell density is another important factor
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that is known to affect various cellular reactions such as migration,
proliferation, differentiation, and mortality [60]. High cell density
results in a phenomenon termed contact inhibition that halts cell
growth and initiates the differentiation process [61,62]. Contact
inhibition also affects cell migration as cells intend to move toward
an area with less crowdedness to receive better nutrition and oxy-
gen [63]. A high degree of crowdedness is also reported to be detri-
mental for cell nuclei health and can increase cell mortality [64].
Also, cells in solitude show less proliferation capacity and are sus-
ceptible to mortality [65,66]. To account for these observations, the
input of cell density is fuzzified using three membership functions
as depicted in see Fig. 2. The parameters of cclt1, cclt2, ccht1, and ccht2
mark the boundaries of different memberships.
2.2.2. Fuzzy inference, defuzzification, and cellular events
Once the cellular inputs are converted into linguistic variables,

the rules given in Table 1 are used to determine the intensity of
cellular actions. A given set of inputs can simultaneously trigger
multiple rules. Thus, we use the weighted fuzzy mean technique
to calculate the final output (see Fig. 2) [36]. The outputs of the
FL controller are continuous crisp values between 0 and 1. These
values are post processed to determine cellular events.

The proliferation, mortality, and migration are simulated as a
stochastic process where the chance of occurrence at each time
step is calculated,

Proliferation chance ¼ X � aPf Pð Þ � cP0 ð1Þ
Mortality chance ¼ 1þ aPMdPð Þ � aMfMð Þ � cM0 ð2Þ
Migration chance ¼ f Mi ð3Þ
where cP0 and cM0 are the base chances of proliferation and

mortality, respectively; f P , f M, f Mi are the action rates calculated
by the FL controller for proliferation, mortality, and migration,
respectively; aPand aM are the scale factors to scale up the con-
troller’s outputs; X is a bias function; and dP and aPM simulate
the mitotic damage and its weight on the mortality chance. It is
shown that shortly after proliferation, one of the daughter cells is
prone to undergo apoptosis possibly due to asymmetric distribu-
tion of pro- and anti-apoptotic proteins during the final stage of
cell division [67]. We account for this observation by assigning dP
(dP ¼ 1 if mitosis occurs, and dP ¼ 0 otherwise) to one of the daugh-
ter cells after the cell cycle. Accounting for the fact that cells need a
period of time for growth before the actual process of the division,
we use a logistic-based bias function (X) to shift the probability
distribution toward the end of the cell cycle (see Fig. S1-B in the
supplements). The chosen logistic growth rate constrains the pro-
liferation probability around the average time period assigned for
proliferation but also leaves a degree of stochasticity in the system.
Once a cell commits to proliferation, a daughter cell is created and
positioned adjacent to the mother cell. Migration in the present
model occurs due to contact inhibition with the chance calculated
in Eq. (3). The choice of destination can be arbitrary as long as an
adjacent grid is vacant. The motile cell can move one patch at a
time step. If all neighboring grids are occupied, no relocation will
take place.

Differentiation is simulated as a continuous process with the
rate,

Differentiation rate ¼ ðaDf DÞ � rD0 ð4Þ
where rD0 is the base rate of differentiation, f D is the FL con-

troller’s output for differentiation, and aD is the scale factor.
Whether the maturity is below or above the maturity threshold



Table 1
Fuzzy logic rules describing the cellular reactions in response to stimulatory signals. To be concise, the combination of different inputs that results in the same cellular output is
coded in certain colors; purple (~): any choice of one or more from the given inputs; blue (�): any choice of two or more from the given inputs. The symbol (�) indicates any of the
linguistic levels defined for that variable. If the rule applies for all except a certain level, it is described as ‘Not’ followed by the linguistic level, e.g. ‘Not stimulatory’ stands for all
levels except stimulatory.
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(Mt), f D can indicate the early or late differentiation rate, respec-
tively, produced by the controller. In the present model, cell differ-
entiation and proliferation can occur simultaneously [17].

2.3. Sensitivity analysis and the calibration process

The current model contains 20 free parameters (see Table S2 in
the supplementary information). The empirical data to determine
the values of these parameters are limited as they are either diffi-
cult to measure or represent a combination of several processes.
Instead, we use a range of possible values based on empirical
observations or estimations and then use the calibration process
to precise their values. The empirical data for the calibration pro-
cess is obtained from three sets of cell culture studies (summarized
in section S4 in the supplementary information). Study 1 examines
the effect of five different Mg2+ ions concentrations on cell popula-
tion by measuring two parameters of live cell count and viability
[68]. Study 2 focuses on the osteogenic differentiation process by
measuring the expression of the differentiation-related markers
of alkaline phosphate (ALP) and osteocalcin (OC) and growth fac-
tors at three time points of 7, 14, and 21 days as a response to
two different concentrations of Mg2+ ions [43]. Study 3 reports live
cell count at three time points of 3, 6, and 9 days for four different
Mg2+ ions concentrations [69,70]. The combined data provided 72
experimental measurements. All experiments were conducted
with human umbilical cord perivascular (HUCPV) cells. We con-
duct the calibration process on the dataset of each study alone,
encoded as C1, C2, and C3, as well as on the combined data of all
experiments, encoded as C1-3.

The approximate Bayesian calculation (ABC) is employed for
parameter inference [71] (see section S7 in the supplement). How-
ever, due to the curse of dimensionality, sufficient sampling in a
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20-dimensional space requires a very large number of runs, i.e. in
the order of several million [71], which is impractical considering
the size of the current model. To overcome this, we employ an iter-
ative calibration process depicted in Fig. 3 that follows three main
steps of (1) determining the five most important parameters using
the sensitivity analysis, (2) estimating the values of the chosen
parameters using ABC, and (3) updating the model with the
inferred values and repeating step 1 and 2. We use fractional facto-
rial design and analysis of variance for the sensitivity analysis (see
section S6 in the supplement). The iterative calibration process
ends once no new parameter is inferred at the previous iteration.
3. Results

In this section, we first present the results of the sensitivity
analysis and the calibration process. Then, we show the improve-
ments made on the results during iterative calibration process.
Lastly, we compare the results of the simulations to the empirical
data.

3.1. The results of the sensitivity analysis and the calibration process

The complete results of the iterative calibration process are
given in Fig. S2 in the supplements. It took 5, 8, 5, and 8 iterations
for C1, C2, C3, and C1-3, respectively, to complete the calibration
process. The significance of the parameters with respect to one
another was obtained during the sensitivity analysis (see Fig. 4A).
The base proliferation chance (cP0), the scale factor of proliferation
(aP), and the base mortality chance (cM0) had the highest impact for
C1 and C3. For C2, the top three impactful parameters were the cel-
lular weight (wc), the scale factor of mortality (aD), and the base



Fig. 3. The iterative calibration process used for the parameter estimation in this study. At each iteration, the top five significant parameters are determined by the sensitivity
analysis (SA) that consists of the fractional factorial design (FFD) and the analysis of variance (ANOVA). The significant parameters are sent to ABC for the parameter inference.
At each iteration, the model is executed 5000 times with the parameter sets sampled from the pool of significant parameters. The posteriors are generated using the top 100
results. If the posterior is significantly narrower than the prior, the median of the posterior is accepted as the estimated value. If not, the parameter is added to the pool of the
free parameters for the next round of calibration.
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mortality chance. For C1-3, the top 5 significant parameters were
the combination of those in C1, C2, and C3, i.e. cP0, aP , cM0, wc ,
and aD (see Fig. 4A).

The iterative calibration process resulted in the estimation of 8
out of 20 free parameters for C1, 15 for C2, 7 for C3, and 15 for C1-
3. The estimated values obtained from different calibration scenar-
ios are given in a normalized format in Fig. 4B. The real values are
presented in Table S2 in the supplement. No values were inferred
for the parameters of cmmt and cmht , and several parameters were
only inferred in certain calibration scenarios. There was a large
variation among the estimated values of several parameters during
different calibration scenarios. Among them were aP and cP0, con-
nected to proliferation process, aCM and cM0, associated with mor-
tality, and aD, related to differentiation process (see Fig. 4B).
3.2. The improvements on the goodness of fit (R2) during the iterative
calibration process

During the iterative calibration process, the obtained values of
R2, calculated as the normalized absolute difference between sim-
ulation results and the empirical data, were improved as depicted
in Fig. 5. The standard deviation indicates the extent of the varia-
tions in the mean caused by the uncalibrated parameters. The
mean and standard deviation of R2 respectively increased and
decreased 4% and 5% for C1, 6% and 46% for study 2, 7% and 29%
for C3, and 9% and 31% for C1-3 during the iteration process. For
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C2 and C1-3 with higher calibration iterations, the improvements
made in the first five iterations accounted for 83% and 93% of the
total improvements on the mean and standard deviation, respec-
tively, during C2 and 89% and 96%, respectively, during C1-3.
3.3. Comparison of experimental and simulation results

The agent-based model parametrized with the values accepted
by ABC were compared against the empirical data as demonstrated
in Figs. 6–10. The fits of the model to the data of each study are
given in separate sections in the following.
3.3.1. Study 1
The fits of the model to the data of study 1 are given in Figs. 6

and 7. The model calibrated by C1-3 produced the R2 of 0.87 and
0.72 for the live cell count and viability, respectively. Overall,
Mg2+ ions at the concentration of 3 mM resulted in the highest cell
population followed by 6 mM, 0.8 mM (control), 12 mM, and
60 mM, which was correctly reproduced by the model (see
Fig. 6). For the case of viability, the model closely reproduced the
culture data given for Mg2+ ions concentration of 60 mM but over-
estimated the rest (see Fig. 7). Once calibrated against C1, the mod-
el’s predictions for the viability were considerably improved, i.e. R2

increased from 0.72 to 0.91 (Fig. 7). The model was able to closely
match the culture data for all Mg2+ ions. However, the simulation



Fig. 4. (A) The results of the sensitivity analysis, obtained during the first iteration of the calibration process for different calibration scenarios of C1, C2, C3, and C1-3. The bars
indicate the significance of parameters in comparison with one another. The quantities were scaled with respect to the maximum values. (B) The comparative representation
of the values estimated for the free parameters during different calibration scenarios. The values were scaled by dividing by the mean of the priors.

Fig. 5. The evolution of the goodness of fit during the iterative calibration process for different calibration scenarios. The means and standard deviations were obtained from
the 100 best results. The numbers above the error bars show the standard deviations.
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outcomes showed little change in the case of the live cell count
comparing C1 to C1-3 (see Fig. 6).

3.3.2. Study 2
The fits of the model to the data of study 2 are given in Figs. 8

and 9. The model calibrated by C1-3 resulted in an average R2 of
0.72 for DNA content (see Fig. 8). The model was able to capture
the decreasing trend of the DNA content in the course of experi-
ments from day 7 to 21. The model was also in agreement with
the culture data in terms of predicting higher DNA contents for
the Mg2+ ions concentration of 5 mM compared to the control.
However, there was an overall overestimation in the predictions
made on the day 7 and 14 for both cases. Once calibrated by C2,
the R2 improved from 0.72 to 0.91, and the model’s predictions clo-
4116
sely matched the culture data in terms of trends and exact values
(see Fig. 8).

For the case of ALP and OC, the model calibrated by C1-3
resulted in an average R2 of 0.91, and 0.77, respectively (see
Fig. 8). The culture experiments reported higher ALP for the Mg2+

ions concentration of 5 mM on day 7 and lower on day 14 com-
pared to the control, which was correctly captured by the model.
The OC content was reported lower for the Mg2+ ions concentration
of 5 mM compared to the control in all three time points, which
was also captured by the model (see Fig. 8). However, the model
predicted an increase in OC content from day 7 to 21 which was
not in close agreement with the data. Also, the model underesti-
mated the OC content reported for the control in all three
measurement points. Once calibrated by C2, the predictions of



Fig. 6. Fits of the model calibrated by C1-3 and C1 to the empirical data of study 1. Bars indicate the average of the best 100 simulations (S-) and the corresponding empirical
data (E-) for increasing Mg2+ ion concentrations. The error bars on the empirical data shows the standard deviations. The error bars on the simulation results indicate the
standard deviation of the 100 best fits. Stars indicate the statistically significant differences between values given for the empirical data compared to the control (Mg2+

concentration of 0.8 mM) (p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***). R2 is the average R2 calculated for each measurement item.

Fig. 7. Fits of the model calibrated by C1-3 and C1 to the empirical data of study 1. Bars indicate the average of the best 100 simulations (S-) and the corresponding empirical
data (E-) for increasing Mg2+ ion concentrations. The error bars on the empirical data shows the standard deviations. The error bars on the simulation results indicate the
standard deviation of the 100 best fits. Stars indicate the statistically significant differences between values given for the empirical data compared to the control (Mg2+

concentration of 0.8 mM) (p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***). R2 is the average R2 calculated for each measurement item.
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Fig. 8. Fits of the model calibrated by C1-3 and C2 to the empirical data of study 2. Bars indicate the average of the best 100 simulations (S-) and the corresponding empirical
data (E-) for different Mg concentrations. The error bars on the empirical data shows the standard deviations. The error bars on the simulation results indicate the standard
deviation of the 100 best fits. Stars indicate the statistically significant differences between values given for the empirical data compared to the control (Mg2+ concentration of
0.78 mM) (p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***). R2 is the average R2 calculated for each measurement item.
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the model for the OC content were closer to the experimental data
with 8% improvements in the R2 (see Fig. 8).

The model calibrated by C1-3 produced the average R2 of 0.73
and 0.59 for the growth factors of TGF-b1 and BMP2, respectively
(see Fig. 9). For both TGF-b1 and BMP2, the cell culture data
reported lower values for the condition of 5 mM Mg2+ ions com-
pared to the control in all three time points, which was also cap-
tured by the model. However, the non-linearity shown in the
data, in particular the sharp jump on day 14 of BMP2, was not seen
in the model. Once calibrated by C2, the obtained average R2

increased from 0.73 to 0.76 for TGF-b1 and from 0.59 to 0.68 for
BMP2. However, the model was still not in a close match with
the culture data.

3.3.3. Study 3
The fits of the model to the data of study 3 are given in Fig. 10.

The model calibrated by C1-3 correctly reproduced the trend
observed in the cell culture; the live cell count experienced a con-
tinuous increase from day 3 to day 9 for all Mg2+ ions concentra-
tions; and the highest and lowest live cell count is obtained for
3 mM and 14 mM, respectively. The model disagreed with the data
in two aspects; firstly, there was a general overestimation in the
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predictions of the model especially for the case of the Mg2+ ions
concentration of 14 mM; and secondly, the culture data reported
large variations across different Mg2+ ions concentrations, in par-
ticular on day 6 and 9, while the model’s predictions for different
Mg2+ ions were close to one another. Once calibrated by C3, there
was a substantial increase in the R2, i.e. from 0.48 to 0.85 (see
Fig. 10). The results of the predictions were in close agreement
with the culture data both in terms of trend and the exact values.
4. Discussion

The present computer model was initially calibrated using the
accumulated data of all three experiments. The model was capable
of successfully reproducing several empirical observations, more
notably, the live cell count reported in study 1 and the
differentiation-related markers of ALP and OC. The results of the
simulation, consistent with the experiments, showed that Mg2+

ions within the range of 3–6 mM produce the largest hMSC popu-
lation (see Figs. 6, 7, 10). Also, the model correctly reproduced the
culture data in showing that while Mg2+ ions stimulate early differ-
entiation, it inhibits the differentiation in the later phase (see



Fig. 9. Fits of the model calibrated by C1-3 and C2 to the empirical data of study 2. Bars indicate the average of the best 100 simulations (S-) and the corresponding empirical
data (E-) for different Mg concentrations. The error bars on the empirical data shows the standard deviations. The error bars on the simulation results indicate the standard
deviation of the 100 best fits. Stars indicate the statistically significant differences between values given for the empirical data compared to the control (Mg2+ concentration of
0.78 mM) (p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***). R2 is the average R2 calculated for each measurement item.
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Fig. 8). However, there was an overall discrepancy between the
model’s predictions and the data for the case of viability, the
DNA content, the live cell count reported in study 3, and the
growth factors. To investigate whether such disagreement origi-
nated from the inherent inability of the model in capturing the
complexity of the experiments or from a possible discrepancy
among the given empirical data, we conducted the second round
of calibration in which the model was tuned against the culture
data given for each model separately (C1, C2, and C3).

The results of C1, C2, and C3 showed a significant improvement
in the model’s accuracy in explaining the population-related data
of DNA content, live cell count, and viability data compared to
C1-3 (see section 3.3). To better understand the underlying differ-
ences between the models calibrated by different sets of data, their
estimated parameter values were plotted against one another (see
Fig. 4B). The observed variation in the estimated values primarily
originates from the exploration of ABC in finding the global mini-
mum based on the summary statistics [72]. However, there were
meaningful patterns associated with certain parameters. It was
shown that the base proliferation rate (cP0) was estimated similarly
between C1 and C1-3, whereas C2 and C3 produced a notably
smaller value. A similar pattern was also verified between the pre-
dictions of the models in terms of the live cell count and DNA con-
tent; the results of the live cell count predicted for study 1 were
similar between C1 and C1-3 (see Fig. 6), while the results of the
DNA content predicted for study 2 and live-cell count predicted
for study 3 were overall higher for C1-3 compared to C2 and C3
(see Figs. 8 and 10). This suggests that the cells experimented in
studies 2 and 3 were less proliferative compared to study 1. Con-
sidering that all experiments used a similar cell type (HUCPV)
within the passage numbers 3 and 5, such discrepancy might step
from the differences in the cell donors [73].

Another proliferation-associated parameter whose value
showed a high variation across different calibration schemes was
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aP (see Fig. 4B). This parameter simulates the model’s sensitivity
to the stimuli related to the proliferation process including Mg2+

ions as given in Eq. (1). Both C2 and C3 estimated a higher value
for aP compared to C1-3 and C1 (see Fig. 4B). Simultaneously, the
model calibrated by C2 and C3 produced a higher contrast across
different Mg concentrations in terms of live cell count and DNA
contents (see Fig. 10). Hence, it can be understood that the cells
cultured in study 1 were fundamentally more sensitive to Mg2+

ions compared to study 1 and 2. Such an observation can stem
from cell donor dependency or the aging of Mg extract due to
long-term storage before cell culture, which subsequently results
in less bioactive Mg2+ ions.

Studies 2 and 3 lacked the quantitative measurements of cell
viability (see Table S1 in the supplements). Instead, a minimum
threshold of 50% was used according to similar experiments
[39,40,13,74], in order to prevent the calibration process from pro-
ducing an overall high fitness value at the cost of unrealistic cellu-
lar mortality. To satisfy this condition, C1-3 failed to closely
reproduce the viability values given in study 1 (see Fig. 7). This
implies that no parameter set could simultaneously satisfy the
minimum viability assumed for studies 2 and 3 and the measured
value in study 1. It can be seen that the cells in study 1 had a higher
mortality rate than those in studies 2 and 3 (see Fig. 4B). Consider-
ing that the duration of study 1 was shorter than other studies, a
higher mortality rate in the early days of culture compared to
the later days can justify the observed differences. In our formula-
tions, the factor of the cell passaging damage is assumed to cause
permanent DNA damage and thereby contribute to early cellular
mortality. However, assigning a large weighting factor for this pro-
cess (aCM) results in a sudden diminishing of live cells and leaving
the remaining cells in solitude. Cells in isolation experience a low
proliferation and high mortality rate, according to the assumptions
of the FL controller, which further contributes to the shrinkage in
the cell population. Therefore, the results of our simulation suggest



Fig. 10. Fits of the model calibrated by C1-3 and C3 to the empirical data of study 3. Bars indicate the average of the best 100 simulations (S-) and the corresponding empirical
data (E-) for different Mg concentrations. The error bars on the empirical data shows the standard deviations. The error bars on the simulation results indicate the standard
deviation of the 100 best fits. Stars indicate the statistically significant differences between values given for the empirical data compared to the control (Mg2+ concentration of
0.8 mM) (p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***). R2 is the average R2 calculated for each measurement item.
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that either the cells cultured in the different studies had funda-
mental differences in their mortality behavior, or there is another
factor that gradually contributes to cellular mortality in the early
days of cell culture, which is not included in our formulations.

The experimental cell culture data shows that the content of the
growth factors increases from day 7 to 14 and decreases from day
14 to 21. Given the fact that the reported contents for the growth
factors were normalized against DNA, the observed jump on day 14
can indicate that cells were more productive within the first period
of the experiment compared to the period after day 14. On the
other hand, the cells were not fully differentiated before day 21,
according to the results of the differentiation markers (see
Fig. 8). This implies that the cells produced a higher amount of
growth factors within their early differentiation phase compared
to the later stage. Such an observation was not seen in the formu-
lation of the present model (see Eq. (9) in the supplementary mate-
rials) which was adopted from the literature [75,55]. Further
investigations are required to elucidate the relationship between
the cellular activity regarding growth factors production and the
degree of osteogenic differentiation.

An iterative process was used to calibrate the model’s free
parameters (see Fig. 3). In the proposed scheme, the iterative cali-
bration process continued until no significant narrowing occurred.
Overall, the performance of the model was considerably improved
in the course of the iteration (see Fig. 5). In particular, the standard
deviation of R2, which indicates the uncertainty in the predictions
of the model, dropped to a negligible value at the end of the itera-
tive process (see Fig. 5). The remaining variation can stem from the
stochastic nature of the agent-based modeling. The results also
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showed that the first few iterations can account for a large portion
of the total improvements; for C1 and C2, the first five iterations
accounted for over 90 percent of the total improvements (see sec-
tion 0). This implies that the proposed criteria to stop the calibra-
tion process from further iteration, i.e. the significance in
narrowing the posterior with respect to the prior, are not optimal.
Therefore, the calibration scheme proposed in this study (see
Fig. 3) can be further improved in the future by adding the alter-
ation in the mean and standard deviation of R2 as another factor
in controlling the iteration number.

In the present study, we used Markov decision process-based
ABM to study the dynamics of cell population and osteoblastic dif-
ferentiation. The architectural design of our ABM is reminiscent of
the modeling paradigm used in reinforcement learning, where
decision-maker agents interact with one other and with their
micro-environment [76]. The choice of ABM, thus, can facilitate
the possible subsequent transformation of our descriptive model
into a predictive reinforcement model in the future. The employed
FL-based approach as the decision-making center of the agents
(cells) offers human-intelligible, discrete components with parsa-
ble rules. In contrast to neural networks-based simulations which
outsource all the learning burden into one ‘‘Blackbox”-like network
module [76], the FL-based approach is tractable and conforms to
the actual properties of a system. Such an approach is well-
suited for investigating and incorporating the experimental data-
sets which may not be in perfect agreement with each other as
was the case in the present study. Once such a model is calibrated,
it can serve as the natural basis for neural networks where the
problem becomes more tractable for a learning algorithm
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Among many limitations of the present computer model, here
we discuss a few important ones. Firstly, in the implemented FL
controller (see Table 1), the effect of different cellular inputs was
combined using the principle of superposition. Due to the lack of
information to correctly define the logic of interactions among
the stimulatory factors, such an assumption is inevitable and is
also made in similar studies [19,75,77]. We speculate that
Mg2 + ions combined with TGF-b1 and BMP2 produce synergistic
effects which need to be studies in the future. Secondly, we primar-
ily investigated the bioregulatory effects of Mg2+ ions by applying
the model to the empirical datasets with various concentrations of
Mg2+ ions. The factor of alkalinity is also inclusively studied as it
changes in a linear relationship with the concentration of Mg2+,
which is also the case in the culture experiments. The factors of
TGF-b1 and BMP2 were individually studied in the previous works
[75,55,78] and therefore were not explicitly investigated in this
study. Regarding the factor of cell density, we were not able to find
any study that quantitatively reported the effect of this factor on
the given cellular behaviors. This might step from the fact that a
precise monitoring of cellular positioning in a colony for a long
period of time, i.e. a few weeks, is not practical. Thirdly, we used
discrete grids to create the simulation domain (on-lattice) instead
of continuum space, known as the off-lattice approach [79]. The
grid-based approach constrains agents’ movement to the defined
grids while off-lattice simulation provides a continuum reach.
However, the former offers superior performance compared to
the latter and therefore was favored in our simulations due to
the complexity of the model and the computationally demanding
method employed for the calibration process. Lastly, substrate
stiffness, as an important parameter in guiding osteogenic differ-
entiation [80], was not included in the present study. This impor-
tant parameter will be incorporated in our future models which
will simulate the in vivo setup.
5. Conclusion

The fuzzy agent-based computer model presented in this study
was generally able to reproduce the empirical observations
reported for the MSC population and osteogenic differentiation.
The model closely captured the nonlinearities in the regulatory
effect of Mg2+ ions on multiple cellular processes such as cell pro-
liferation, differentiation, and mortality. The model also showed
fundamental differences between the cells cultured in different
experiments in terms of proliferation capacity and sensitivity to
environmental variables such as Mg2+ ions. Moreover, the iterative
calibration approach proposed in this study was shown advanta-
geous in improving the performance of the model and is thereby
recommended over the single-round calibration method com-
monly used in the literature. In summary, this study shows the sig-
nificance of numerical modeling in understanding and objectively
explaining the experiments by special attention to the mechanisms
underlying cellular processes.
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